An experiment on the dynamics of thermal diffusion
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We present an experiment that demonstrates thermal diffusion in metals via a dynamic measurement
of the temperature in a metal rod as a function of position and time. From this single measurement
and using simple heat flow equations, we can extract the thermal conductivity and the specific heat
of the metal to within 5% of the accepted values. This experiment can be extended for advanced
students, who can model the heat flow by including heat losses and finite heater models via a
numerical solution of a partial differential equation. © 2008 American Association of Physics Teachers.
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L. INTRODUCTION

So much attention is paid to wave phenomena in introduc-
tory physics that it is easy to shortchange other energy trans-
port phenomena. This paper describes an experiment where
the temperature of a metal rod is measured at several points
after a pulse of heat is applied. The experiment illustrates the
dynamics of thermal diffusion and measures the thermal con-
ductivity and heat capacity of the material simultaneously.
Although others have described experiments involving ther-
mal diffusion,'™ this experiment is useful for undergradu-
ates because it is dynamic, measures two important material
properties in one experiment, provides easy visualization of
the phenomenon from the data plot, exposes students to a
partial differential diffusion equation, surprises students
when the Gaussian exponential arises in a new context as a
solution, and is low cost, excluding common laboratory
equipment such as computerized data acquisition. It can be
extended to include the use of numerical methods to solve a
partial differential equation.

The experlment was first described by Kuckes and
Thompson Although the original apparatus provided a
qualitative illustration of the phenomenon, the quantitative
determination of the material constants was poor and incon-
sistent. This paper describes improvements to the apparatus
and analysis, which lead to estimates of the parameters to
within 5% of the accepted values.

We begin with a description of the apparatus and a review
of the theory of a heat pulse in a rod. The limitations of the
original results are then discussed together with improve-
ments to the analysis. We then discuss changes to the appa-
ratus and experimental procedure, which result in consistent
and expected values of the thermal conductivity and heat
capacity. Example datasets are provided for copper and gold,
and other materials are considered.

I1. APPARATUS AND PROCEDURE

The apparatus suggested in Refs. 11 and 12 consists of a
3.2 mm diameter copper rod approximately 15 cm long with
a 3.3 Q) heater resistor at one end and thermistors attached to
the rod at distances of 2.5 and 5.1 cm from the heater. The
end of the rod opposite the heater is attached to an aluminum
plate, which acts as a heat sink. A glass jar is placed over the
rod to reduce the heat loss due to air drafts and radiation.
Each thermistor is attached to a variable resistor to make a
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voltage divider, the voltage from which is amplified by an
op-amp circuit. The output voltage of the 01rcu1t is measured
by a computerized data acquisition system 3 The computer
also controls the power to the heater through a transistor
switch. The voltage amplifier and switch are described in
more detail in Appendix A.

The heater provides a point source of heat in the rod over
a short interval of time. This heat pulse is delivered by a
current pulse of about 1 A in the resistor with a duration of
0.1 to 1.0 s controlled by a computer. After the pulse, the
computer measures the voltage outputs of the thermistor op-
amps over about 60 s. Before starting a run, the trimpot for
each thermistor voltage divider should be adjusted so that the
output voltage of the amplifier is slightly above zero. This
procedure ensures that the op-amp is in its active region.
Significant changes in the temperature happen quickly so the
sample rate should be at least 10 s~!. Before the next run, we
let the rod cool until the temperature stabilizes and readjust
the trimpot. Additionally, we measure the voltage across the
heater resistance with the power applied so that the total
input energy can be calculated.

After a run the computer subtracts the initial offset voltage
and applies the calculated gain factor to obtain the tempera-
ture change in Kelvin as a function of time. The amplifier
gain calculation and temperature conversion is described in
detail in Appendix A. The computer should also subtract an
appropriate time difference so that time is measured from the
midpoint of the pulse to ensure that the data can be compared
to the model."?

III. SYSTEM MODEL AND DATA ANALYSIS

The primary model for this experiment is the transport of
heat in an 1nﬁn1te rod due to a point source of energy in the

middle.'>"* The transport of heat along the rod follows the
one-dimensional diffusion equation
©_ L9 (1
Yo T Na

where @=0(z,17) is the temperature change of the rod with
respect to the equilibrium temperature, « is the thermal con-
ductivity, and s is the volumetric heat capacity (the specific
heat ¢ multiplied by the density p). The equilibrium tempera-
ture is assumed to be the ambient temperature of the air at
the start, T,,. Therefore, O(z,1)=T,(z,t)-T,, where T,(z,1) is
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Fig. 1. (Color online) The temperature change as a function of distance
along a 3.2 mm diam. copper rod for times r=0.25, 1, 4, and 16 s. The
profile is a Gaussian in the distance z and decreases in amplitude and in-
creases in width with increasing time. At the point along the rod indicated
by the vertical line at z=3.3 cm, the temperature first increases, then slowly
decays back to zero temperature change.

the temperature of the rod as a function of position and time.
The solution for a heat pulse Q at the center of the rod is
0

2
O=—-0pF S/4Kl, (2)
2AN TKSt

where A=1a? is the cross-sectional area of the rod with ra-
dius a. By symmetry the solution for a half infinite rod,
where all of the heat goes in one direction, is the same as Eq.
(2), but with twice the temperature change. Note that the
solution is a Gaussian function of distance whose height de-
creases and whose width increases in time. The temperature
change as a function of position given by Eq. (2) for several
times after the pulse of heat is shown in Fig. 1. The contrast
with the solution of the wave equation is clear; the heat pulse
does not travel along the rod like a wave. However, the tem-
perature at a particular distance (the vertical line in Fig. 1)
will first rise and then fall, as if a pulse had passed by.

For measurements of the temperature change ® for the
infinite rod as a function of time at a particular position, z,
the solution can be written in terms of the characteristic time
t, and characteristic temperature change ® .

0=0, \f;e/ (3)

where t,=s7?/4k and G)C=Q/Azsv'71'.]2 The characteristic
time and temperature change are related to the time and tem-
perature_change at the peak in the curve: 7., =27, and
®peak=vm®620.43®c. Therefore, a first estimate of s is
obtained by determining the peak temperature change.
Knowing s, the thermal conductivity « is determined from
the time of the peak. A finite time pulse can be accurately
modeled by this pulse solution provided that the time is mea-
sured from the center of the finite time pulse and the pulse
duration is =0.5¢,, or roughly less than 1 s for copper when
z~2.5cm."”

Typical results from a 3.2 mm diameter copper rod at two
distances for a 0.5 s pulse of heat are shown in Fig. 2 to-
gether with the models generated from the time and height of
the peaks. Note that the models fit well at early times for
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Fig. 2. (Color online) Observed temperatures (solid lines) in a 3.2 mm di-
ameter copper rod as a function of time at distances from the heater of
2.5 cm (upper curve) and 5.1 cm (lower curve). The model (dashed lines)
fits well at early times, but greatly underestimates the heat losses for larger
times. The fitting parameters required to achieve good fits for the two ther-
mistors are different.

each distance taken individually. They do not fit well when
the constants obtained from the data from one thermistor are
used to generate the model for the second thermistor. The
constants obtained from these curves also deviate from ac-
cepted values by roughly 20%. At later times, the tempera-
ture falls more rapidly than the model predicts, possibly
skewing the peak toward lower temperature changes and
shorter times. We conclude that this experiment gives quali-
tative agreement with the predictions of Eq. (3), but can be
dissatisfying because students do not obtain consistent re-
sults or results that agree with expected values.

IV. IMPROVED ANALYSIS

One change in the analysis procedure can bring consis-
tency between the models at the two distances. The original
heater was a 3.3 ) metal film resistor that was embedded
using heat conductive epoxy in a short length of copper rod
that was soldered to the end of the thermistor rod. The heat
conductance of the epoxy and the resistor body are much less
than those of the rod. Because the heater does not heat a
small volume uniformly, and the heat is moving out of the
heated area more slowly, the effective distance from the
heater to the measurement position is more than the mea-
sured distance.

We can account for this additional distance by adding an
effective distance z.; to each thermistor distance, such that
Z=Zmeasured + Zef- NOte that s depends on the inverse of z and
k depends linearly on z, so adding this effective distance
does not simply scale the solutions. The data at the two dis-
tances can now be fitted by adjusting three parameters, s, «,
and z.p. A model with z.4=~9 mm fits the data from both
thermistors and produces similar values of s and «. These
values of s and « are within 20% and 12% of the accepted
values, respectively. Therefore, the addition of z.; has ame-
liorated the problem of inconsistency between the parameters
obtained at two distances at the cost of another fitting param-
eter. Qualitatively, the experimental values of s, k, and z.,
when used with Eq. (3), produce a graph very similar to Fig.
2; that is, the experiment and model agree well up to the
peak, but the model underestimates the heat loss at longer
times.

From the later time data it is clear that the rod is losing
heat by means other than conduction down the rod. Losses
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out the side of the rod to the air can be conductive, convec-
tive, or radiative. Because the coefficient of thermal conduc-
tivity of air is 107 times smaller than that of copper,15 direct
conductive loss to the air is negligible. The convective trans-
fer of heat over a time At is given by Fourier cooling, AQ,
=hA;®Ar, where h, is the convective heat transfer coeffi-
cient, and A;=2maAz is the surface area of the section of the
rod of length Az and radius a.’

Radiative heat transfer is given by AQ,= €A (T} —-T})At,
where o is the Stefan-Boltzmann constant

For small temperature differences, as is the case in this ex-
periment, the radiative transfer can be written as AQ,
=460’ASTZ®AZ‘. The overall heat loss to air for a section of
rod Az can be written as

AQ o = 2mahAzO A, 4)

with h=h.+4€eoT>. The coefficient of convective heat trans-
fer h, is highly variable. Typical values for a vertical surface
in otherwise still air are between 5 and 35 Wm 2 K~"."" For
comparison, the value of the radiative factor, 40‘AST(31, is
6 Wm™ K~! at room temperature. However, the emissivity
for metals with a semipolished surface is generally less than
5%.'° Also, the addition of a glass enclosure will reflect the
radiative heat energy so that the effective temperature differ-
ence will not be as large as 7,—T,. Both the low emissivity
of metals and a reflective glass enclosure will further reduce
the radiative heat loss component of the total heat loss.

This total alternate heat loss & adds another term to the
partial differential equation in Eq. (1),

—=k—5 —-w0, 5
Yo a2 7" ©)
where w=2h/a. Although it is not obvious, Eq. (5) is soluble
analytically with the addition of a time exponential to Eq.

(2):

0 2 .
@ =07 S/4Kte—w[/S" (6)
2AN kst

By appropriate adjustment of the parameters s, «, w, and
Zesr» the model can be fitted to the experimental data. Because
the parameters do not have independent effects on the shape
of the model curve, the fit must be done by an iterative
process. A good fit is obtained over the whole time span with
this analytic solution. Figure 3 shows the solution generated
by Eq. (6) using accepted values of k and ¢ (see Table I) and
Zer=20 mm and ~=27 Wm™2K~!. This convective heat
transfer value is consistent with the range noted previously.
As expected, the heat loss skews the peak temperature
change and the time of the peak. Estimates of « and ¢ with-
out consideration of this effect will thus be biased.

Further analysis could include the effect of adding heat to
the rod over a finite period of time and over a finite distance.
Adding a heat source that is not a delta function leads to an
equation of the form

s@=l<(92—?+v—w®, (7)

ot oz
where v=v(z,1) is the power density input (energy per vol-
ume per time) for each segment of the rod. Thus, the power
of the heat source could be specified over a finite region for
a finite time duration and set to zero for the rest of the rod.
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Fig. 3. (Color online) Observed temperatures in a 3.2 mm diameter copper
rod as a function of time at two distances from the heater along a copper rod
2.5 cm (boxes) and 5.1 cm (circles). The solid line shows the analytical
solution to Eq. (6) using « and ¢ from Table I and with z,,=20 mm and
h=27 Wm™2 K~'. The dotted line is the solution without consideration of the
heat loss from the sides of the rod.

For this case no analytical solution exists, and a numerical
solution is necessary. Appendix B describes a procedure for a
numerical solution of this equation.

V. IMPROVED APPARATUS AND PROCEDURE

The model we have described requires four parameters to
fit the data. Wouldn’t it be better to fix the problems experi-
mentally?

A metal-film resistor epoxied to the end of the rod works
well for a qualitative analysis, but because we have a poor
understanding of how the resistor actually heats the rod, we
are forced to introduce the z.; parameter to model how heat
is transported from the resistor into the rod. We can reduce
Zefr by improving the heat transfer from the heat source into
the metal rod. We replaced the heater resistor with about 20
turns of 0.16 mm diameter (34 gauge) coated phosphor
bronze wire wrapped directly around the rod (R=4 ()) and
held in place using a thin coating of thermal epoxy (Fig. 4).
This heater arrangement ensures that the heat from the wire
goes directly into the rod with only a minimum of uncer-
tainty in the location and time.

We can also limit the effect of a finite size heater by mov-
ing the thermistor positions farther away. The farther the dis-
tance from the heater, the more the finite heat pulse looks
like a delta function in z and 7. Because the heat pulse looks
more like a delta function, z.; is a smaller correction to the
position of the thermistors. To move the thermistors away

Table I. Thermal material properties for copper, gold, aluminum, and silver,
where « is the thermal conductivity, c is the specific heat, p is the density, s
is the volumetric heat capacity, and « is the diffusivity (Ref. 15).

K c p s=cp a=k/s

(Wm-K)  (J/kg-K)  (kg/m?) (J/m3-K) (m?/s)
Cu 401 385 8960 3.45x10° 1.17x 107
Au 317 129 19300  249Xx10°  1.27x10™*
Al 237 904 2700 2.44 % 10° 0.97x107*
Ag 429 236 10 500 2.48X10° 1.73x 10
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Fig. 4. (Color online) Schematic of the improved thermal diffusion appara-
tus. A 3.2 mm diameter, 80 cm long metal rod is bent into a U-shape. The
heater is roughly 20 turns of 0.16 mm diameter (34 gauge) coated phosphor
bronze wire wound directly around the rod and held in place with thermal
epoxy. The thermistors are attached with thermal epoxy at z;=5.1 cm and
2,=10.2 cm from the heater. The rods terminate in thermally insulating phe-
nolic blocks.

from the heat source requires a longer metal rod. We use an
80 cm copper rod bent into an upside-down U shape. Using
a longer rod allows us to place the heater in the center of the
rod and move the thermistor positions to 5.1 cm and 10.2 cm
from the heater (Fig. 4).

Moving the thermistors farther from the heat source also
means that the measured temperature changes are smaller.
Thus, extraneous heat sources conducted through the base
plate become more influential on the temperature of the rod.
To reduce their effect we used a thermal insulator instead of
using a thermal sink for the rod, creating a thermally floating
rod. We threaded the ends of the rod and screwed phenolic
nuts (fabricated in our shop) onto them. We then secured the
nuts to a brass plate. These phenolic nuts ensured that tem-
perature changes in the brass plate were not communicated
to the thermistors, and that the temperature changes mea-
sured by the thermistors came from the heater.

The fourth parameter, w, comes from the need to include
heat losses. As we have argued, the heat loss at room tem-
perature due to convection is a large percentage of the total
heat loss. We eliminated most convective heat losses by op-
erating the apparatus in a vacuum, using a diffusion pump, a
bell jar, and electric feedthroughs. The data taken in air com-
pared with data taken in a vacuum provide students with
striking visual evidence of the heat loss due to convection.
Figure 5 shows data taken at atmospheric pressure and in a
vacuum (P=1X 107 Torr) over a 10 min time span. As ex-
pected, the temperature decays much more slowly in a
vacuum. Model curves generated using Eq. (3) with accepted
values for the specific heat and thermal conductivity of cop-
per fit these data quite well (see Fig. 6). The remaining dis-
crepancy is most likely due to a remaining radiative compo-
nent of the heat loss and the rod’s finite length and thermal
isolation. By using the combination of improved apparatus
and operation in a vacuum, we are able to model both ther-
mistors using the same modeling parameters.

With z.¢=0, we find s and « to within 10% of the accepted
values. With a small effective distance (z.;=~2 mm), we can
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Fig. 5. (Color online) Data taken from the improved thermal diffusion ap-
paratus. Two runs are shown for each of the thermistors at distances 5.1 cm
(the two upper curves) and 10.2 cm (the two lower curves). The first run is
at atmospheric pressure (P=760 Torr) and the second is at P=1
X 107 Torr. The data taken in air show much faster decays back to zero.
For P=1X107° Torr the heat loss due to convection is removed, and the
data decay much slower. The steps in the later time data are due to the
digitization of the amplifier output voltage. The pulse time was 0.6 s and the
total heat input was 0=2.9 J.

reduce the error to find material parameters that agree with
accepted values to within 5%. A value of z. of this magni-
tude can be explained qualitatively as the extra distance that
the heat must travel from the surface where the heat is ap-
plied to the center of the rod.

VI. CONCLUSIONS AND CHALLENGES

We have discussed a simple and inexpensive laboratory
apparatus and analysis that can quickly and easily measure
the heat capacity and the thermal conductivity of metals. In
addition to its other advantages, this experiment demon-
strates nonwave energy transport phenomena, which is often
overlooked in introductory (and advanced) physics courses.
We were able to measure ¢ and « to within 5% of the ex-
pected values.

We also discussed improvements on the original thermal
diffusion experiment. Our results show that improvements to

0.5¢ z=5.1¢cm Data taken in vacuum

G z~10.2cm (P = 1x1078 Torr)
S04t /L Model using known
c:» material parameters
£
O 0.3
)
S
3 .........
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P ..,
o | ] TSN
e |{{ 000 T
5 0.1
|—
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0 100 200 300 400 500 600
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Fig. 6. (Color online) Thermal diffusion data taken with a copper rod with
P=1X107° Torr. The data are from thermistors at 5.1 cm and 10.2 cm. The
dotted lines are models using accepted material parameters for copper (see
Table I) using Eq. (3) with z,;=2.5 mm. Although some discrepancies re-
main, this graph shows excellent agreement between theory and experiment.
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Fig. 7. (Color online) Temperature change as a function of time in a
3.2 mm diam. rod at 2.5 cm from the heat pulse for various materials, using
the material parameters in Table I.

an experiment can be approached by improving the analysis
or improving the experiment. An improved analysis can help
us to understand inconsistencies in the data or the previous
analysis. In this case, consideration of alternate heat losses
allowed us to improve the fit to the data. An improved ex-
perimental apparatus and procedures can be devised to elimi-
nate the inconsistencies and reduce errors. For this experi-
ment a modified apparatus and procedures allowed us to
reduce heat losses before analysis. It is fortunate, as in this
experiment, when both approaches lead to the same under-
standing of the system.

Our work also suggests future challenges. To find ¢ and «
more accurately we suggest that readers use the numerical
solution to model the fact that the heater is of finite size and
the heat pulse has finite duration. We also suggest that using
thermally reflective surfaces and thermally absorptive sur-
faces in air and in vacuum can isolate the convective and
radiative components of / to verify the emissivity of copper,
as well as the value of the total heat loss of the system (we
found =27 Wm2K™).

Finally, although copper is inexpensive, we need not limit
ourselves to this metal, and the experiment can easily be
adapted to other materials. Table I shows the accepted sig-
nificant materials properties for several other metals."? Fig-
ure 7 shows the predicted behavior for these when used in
this experiment. In addition to the data for a copper rod, a
dataset taken with a gold rod is included in Ref. 19 for stu-
dents to model. Our final challenge is to adapt this experi-
ment to measure the heat capacity and thermal conductivity
of nonmetallic materials, for example, silicon, sapphire, or
quartz.
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APPENDIX A: ELECTRONIC CIRCUIT DETAILS

To measure the temperature of the rod, we use a Honey-
well 111-202CAK-HO1 (formerly Fenwall GB32J2) ther-
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Fig. 8. Circuitry for the thermal diffusion experiment. The upper circuit
schematic shows the voltage divider and amplifier for the thermistors (one
for each thermistor is required). With the resistors shown, the gain is 21 for
voltages at pin 3 (Vth). The lower schematic shows the computer control
circuit for the heater. Current will flow through the heater for a +5 V control
signal and will not flow for O V.

mistor, which has a resistance of about 2 k{) at room tem-
perature. The thermistor is small, and so its response time to
changes in the temperature is on the order of 0.1 s. A voltage
divider is constructed using the thermistor, R,,, and a trim-
pot, R, as shown in Fig. 8. The output of the voltage divider
is

R

- (A1)

Vo=Vor—7—,
th ORth+RU

where V|, is the reference voltage. In our circuit V{, is 5.0 V
nominal and should be measured carefully. Because the volt-
age changes are small, we can write

dR,, 1 2
v, =-V, —.
R, \1+R,/R,

(A2)

The trimpot is adjusted before a run so that the output of the
op-amp is approximately zero, which means that the V,,
=1/2V, and thus R,,=R,. Therefore
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dR
thh =- Vo_lh

4R, (A3)

The change in the output voltage of the op-amp circuit® is
given by

dv,=Gdv,, (A4)

where G is the gain. For the circuit shown in Fig. 8 the gain
is 21.

The thermistor resistance varies exponentially with tem-
perature, R,,=R,e’0T, where T,, is the absolute temperature
of the thermistor, 7}, is the temperature of the semiconductor
gap (T,=3440 K for this thermistor), and Ry, is the resistance
at T,. (The value of R, is not needed for this analysis.) For
small resistance changes
To dTy,

dRy=—-Ry—

(A5)
Ty Ty

Because the thermistor temperature does not change much,
we can make the approximation that it is equal to the room
air temperature, T, =~ T,. If we combine Egs. (A3), (A5), and
(A4), we see that
4T,dv,

dT,,=T,——*

) A6
‘GT, V, (A6)

which allows us to convert the measured voltage change to a
temperature difference.

The heater control circuit uses a transistor’ as a switch to
control the current through the heater resistance and to turn
on an LED indicator. A +5 V signal from the computer turns
on the current flow and a O V signal turns it off. The voltage
across the heater resistance, AV,,=5.0 V-V,,,, should be
measured when the current is flowing in order to calculate
the amount of heat that is delivered to the rod, Q
=Atht,Ame/ Ry, where Aty,. is the duration of the heat
pulse.

APPENDIX B: NUMERICAL SOLUTION
FOR A FINITE HEAT PULSE

MATLAB has a built-in partial differential equation solver
pdepe that can be used with equations of the form

Mmooy

8, =% &Z[Z fl+], (B1)
where f, g, and j are functions: f=f(z,t,u,du/dz), g
=g(z,t,u,0u/dz), and j=h(z,t,u,du/dz). By letting u=0,
m=0, f=kd®/dz, g=s, and j=v—-wu=v—-w0, this solver is
appropriate for Eq. (7). These identifications are communi-
cated to pdepe using an external function. For the case of
the rod with a heater in the center generating a constant
power P over a period of time #;,, v=P for —z;,/2<z<
+25,,/2 and 0<r<ty,. and v=0 for all other positions and
times.

The initial conditions and boundary values are communi-
cated via additional functions. The initial condition is the
specification of the initial values of the temperature change
at each spacial grid point. For the case of Eq. (7), ®=0 for
all z because no heat has yet been added at r=0.
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The code requires that boundary conditions must be ex-
pressible in the form p+¢gf=0, where p and g are functions.
The boundary conditions for the infinite rod are that the ends
of the rod do not experience a temperature change; that is,
®=0 at z=—L/2 and z=L/2, where L is the (long) length of
the rod. Thus, letting p=0 and ¢g=0 will specify appropriate
boundary conditions provided L is set to a large enough
value for the time span considered. These boundary condi-
tions are also appropriate for a rod whose ends are connected
to a heat sink. Thus, the effect of a finite length rod can be
modeled.

A mesh for the position z and also another for the time ¢
must be specified. Because most of the dynamics take place
at early times and near the heater, we used a logarithmic grid
for both time and distance in order to have accurate heater
models. Further details can be found in the example code
provided on EPAPS' and in the MATLAB documentation.
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