i.e., 4, (k,) is sharply peaked around a particular k,, deter-
mined by Egs. (15a)—(15c¢). Then the second factor on the
right side of Eq. (16) is almost constant so that 4, (k, ) is
the same as 4, (k) except for a multiplying factor. Thus the
nth diffracted wave will have the same shape as the incident
wave but will have a smaller overall intensity. This is just
the case of the laser discussed in the introduction. Whether
the laser beam shines directly on the-grating or is first
passed through a single slit, the pattern incident on the
grating is reproduced at the classical diffraction angles. .

Second, suppose the incident amplitude is sharply
peaked for wave vectors near a given direction but with a
broad spread of wavelengths. For each value of wavelength
the situation is as described in the last paragraph. Thus for
each wavelength the nth-order diffracted wave will have
the same shape as the incident wave for that wavelength.
For different wavelengths the nth-order waves will be dif-
fracted through different angles. The effect of this is to
disperse the incident wave into its spectrum of wavelengths
while maintaining the intensity distribution for each wave-
length.

An interesting example of this last effect can be obtained
by projecting a black-and-white slide through a grating.

The zeroth-order image reproduces the original picture in
black and white. The nature of the higher-order images
depends on the nature of the original picture. If the picture
consists of narrow light regions on a dark background,
each light region acts as the slit of a spectrograph and the
higher-order images show the picture spread into its spec-
tral colors. If, on the other hand, the picture consists of
narrow dark regions on a light background, the higher-
order images reproduce the picture in the boundary col-
ors*® of the background. Further discussion of these effects
is beyond the scope of this article.

Finally, if the incident wave amplitude is not sharply
peaked around a given direction, the diffracted waves will
not reproduce the incident wave except in the zeroth order.

'See, for example, Frank L. Pedrotti and Leno S. Pédrotti, Introduction to
Optics (Prentice-Hall, Englewood Cliffs, NJ, 1987}, Chap. 19.

*George W. Stroke, “Diffraction gratings,” in Handbuch der Physik
(Springer-Verlag, Berlin, 1967), Vol. XXIX, pp. 456-458.

*Reference 1, Sec. 19-6.

“P. J. Bouma, Physical Aspects of Colour (St. Martin’s, New York, 1971),
2nd ed., Sec. 48.

*P. J. Quseph, “Spectra of white and black lines,” Phys. Teach. 27, 458
459 (1989).
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The regime of applicability of Newton’s law of cooling is considered in some detail. Three distinct
models of the cooling of hot bodies under laboratory conditions are compared experimentally. A
model found to be applicable over a reasonably wide range of temperatures and cooling conditions

is presented.

I. INTRODUCTION

Newton’s law of cooling is invoked in a wide range of
contexts in applied science. A recent example, and one that
has caused considerable interest, is the reported observa-
tion' of nuclear fusion at room temperature, but the law is
also applied in other areas, for example, in materials
science,”® high-temperature superconductivity,’ and at-
mospheric physics.> Newton’s law can be invoked in a wide
variety of contexts including in the measurement of the
heat capacity of calorimetric systems, in determining heat
losses to the surroundings during experimental runs, etc.
Because of the widespread use of this law of cooling and, in
particular, because of the importance of the cold fusion
results, if confirmed, it would seem appropriate to carry
out a critical study of the regime of applicability of the basic
assumptions involved in applying the law in these contexts.

The law governing the cooling of hot bodies by convec-
tion first appeared in a paper read by Newton at the Royal
Society on 28 May 1701 and published anonymously in
Philosophical Transactions for March and April 1701 (p.
824).° The law states that the rate of heat loss per unit area
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from a body is directly proportional to the temperature
difference between the body and the surrounding fluid me-
dium’ in contact with the body. It was realized from as
early as 1740 at least® that Newton’s model was not appli-
cable to all situations and the question seems to have been a
matter of much debate throughout the 18th and 19th cen-
turies. Clearly, other heat loss mechanisms,’ in particular
radiation, must be considered. Furthermore, a distinction
must be made between cooling by convection currents aris-
ing from the heating of the surrounding medium directly
by the cooling body (“natural convection™), on the one
hand, and by convection currents resulting from external
influences (“forced cooling”), on the other. This article
considers the relative significance of these factors in labora-
tory benchtop experiments and similar situations. '’

I1. MODELS OF COOLING OF THERMAL
SYSTEMS

At least three distinct models (laws of cooling) that at-
tempt to describe the cooling of warm systems in a labora-
tory environment are to be found in standard textbooks on
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general physics and heat. These models may be summar-
ized as follows.

A. Newtonian cooling

Newton’s 1701 model is mentioned in most texts. The
rate of heat loss per unit area from a body at temperature T’
is given by

149 _pr_r 1

1 i ( a)s (1
where T, is the temperature of the fluid (most commonly
air) surrounding the body. The constant of proportionality
h' is sometimes called the heat transfer coefficient.'' The
regime of validity of the model is usually given by
(I'—T,)<T and it is often stated that forced cooling
must be involved. The latter requirement means that a sig-
nificant current in the fluid is required to carry away heat
energy to the environment, the value of /# ’ depending on the
magnitude of the current.

A plausibility argument can be made for the dependence
of (T—T,) given in (1). The cooling body is considered
to be surrounded by a layer of still fluid (“boundary lay-
er””) adhering to the surface through which heat energy has
to be conducted before being carried away by the convec-
tive currents outside the layer. If the layer is considered to
be uniform, the heat transfer coefficient can be understood
to be the ratio of the thermal conductivity of the fluid to the
mean thickness of the boundary layer. Even where the
boundary layer is neither sharply delineated'® nor uniform
over the whole body, a linear dependenceon (7 — T, ) isto
be expected if the thermal conductivity plays the role de-
scribed. .

B. Dulong-Petit cooling

Several authors suggest that in certain circumstances a
more appropriate description of cooling of a hot body is
given by '

1 dQ "

S g(T fa) . (2a)
Taylor'’ states that the value of # lies between 1.3 and 1.6
“depending on the freedom of circulation of air.” Nelkon
and Parker'* and Burns and McDonald'* give a value of
n=3;. '

The origin of this model goes back to 1818 when the
French Académie des Sciences offered a prize of 3000
francs for the study of a number of problems, one of which
was to determine the laws governing the cooling of bodies
in a vacuum. The response stimulated one of the earliest
collaborations between Pierre Dulong and Alexis Petit.'¢
In their prize-winning memoir, Dulong and Petit under-
took a detailed reexamination of Newton’s law of cooling,
distinguishing between losses from radiation and those
from contact with the surrounding medium. Following a
number of remarkable experiments they arrived at a series
of laws relating to different special cases. "’

The 3-power law involved in the Dulong-Petit model
may be explained as follows. While the heat transfer coeffi-
cient #'in Eq. (1) is considered to be independent of the
temperature of the cooling body, in circumstances where
convection currents in the surrounding fluid are induced
solely by the buoyancy of that part of the fluid heated di-
rectly by the cooling body itself (natural convection), the
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value of A’ will depend on (7 — T,). Heat losses due to
natural convection from vertical surfaces were studied the-
oretically by Lorentz'® in the 1880s and experimentally by
Langmuir'® in the 1910s. In this case, and in the case of a
number of other geometrical configurations,*®?' the heat
transfer coefficient was found to be proportional to
(T — T,)"* and thus

L d_Q — _ 5/4 b

1 g(Tr—-T,)"" (2b)

The situation described here is not normally applicable
to laboratory benchtop experiments unless considerable
care has been taken to exclude externally induced drafts.
Nevertheless, the Dulong-Petit model has been applied
with some success in situations where natural convection
does not dominate.*” A possible explanation of this is given
in Sec. IV.

C. Newton-Stefan cooling

Most authors refer to the fact that whenever a body is at
ahigher temperature than its surroundings it will lose ener-
gy by radiation as well as by the conduction—convection
process. In this case, in addition to the terms on the right-
hand side of Eqs. (1) and (2), the effect of the radiation
emitted from and absorbed by the surface of the system
must be included. The principle governing heat energy
emitted and absorbed in this way was not known to New-
ton or to Dulong and Petit. In fact, it was over 60 years
after the experiments of Dulong and Petit that Josef Stefan
proposed that the rate at which energy is emitted radiative-
ly from the surface of a body is proportional to the fourth
power of its temperature. In his original 1879 paper, Ste-
fan®® took the results of Dulong and Petit, together with
experiments by Tyndall** on incandescent platinum wires,
as his starting point. He also pointed out that the Dulong-
Petit model was in agreement with his 7* law. Boltzmann’s
elegant derivation® of Stefan’s law from thermodynamic
considerations followed in 1884.

In principle, all three mechanisms discussed above are
involved in the cooling of a laboratory benchtop system
and in some situations all three may play a significant role.
In most circumstances, however, normal drafts in the room
result in forced cooling being dominant over natural con-
vection. In this case the total heat loss per unit area due to
Newtonian cooling and radiative heat transfer is given by

1 dQ 4 4
~ 2 WT-T,)+ -
< s ( L) +eo(T =T, 3)

where T, is the mean temperature of the sources of thermal
radiation in the environment of the system, ¢ is the emissi-
vity of the surface, and o is Stefan’s constant. If it is as-
sumed that T, = T, (see, however, Sec. VI), then the
right-hand side of (3) is a function of (T — T,) and (3)
can be written®® as

ldQ 2 3 4
— —= = g0 + b0 0° + do*, 4
< a1 ab + +c0° + 4

where 8 =T — T, and the constants have the following
values: :

a=h+4eoT’
b= 6eoT?

c=4e0T,

(~h+6Wm-2K™ 1),
(~003Wm 2K~ ?),
(~6X10-°Wm-2K-%,
d=eo(~xX10"Wm 2K %,
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The numbers in parentheses are the numerical values of the
constants for 7, =300 K and e = 1.

II1. USE OF TEMPERATURE VERSUS TIME
DATA IN CALORIMETRIC EXPERIMENTS

In many experimental situations, the temperature of the
calorimetric system is measured at regular time intervals.
To explain such data by means of any of the models re-
quires the integration of an equation of the form

C dr
=4 _AD, 5
A dt f( ) )

where C is the heat capacity of the system of f(T) repre-
sents the function on the right-hand side of Eq. (1), (2), or
(3). Thus 8 = (T — T,) at any instant can be determined
from

4 _ 4 (6)

S0 C
where it is assumed that the heat capacity is independent of
temperature over the range of temperature involved in the
experiment. The function 1/f(8) is integrable in closed
form in all three cases but, while the integration is simple
(and familiar) in the first two cases, the solution in the
Newton—-Stefan case [Eq. (3)] yields a very complicated
expression containing at least seven terms.”’

If (T — T,) is not too large, however, the series on the
right-hand side of (4) converges reasonably rapidly and, in
this case, a satisfactory approximation to the Newton-Ste-
fan model is given by

C do

— = ao + be 2’ 7
A dt 7
which can be integrated easily to give
0=0e "/[14T6,(1—e "], (8)

where B= (h+4edT})A/C, I = 6ecT?2/(h
+4€0T?), and 6, is the value of (T — T,) at t =0. Ac-
cordingly, the variation of temperature with time in the
three models outlined in Sec. I can be written as follows:
(i) Newtonian cooling:
T— Taz(To_Ta)e*ﬂl’ (9a)
(ii) Dulong—Petit cooling:
T-T,=[(T,— T,)~"*— ()t — 4
(iii) Newton—Stefan cooling:
T—T,=(Ty—T,)e */
[1+ (T, =T,)(1—e")]. (9c)

It should be noted that when the quadratic term in (7) can
be neglected (I" = 0) the Newton-Stefan model reduces to
Newtonian cooling. Nevertheless, in this case, the value of
the heat transfer coefficient 4’ determined on the basis of
Newton’s law of cooling will exceed the “true” value of A
by 4e0T>.

(9b)

IV. APPLICATION OF THE DULONG-PETIT
MODEL

The Dulong—Petit model has been found to be reasona-
bly valid in the case of cooling by convection of bodies in
low drafts, but where the special considerations of Sec. II B
are not strictly applicable. This is consistent with Stefan’s
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explanation of the Dulong—Petit results and a simple un-
derstanding of why this is so can be found from the follow-
ing exercise. A set of data can be generated using the equa-
tion

y=h(T—T,)+e(T*—~T*) 300<T<400,

taking € = 5.7X 10~ ® and T, = 300. A nonlinear curve-
fitting routine can then be used on this data set to find the
best fit to the function y =g(7T — 7,)" with g and » as
fitting parameters. When this exercise is carried out over a
range of realistic values of A(h <25), the values of n ob-
tained fall in the range 1.1 to 1.4, the value n = 1.25 occur-
ring at around 4 = 18. Thus it would appear that the Du-
long~Petit model can be understood in this context as
nothing more than an attempt to describe combined con-
ductive—convective and radiative cooling by a power-law
relationship.

Obviously, for a particular value of 4, a value of n can be
found that gives a better description of the cooling of a hot
body than that provided by Newton’s law of cooling, con-
sistent with the statement of Taylor quoted above. Because
of the dependence of n on the value of the heat transfer
coefficient, however, the Dulong—Petit model is of limited
usefulness in practice except, of course, where natural con-
vection alone is involved. Even in these latter circum-
stances the contribution from radiative heat loss will be
significant.

V. EXPERIMENTAL TEST OF THE MODELS

The following experimental arrangement was used to as-
sess the relative validity of the three models in typical ex-
perimental situations. Two accurately calibrated ( 4 0.2
K) rod thermistors (RS part 151-120) were connected to
the A /D port of a microcomputer (Acorn BBC Model B).
One thermistor was inserted in a cylindrical block of alumi-
num, the block and this thermistor together comprising the
system under study. The heat capacity of this system was
determined from the mass and specific heat capacity of its
components and was also measured using standard calori-
metric techniques. Both approaches yielded values for C /4
close to 5500 J K ~' m .

The aluminum block with the thermistor inserted was
heated to around 100 °C and suspended inside a large card-
board box (the reason for enclosing the system in a box is
important and will be discussed in Sec. VI). The second
thermistor was placed inside the box at about 500 mm from
the block and used to monitor the temperature of the sur-
rounding air. This latter thermistor was cylindrical in
shape (radius ~2 mm), had a highly polished stainless
steel surface, and was oriented to present minimum cross
section to the hot cylinder. No increase in the reading from
this thermistor due to radiation absorbed from the hot
body was observed; in fact, the temperature measured by
this thermistor varied very little throughout any experi-
mental run.

Ventilation flaps were provided in the top of the box and
in the sides near the bottom. In addition, a small fan was
inserted in one side of the box. By running the fan at differ-
ent speeds and/or by opening or closing the ventilation
holes as required a range of different draft conditions were
generated inside the box. Temperature versus time data
were obtained for four different draft conditions as follows.

Draft 1: Vents closed, fan off;
Draft 2: Vents open, fan off;

Colm T. O’Sullivan 958



. pPlétting TEMPERATURE vs. TIME

temp —=

29

88

=

7a

[ IR IS B

68

- S ) sa
R B 1

38

| I B |

28

148 s - diwv time - 18 _

s 1 2 3 4 5 & ¢ 8 9 18 11 12 -
| T T T T T T O I T T A AR Y S

Fig. 1. Dump of computer screen showing typical cooling curves corre-
sponding to the four draft conditions investigated.

Draft 3: Vents open, fan at half speed;

Draft 4: Vents open, fan at full speed.

In each case, 120 pairs of data points, as well as the corre-
sponding air temperature, were plotted on the computer
screen and recorded on disk; four such cooling curves are
shown in Fig. 1.

Each of the three models described, i.e., Eqs. (9a)-
(9¢), was compared with the observed data using a deriva-
tive-free nonlinear regression routine (PAR) from the
BMDP statistical package®® running on a VAX/11 780.
The most straightforward indication of the goodness of fit
of the data to the models is the “sum of the residues” (2. )
computed by the program. The results are summarized in
Table I; the lower the value of =, the better the fit.

The Newton—Stefan model clearly provides the best fit
to the data under all cooling conditions, the value of =
always lying between 0.9 and 2.2. While there is one fitting
parameter more here than in the other two cases, this third
parameter is statistically significant having a P val-
ue < 0.0001 in all except the highest draft conditions. At
lower drafts the Dulong—Petit model (.., = 11) provides
a better description than Newton’s law of cooling
(2, = 49) butis much less satisfactory than the Newton-
Stefan model. Under the largest draft ( Draft 4) the Newto-
nian model is much better than the Dulong—Petit model
and provides as good a fit (£,., = 1.0) as in the Newton—
Stefan case but is significantly less satisfactory than the
Newton-Stefan model in all other circumstances.

The fitting parameters generated by the program can
be used to determine the various constants in the models,
viz. k' in the Newtonian case, g in the Dulong—Petit model,
and /% and eo in Newton-Stefan cooling. The values thus
calculated are also listed in Table I. Under the highest draft
conditions Newton’s law of cooling yields the same value of
h(~20W m 2 K~ !) as the Newton-Stefan model, when
correction has been made for the contribution from the
linear part of the radiation term in (3). Finally, the values
of eo obtained from the Newton—Stefan model turn out to
be of the same order of magnitude as Stefan’s constant,
thereby giving additional confirmation of the theoretical
basis of this model. ’

At larger drafts, i.e, #>20 Wm~2 K~ ', Newton’s
law of cooling provides an equally good description as the
Newton—Stefan model at the sensitivity of the experiment
described. This represents the start of the regime where the
conduction—convection process begins to dominate and
Newton’s law of cooling may be applied. As discussed
above, however, radiation still plays a role in that the value
of the heat transfer coefficient determined assuming New-
tonian cooling exceeds the ““true” value of 4 by 4ea T} (or
approximately 6 Wm 2 K~ ! at 7, = 300 K). Unless the
draft is very large (i.e., h>4eoT?}), this factor must be
taken into consideration in any attempt to estimate the
mean thickness of the boundary layer using Newton’s law
of cooling. ‘

V1. EFFECT OF LOCAL THERMAL SOURCES

Initially the experiments described above were carried
out in the open on a laboratory bench. In these circum-
stances the “best fit” to the data obtained turned out to be
surprisingly poor in all cases with unexpectedly large sys-
tematic errors for all models. This effect was traced to the
fact that the assumption that T, = T, was not valid in this
case. This seems to result from the fact that in a modern
laboratory the temperature of the radiation sources may be
significantly different from the air temperature. Sunlight
through large windows, artificial lighting, modern electri-
cal apparatus together with air conditioning all contribute
to differences between 7, and T,. In such circumstances,
Eq. (4) contains an additional term, that is

149 =h(T, —T,) +af + terms in 0°,...etc.,

A dt
where 8 = T — T, in this case. Thus, even in situations
where Newton’s law of cooling may otherwise be validly
applied, the fractional error involved in neglecting this ef-

Table I. Comparison of the models discussed in the text (7, = 7, = 288 K).

Newtonian
cooling
Fty=h'(T-T,)

Dulong—Petit
cooling
F(6) =g(T—T,)**

Newton-Stefan cooling

Fty=a(T'-T,)+W(T—-T,)*

h' —4eoT

s n —deoT, s &8 s h eox 10"
W/m>/K W/m*/K W/m%*/K W/m?/K*
Draft 1 49 8.9 11 35 1.6 0.23 74
Draft 2 23 9.1 12 3.7 2.2 1.2 6.9
Draft 3 7.9 12 46 5.1 1.0 5.7 6.0
Draft 3 1.0 22 94 8.9 0.9 21 1.0
959 Am. J. Phys., Vol. 58, No. 10, October 1990
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fect is approximately
[/(1+h/4e0T) [T, — T,|/(T—T,],

which may be significant where the overall temperature
rise is small.

While it is possible to incorporate this effect in any of the
models, it is difficult to determine the value of 7', experi-
mentally without the use of an appropriately designed bo-
lometer. If possible, therefore, it is preferable to shield ca-
lorimetric experiments from radiation sources; hence the
reason for enclosing the system in a box as described above.

In certain circumstances nonradiative as well as radia-
tive heat transfer from the environment may present diffi-
culties in sensitive calorimetric experiments. It has been
suggested,”>*® for example, that heat exchange between
the constant temperature water bath and the ambient envi-
ronment may have been a significant source of error in the
cold fusion experiments of Fleischmann and Pons.'

VII. CONCLUSIONS

Discussion in standard textbooks of theories describing
cooling of warm bodies has been unnecessarily empirical
and reticent about the regime of applicability of such theo-
ries. The experiments described in this article indicate that
a model based on combined conductive—convective (New-
tonian) and radiative (Stefan) cooling can be applied with
confidence over the range of conditions usually found in
laboratory calorimetric experiments provided care is taken
to ensure that the temperature of all nearby radiation
sources is the same as that of the fluid surrounding the
systems. This condition can be achieved most easily by
shielding the system from any sources likely to present
problems in this regard.

The techniques described here also provide a reasonably
simple and pedagogically satisfactory method estimating
the value of Stefan’s constant without the need for high
temperatures or creating a vacuum around the system.
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