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Control of the chaotic driven pendulum

Gregory L. Baker

College of the Academy of the New Church, Bryn Athyn, Pennsylvania 19009
(Received 23 March 1994; accepted 21 December 1994)

A method of controlling chaos (due to Ott, Grebogi, and Yorke) is illustrated with a simulated
chaotic pendulum. The method consists of stabilizing a previously unstable periodic orbit through
a feedback mechanism that periodically adjusts the damping parameter of the pendulum. The
presentation is pedagogical and describes the method in more detail than is typical of the research
literature on controlling chaotic systems. © 1995 American Association of Physics Teachers.

L. INTRODUCTION

The pendulum has long served as a pedagogically useful
model in mechanics. From Galileo’s discovery of the 2p-
proximate constancy of its perrod for small oscillations,' to
its recent use as an experrmental and simulation model* 4 for
nonlinear dynamics, the pendulum has exhibited a rich vari-
ety of dynamical behavior. The pendulum has for many de-
cades exemplified periodic motion,> and its more recent
emergence as a primary example of chaotic dynamics has
made it ubiquitous in the mushrooming pedagogical litera-
ture on chaotic dynamics.>®” In this paper we use the pen-
dulum to illustrate the “control of chaos.”

The control of physical systems is an 1mportant subject in
engineering, and the classical literature is extensive.® How-
ever the application of control algorithms to chaotic dynam-
ics is recent. The goal is to continually but slightly perturb a
chaotic mechanical system so as to cause it to act nonchaoti-
cally. More precisely, the parameters of the system are such
that it would ordinarily exhibit chaos and yet the system can
be made to behave periodically by a time-varying adjustment
of the parameters in the chaotic range. The requisite size of
the perturbation depends on the momentary deviation from
periodicity, and therefore the control mechanism is a version
of proportional feedback.

This and other similar control algorithms may have impor-
tant applrcatron in a variety of areas where chaotic signals
are present.” Typical examples include possible control of
cardiac ﬁbrlllation epileptic seizures, and chemical
reactions.'® Control may also be used to extend the stability
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regime of lasers'! and has even been suggested as a strategy
for efficient vaccination of populations against various
diseases.'

While several control mechanisms for chaotic systems are
known, we confine our discussion to the elegant scheme pro-
posed by Ott, Grebogi, and Yorke!® (OGY) in 1990 and very
quickly applied to a physical system the magnetoelastic rib-
bon, by Ditto, Rauseo, and Spano "4 Variations of the OGY
scheme have been applied to other oscillating systems. For
example, control of a “parametric”’ pendulum—one whose
pivot point is driven vertically—has been achieved both i 1n
experiment and numerical simulation by Starrett and Tagg.'’
Nitsche and Dressler have achieved control when the dy-
namical system is known only by a time series. They applied
their modification of OGY control to a time series from a
simulated Duffin, % oscillator.! Finally, Hubinger, Doerner,
and Martiennsen ' used an extension of the OGY method
(involving quasicontinuous control) to control an experimen-
tal pendulum.

In the original paper the OGY method was applied to the
two-dimensional Henon map. Here we take a similar ap-
proach and use the Poincaré section of the forced, damped
pendulum as a two-dimensional map.

We begin with a brief description of the simulated driven
pendulum. Then two representations of chaotic behavior are
described: (1) a bifurcation diagram which displays dynami-
cal behavior over a range of control parameter values, and
(2) a Poincaré section which shows periodic sampling of the
state variables, angle 6,, and angular velocity w,. Finally,
the OGY algorithm is applied to the pendulum—in part, to
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Fig. 1. A bifurcation diagram for the driven pendulum. The angular velocity w of the penduium at the beginning of each forcing cycle is plotted for many
cycles at each value of the friction parameter g. In regions where there are many values of angular velocity, the motion is chaotic. The forcing parameter is

g=1.5 and the forcing frequency wp=2/3.

encourage the nonspecialist to experiment with the control of
chaos with pendula and other periodically forced chaotic sys-
tems.

II. THE CHAOTIC PENDULUM

The chaotic pendulum is a driven pendulum that is oper-
ated in a parameter regime where the motion is chaotic. In
dimensionless form its equation of motion may be written as

d’e 1de
-zt
dt* g dt

where @ is the angular displacement of the pendulum from
the vertical, g is a friction parameter, g is the forcing ampli-
tude, and wy, is the forcing frequency.’ (Small values of g
imply large damping.) Variation of the parameter set
(q.8,wp) results in various types of dynamical behavior,
including chaos. The bifurcation diagram of Fig. 1 illustrates
some of this variety. In Fig. 1 the horizontal axis shows the
increase in the friction parameter g (actually a decrease in
the damping) and the vertical axis shows the value of the
angular velocity, w=d 0/dt, taken at the beginning of each of
many forcing cycles, after initial transients have died away.
If the motion is periodic at the forcing frequency, then only
one point occurs repeatedly for that value of g. If only a few
points occur then the motion is periodic with a periodicity
indicated by the number of points. For example, a period-3
window occurs at about g=3.24, Such periodic orbits are
stable motions. If there are many points—a broad spectrum
of values of w—then the motion never repeats and is chaotic.
In this case, infinitely many periodic orbits are present, but
all are unstable. For this discussion we focus on the dynam-
ics associated with a parameter set (g=1.5, ¢=3.9, w,=2/3)
that lies well inside the chaotic zone, as indicated in the
bifurcation diagram.

+sin f=g cos wpt, 1)
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Another diagram—the Poincaré section—is also impor-
tant for this discussion. The Poincaré section, as seen in Fig.
2, is a stroboscopic picture of the (6,w) plane for the pendu-
lum taken once during each forcing cycle after initial tran-
sients have died away. In this case the coordinates are mea-
sured at the beginning of each forcing cycle and the
parameter values used in Fig. 2 are the ones stated above.
Because the system is governed by Newton’s second law
there is a deterministic relationship between successive
points that may be represented mathematically as

0,, +1 ) _ ( 0,, )

(wn+l m(a’w) Wy i (2)
where m(6,w) is some unknown transformation acting on the
vector (4, ,w,) that represents each point. The Poincaré sec-
tion is therefore a geometric representation of this transfor-
mation. For control, it is important to determine m at a cer-
tain point in the phase plane.

1. THE OGY METHOD OF CONTROL

The OGY method rests upon the fact that in the chaotic
regime there are infinitely many unstable periodic orbits.’
These orbits are represented on the Poincaré section by fixed
points—points that stay constant from cycle to cycle. Since
the periodic orbits are unstable, an actual trajectory will only
return to the vicinity of these unstable fixed points a few
times. Control is achieved by keeping the system near one of
those unstable periodic orbits indefinitely by suitable small
changes in a parameter. In this case the friction parameter ¢
is given a small change &g at the beginning of each drive
cycle. The amount of change &g is based upon the deviation .
of the system’s trajectory from the periodic orbit. An appro-
priately chosen value of §g causes the system’s trajectory to
be pushed back toward the periodic orbit during the subse-
quent cycle. Repetition of the process “stabilizes” the un-
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Fig. 2. A Poincaré section for the pendulum when g=1.5, g=3.9, and wp=2/3. The values of angular velocity w and angle 8 are plotted at the beginning of
each forcing cycle, for 10 000 cycles. The solid square near (1.5, ~0.5) contains an unstable fixed point. (See later text for explanation.)

stable periodic orbit. Unlike some other control methods, the
OGY method has the useful feature that it is applicable even
when only small changes to the system dynamics are toler-
able. In this way the locations in phase space of the fixed
points are only slightly affected by the control process, yet
the system may operate periodically.

The steps in the method are as follows.

(1) Determine the coordinates of a fixed point (85 ,wp) on
the Poincaré section of an unstable periodic orbit.

(2) Determine the effect of small changes in the parameter g
on the coordinates of the fixed point.

(3) Determine the transformation m in the region of the
fixed point. o

(4) Use this information to adjust the parameter change dq
so- as to force the next trajectory back toward the fixed
point on the Poincaré surface of section.

In this way the intersection of the trajectory with the Poin-
caré section is kept in the region of the fixed point and the
pendulum undergoes nearly periodic motion. Let us follow
the details of these steps.

A. Finding the fixed points

Fixed points—and therefore unstable periodic orbits—
may be determined by a slight adaptation of a typical algo-
rithm for generating Poincar€ sections.” One must keep track
of pairs of consecutive points (6,,w,) and (8,41,0,+1),
calculate the distance between them, and compare that dis-
tance to some predetermined small distance, €. If the distance
is less than € then the coordinates indicate the presence of a
nearby fixed point (6, wg). Typically, the system will return
to the neighborhood of the fixed point several times during a
run and yield several closely spaced values for the fixed
point. These must be averaged to obtain an estimate of the
location of the nearby fixed point. Furthermore there are
typically several fixed points from which to select. For our
parameters we chose to stabilize the fixed point located at
0r=1.523, and wp=—0.415. (In our case the Poincaré sec-
tion is taken at the beginning of the forcing cycle.)
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These procedures for finding fixed points can be modified
to. find period-2 or higher periodicity orbits. For period-k
orbits one would simply check (6,,;,»,.;) against
(8, ,w,). In general, control is easier for small values of k.

B. Effect of the parameter change

The next step is to determine how variation in the damp-
ing of the pendulum affects the coordinates of the fixed
point, Near (6y,wy) a small change 8g in the parameter ¢
will result in a new fixed point (6f,wy) which can be ap-
proximated by

9})~( oF)+5q( aep/aq). 5

wp wg dwp/dg

To determine the vector (96y/dq,dwr/dq) we simply make
a small change in ¢ and observe the change in fixed points
while g is held constant at its new value. Figure 3 shows
graphs of 6 and wr vs g. Though there is some scatter a
linear approximation near the fixed point suffices. The slopes
are determined by a least-squares fit of the data. In this dis-
cussion we use

(905/340wp/8,)=(—0.41,—0.29).

These slopes are uncertain by about +0.06 and *+0.02, re-
spectively. However, the control mechanism is not especially
sensitive and variations of this magnitude seem to be toler-
able.

C. The transformation, m

In general, the transformation m is a complicated nonlin-
ear mapping of (4, ,®,) onto (8,,®,+,). However, in a
small region of the phase plane the transformation can be
approximated by a linear map. Near the fixed point this map
may be written as

6 6,—8
( n+1)%(0n)+m( n_ F), (4)
Wy +1 w, W, — Wf
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Fig. 3. Coordinates of the fixed point (of the Poincaré section) of an unstable periodic orbit are shown as a function of the friction parameter g. The straight
line is a least-squares fit to the points. In (a) the fixed angle varies with ¢, and in (b) the fixed angular velocity varies with g.

where m is expressed as a 2 by 2 matrix:

m:(m“ m12). )
my; mjp;

We compress the notation by defining

Ad, 6,— O A,y 6n+1— OF
= and = .
Aw, W, @p Aw,yg W, +1~ WF

Therefore Eq. (1) can be written as

A 0n +1 A 6n

)-n(22)

On the Poincaré surface there are special curves emanating
from the fixed point (8¢ ,wyr): the unstable manifold along
which successive points leave the fixed point, and the stable
manifold along which successive points approach the fixed
point. (A fixed point with these properties is said to be hy-
perbolic.) Near the fixed point, vectors that are already point-

ing along the stable or unstable manifolds keep their respec-
tive directions under the transformation m and therefore are
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eigenvectors of m. Solution of the corresponding eigenvalue
problem yields the eigenvalues, A, and A, , and the respective
eigenvectors, e, and e, . Numerical values of these quantities
are used in the control algorithm.

For an experimental dynamical system, determination of
m requires many observations of the behavior of the system
near the fixed point and a statistical averaging of that behav-
ior. We adopt a simpler approach for our numerical simula-
tion of the pendulum. The elements of m are found by fol-
lowing the evolution through one cycle of a pair of linearly
independent vectors, near the fixed point. Our approach is to
form initial pairs of vectors from pairs of perpendicular sides
of the small box whose vertices are shown in Fig. 4. (The
box encloses the unstable fixed point.) After one forcing
cycle, the evolved pairs of points give new vectors that lie
approximately along a straight line in Fig. 4. The matrix m
determined from the evolution of these pairs of vectors is

[-3.42 -5.79
m=\_152 -2.48) (7
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Fig. 4. Diagram showing the evolution of four points at the corners of a
square through one forcing cycle. By treating pairs of points as evolving
vectors in the (6,w) plane, the transformation matrix m is determined. The
solid square is centered at (8 ,wp). (If the unstable fixed point were deter-
mined exactly and the surrounding square was very small, then the fixed
point would be centrally located among the transformed points.)

Solution of the eigenvalue problem associated with m yields
the eigenvalues and eigenvectors

Aa=—5.85, e,=(€,1,ex)=(0.92,0.40),
A, =+0.050, e,=(e,,e,)=(0.86,—0.52). (8

(The eigenvectors are normalized to unity.)

For reasons that will shortly become evident we also cal-
culate vectors f, and f; that are perpendicular to e; and e,,
respectively. This is achieved by using the relationships

fu (0.63, 1.04)

€u (0.92, 0.40)

® es (0.86, -0.52)

fs (0.49,-1.12)

0

Fig. 5. An illustration of the calculated eigenvectors e, and e,, and the
corresponding orthogonal vectors, £, and f, , in the (6,e) plane.
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Fig. 6. A region of the (6,w) plane near the fixed point. The solid lines that
intersect at (@, i) are the manifolds of the fixed point. Arrows pointing
toward the fixed point mark the stable manifold and arrows pointing away
from the fixed point mark the unstable manifold. The dashed lines that
intersect at (0 ,wp) represent the analogous configuration after a change of
dq in the friction parameter. The control mechanism forces the (n+1) point
toward the stable manifold of (85 ,wy).

f,-e,.=0 and f;-e,=0,
and, for normalization, we let
f,-e,=1 and f;-e,=1.

The various directions and magnitudes of all these vectors
are indicated in Fig. 5. In our case

fu=(fu1sfu2)=(0-63’1-04), and

fs=(fslyfs2)=(0-49>“1'12)~

Finally, the derivation of the control algorithm will use the
fact that the map m can be written as a combination of the
above quantities:

eul)(ful fu2)+)\ (esl)(fsl st).

m=)\u( e
€u2 52

9)

(See the Appendix for a derivation of this expression.)

IV. THE CONTROL ALGORITHM

The goal of the control mechanism is to force the pendu-
lum’s trajectory toward the fixed point on the Poincaré sec-
tion. This is achieved by adjusting the friction parameter g so
as to push the intersection point of the trajectory with the
Poincaré section onto the stable manifold near the fixed
point. Then the natural attraction along the stable manifold
will pull the intersection point to the fixed point.

Let us begin with the schematic illustration of the Poincaré
section near the fixed point as shown in Fig. 6. The fixed
point (8f,wp) is located at the intersection of the stable and
unstable manifolds. If ¢ is changed by an amount dg, then
the fixed point is moved to a new position (85, wy) such that

[a) o)l i) a
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Fig. 7. A graph of angular velocity at the beginning of each forcing cycle as
a function of time. Control is initiated at =1000 and released at ¢=3000.

With the changed g the next point (8, ,,®,,,) becomes
et bl
@Wpt1 WF A

A'6,\ [ 6,-6;
(A'w,.)‘(wn—w;)' (D

We assume that m is roughly constant for small 8g. [The
primes denote quantities referred to the new fixed point
(6g,wg).] This new point (8, ,,@,,,) is the result of the
map m with g+ 8g acting on (6, ,w,). We denote the vector
from the original fixed point (fr,wp) to the new point as

(A9n+1) ( :;+1_0F). 12)

r
Ao,y W, +1~ WF

) where

Finally, by including the change &g in the damping and the
effect of the map m, the vector of Eq. (12) may be written
first as

EH=OOMMC WDIHCOHIXD

-4}

988 18606 1188 1200
TIME

Fig. 8. A time series of the angular velocity shown near the initiation of
control at +=1000. In contrast to Fig. 7, which only shows the angular
velocity once per forcing cycle, this figure gives the complete sequence of
angular velocity values. Complete control emerges after several cycles.
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' +m ’
Aw,,+1 oy \op w,— 0

and then as
A6\ (36r/9q sat Ag, _(ae,v/aq)éS
Aw,, ] \dwp/dq qrm Aw, dwp/dq| |

(13)

Using m in the expanded form of Eq. (6) this vector may be
written as

96
A6, _ 74_ ea\(fur f2)
v A L Y
oq
6_0;
eq\(fa f2)|| (A, dq
, ) ( Aw")_aq all o
dq

For control we want the point (6, ,,,,,) to move toward
the stable manifold and therefore the vector
(A8, ,,,Aw, ) should move toward alignment with the
stable manifold. This means that dg should be adjusted to
make the dot product of the vectors (A8, ,,,Aw, ) and f,
equal to zero:

(fur f.,2>( Aw"“) 0. (15)

When combined with Eq. (14) this condition leads to the
OGY result,

A6,

5 )‘u (ful fu2)(Aw )
=01 36/3
SR fu2>( aw,,,fl)

This expression gives the change in g that is necessary to
modify the trajectory so that its next intersection with the
Poincaré section is close to the stable manifold of (8 ,wF)
It is this expression that is used to vary g for each Poincaré
cycle.

The control method is applied to a numerical simulation of
the pendulum as modeled by Eq. (1). Results are shown in
Fig. 7 where the angular velocity w at the beginning of each
cycle is plotted as a function of time. Control is initiated at
t=1000 and turned off at 1=3000. Before and after these
times the motion is clearly chaotic. During the control epoch
the orbit returns to (6r,wr) and the pendulum has been
stabilized to a period-1 motion.

When control is initiated the orbit takes a little time to
achieve stability. The reason for this delay is as follows.
Typically, only small changes in the parameter g are allowed
since large changes might push the system into a completely
different dynamical state. if 8g* is the maximum allowed
change then this equation also provides an estimate of the
maximum allowed distance of the point (6,,w,) from the
fixed point (05 ,wp). Therefore the fact that the control re-
gion may be fairly small means there will be a delay from
the time control is activated until the point on the Poincaré

(16)
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section arrives within the control region. A quantitative mea-
sure of this effect is provided in the original paper of Ott
et al.'® Figure 8 is a time series of the angular velocity that
shows the implementation of the control on a finer time
scale. Control is initiated at +=1000 but several forcing
cycles are required to achieve full control of the pendulum’s
motion. In this case the control radius, ||(A6,,Aw,)|~0.3
and 6g*~0.1.

Finally we note that the values of the numbers in the ma-
trix m used for the control algorithm need not be especially
precise. Control was often achieved even when some of the
numbers were different from the values quoted above by
several percent. The method seems to be remarkably robust
and, given the small values of &q, quite efficient.

V. CONCLUSION

We have shown how the OGY method of control can be
applied to a classical physical model, the driven pendulum.
Many details of the calculation have been provided to make
the process more accessible to nonspecialists.
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APPENDIX: A SIMPLE DERIVATION OF THE
EXPANSION OF m INTERMS OF A\, A, ¢,, ¢, f,,
and f;

Consider the expression
€u1 €s1]|_ €u1 €s1 - €u1
(eu2)+(e52) —)\u(euZ)+)\s(652)_)\u(6u2)(fu €

e
e
where we use the fact that

m

+fu-es)+)\s( s:)(fs~es+fs-eu),

f,-e,=1=f-e and f,.-e,=0=f ¢,.

Finally, the matrix inside the square brackets may be ex-
panded in component form as

mz)\u(eul)(ful fu2)+)\s(esl)(fs1 fsz)'

€42 €52
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TORTUOUS PROSE

What is most disturbing about the “learned journalese”—the unnecessarily tortuous prose
which still survives in most scientific journals—is that its perpetrators are scarcely aware of their
abuse of the language. Like a young child who becomes bilingual by daily contact with parents
speaking two languages, many scientists never even consider the contrast between their conver-
sation over the breakfast table and the weird, stilted cadences they use to communicate with their
peers. Translate one into the other and the problem becomes obvious: “It has been shown by the
present author, on the basis of preliminary evidence that has not yet been independently replicated
by other investigators, that an appropriate quantity of milk is absent from the refrigerator.”

Bernard Dixon, “Plain words, please,” New Scientist 137 (1865), 39 (20 March 1993).
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