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Deterministic pendula exhibit a spectrum of behavior ranging from periodic to chaotic and provide
an opportunity for an introductory discussion on the application of probability techniques to a
deterministic system. Analytic and simulation techniques are used to determine probability
distributions for a range of dynamical possibilities. In particular, we obtain probability distributions
of the pendulum’s angular displacement and distributions of first return times for regular and chaotic
motion. For chaotic motion, the latter distribution is modeled by a simple two-state Bernoulli
process. Further considerations suggest that not all distributions are probability distributions. © 2006

American Association of Physics Teachers.
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I. INTRODUCTION

Students of introductory and intermediate physics are
mostly exposed to deterministic physical systems and only
occasionally to probabilistic systems. Probability models
may therefore seem nonintuitive, and students might feel lost
when grappling with probabilistic concepts. In this paper, we
present a discussion of probability in the context of a simple
physical system, the pendulum.

The classical deterministic pendulum is an apparently
simple system, but can exhibit rich physical behavior.' Re-
markably, probability techniques can characterize some of
this behavior despite the deterministic nature of the system.
The application of probability techniques to a deterministic
system might seem strange and even inappropriate. Yet such
a seeming contradiction can help to sharpen student under-
standing of the concepts of determinism, randomness, and
probability. In this paper, we present simulations of the de-
terministic pendulum and various probability models for in-
creasingly complex motion of the pendulum. These models
are then discussed with reference to two common definitions
of probability.*

The motion of the free, undamped, classical deterministic
pendulum is periodic. If friction and a periodic external force
are added, the pendulum can exhibit both regular oscillations
and chaotic behavior. In the latter case, the motion is char-
acterized by extreme sensitivity to the initial state and any
small variation in this state will quickly lead to a very dif-
ferent final state.”® Thus, chaotic systems can have the ap-
pearance of random behavior. More precisely, there is a hi-
erarchy of randomness in chaotic systems,” ranging from
ergodic ?/stems, where time averages equal state space
averages,  to the most random category, Bernoulli systems.9
The chaotic pendulum exhibits a degree of randomness and
occupies a midposition on this scale. Therefore, a probability
model appropriate to an idealized random system can de-
scribe some aspects of a pendulum’s chaotic behavior.

We start from the simplest periodic motion of the linear-
ized pendulum and obtain, analytically and by simulation,
probability distributions of the angular displacement for in-
creasingly complex configurations of the pendulum. We also
obtain the distribution of times for which the }gendulum re-
turns to an original state, the first return time."" Both distri-
butions distinguish between systems that are manifestly de-
terministic  (regular) and those that, although still
deterministic, are apparently random (chaotic.) A simple, two
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state Bernoulli system is used to model the return time dis-
tribution in the chaotic case. Thus, we demonstrate both
types of distributions as the pendulum motion becomes more
complex and show the consequences of increasingly more
randomlike behavior. Chaotic data thus provides a basis for
the discussion of the use of probability in a deterministic, but
apparently random system.

The paper is structured as follows. In Sec. II, we consider
the small angle approximation of a simple pendulum and
derive the well-known probability distribution for the angu-
lar displacement. This case is the only one for which the
angular distribution can be calculated analytically. The dis-
tribution of first return times (to the down position) is even
simpler: A spike located at a time equal to one-half of the
period of the pendulum. The sharpness of this distribution is
clear evidence of regular deterministic behavior. In Sec. III,
we consider the nonlinear sinusoidal dependence of the
gravitational restoring force and obtain the appropriate prob-
ability distributions using computer simulation techniques.
The power spectra show that, although still periodic, the mo-
tion contains harmonics of the basic frequency. Yet there is
little qualitative difference between this distribution and the
distribution for the linearized case, even for large amplitudes.

The pendulum is then made somewhat more complex by
adding damping and forcing. Forcing adds a third degree of
freedom to the system and the possibility now exists of pe-
riod doublings and chaos. In Sec. IV, we explore angular and
return time distributions of these motions with a particular
emphasis on period doubling as a route to chaos. The prob-
ability aspects of the fully chaotic pendulum are also dis-
cussed. In Sec. V, we discuss two meanings of probability
and the results of the previous sections in this context to
determine the appropriateness of a probabilistic description
of a deterministic physical system. The conclusion is in
Sec. VL.

II. LINEARIZED PENDULUM

The equation of motion for the simple pendulum may be
written as
2

0 5.
— + wjsin =0,

e 6(0)=6, and 6€(0)=0. (1)

For small angles, sin #= 6, and the equation of motion be-
comes that of a linear, harmonic oscillator,
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Angular Distribution: Linearized Pendulum
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Fig. 1. Angular distribution of the linearized pendulum. The solid line is the
analytic expression and the dots are obtained from the Monte Carlo
sampling.

d*o
ﬁ+w(2)0=0, (2)

with the solution 6(¢)= 6, cos wyt. This system is manifestly
deterministic, and it is easy to obtain an expression for the
time the pendulum spends in a small angle between 6 and
0+d6. The amount of time dt spent in d@ is given by

e[ 0= |1 ) ar-—t
~|\de |\ doldr o\ -

We provisionally interpret this expression as a probability
density function by assuming that the amount of time the
pendulum spends in a certain angular interval is proportional
to the probability of the system being in that interval—a sort
of ergodic hypothesis. For a suitable normalization,
JT_P(6)df=1, the density function becomes

1
P(6) = m (4)

as shown by the solid line in Fig. 1.

One way to conceptualize the physics of this function is as
follows. Suppose that a pendulum, moving from almost the
upward position on one side to a symmetrical upward posi-
tion on the opposite side, is exposed to a strobe light of
uniform frequency. The density of images of the pendulum’s
bob will be variable: Higher in the upward position and
lower near the downward position. Similarly Fig. 1 shows
that the pendulum is more likely to be in an upward position
where its motion is slow compared to a downward position
where its motion is faster. Another interpretation would be
that of a casual sporadic observer. If the observer looks at the
pendulum at random times, then the graph of Fig. 1 gives the
probability associated with each angular interval. But in this
case, randomness, and therefore probability, are injected by
the actions of the observer, and not by the deterministic
physical system. The distribution itself is not intrinsically a
probability distribution because the time that the pendulum
arrives in any small interval is predictable.

The geometric shape of Fig. 1 can be interpreted in a way
that is more in keeping with a probability by using data from
a Monte Carlo sampling of the angular displacement as in-
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First Return Distribution: Linearized Pendulum
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Fig. 2. The distribution of first return times to the angular interval of A6
=0.01 radians centered at #=0, for the linearized pendulum. Because the
return angle is =0, there is only one peak observed at a time equal to
one-half of the period. 7| is the period of the pendulum.

dicated by the dots of Fig. 1. We generate 100,000 values of
the time at random using a linear random number generator
that provides a uniform distribution of random times. From
Eq. (2) this random set of times leads to random values of
the angle 6. The number of “hits” in a given angular interval
is sorted into the bins corresponding to each interval. The
relative numbers of hits in each of the 50 bins are plotted and
superposed on the solid line in Fig. 1, thus showing that the
analytic result and the Monte Carlo sampling give the same
result. It is important to note that because the pendulum is
periodic, the 100,000 samples need not be random, but could
also be an ordered temporal sequence of points. The result
would be the same because the system is deterministically
periodic. Therefore, although Eq. (4) appears to be a prob-
ability density function, it only indicates the amount of time
the pendulum spends in a particular small angular interval
and not the actual probability that, at any given time, the
pendulum is in the given interval.

Similarly, the first return time of the pendulum, for ex-
ample near #=0, occurs at regular time intervals and there-
fore the return time distribution is a delta function at a time
equal to one-half of the period of the motion, as shown in
Fig. 2. (If the interval of return were other than at #=0 there
would be two distinct peaks.) This sharp peak is another
clear indication that the pendulum’s motion is regular and
deterministic, and that the use of a distribution in this case is
a formal device rather than a representation of reality.

III. THE NONLINEAR PENDULUM

We reintroduce the nonlinearity into the pendulum’s equa-
tion of motion:

d*e
E+w%sin 6=0, (5)

whose solution 6(¢) is periodic but no longer a single sinu-
soid. (The period of motion grows with increasing ampli-
tude.) One way to approach the solution to Eq. (5) is by an
iterative process, whereby an initial trial solution is assumed
and then improved through substitution into the equation of
motion. We take 6=A cos wyt as the initial solution, substi-
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FFT: Nonlinear Pendulum
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Fig. 3. Power spectrum for the time series of the angular displacement of the
nonlinear pendulum [from a numerical solution to Eq. (5)]. Note the pres-
ence of the odd harmonics of the fundamental frequency (f,=w,/27), the
largest peak.

tute it into Eq. (5), and then expand the sin 6 term in a power
series:

d*6

PPl w% sin(A cos wgt)

(A cos wyt)?

=—w%[A COs wyf — 3

5
s ] .

Each of the powers of the trigonometric functions can be
shown to contain a harmonic that corresponds to that particu-
lar power. Therefore, there are sinusoidal terms in the time
series with frequencies that are odd harmonics of the funda-
mental frequency. For the next iteration, we might use 6
=B cos wyt+C cos 3wt.

Figure 3 illustrates the reality of multiple harmonics in the
motion of the nonlinear pendulum. This figure shows a
power spectrum of the numerical solution to Eq. (5) with
several discrete contributions. The largest contribution is at
the fundamental frequency with successively smaller contri-
butions at the higher odd harmonics. Unlike the linearized
pendulum, the analytic inversion of Eq. (5) to find a prob-
ability density, dt/d#6, is not possible. Instead, Eq. (5) can be
solved numerically and each solution point is assigned to a
bin covering the region —6,< 6<< 6,. A typical distribution of
points is shown in Fig. 4. Given the large amplitude (3 radi-
ans) used in the generation of this distribution, it is perhaps
surprising that the shape of the distribution of Fig. 4 is little
different from the distribution of the linearized pendulum
shown in Fig. 1. The return time distribution (to #=0) con-
sists, as in the linearized case, of a single peak, thereby af-
firming the regular deterministic motion of the pendulum.

IV. THE DAMPED DRIVEN PENDULUM

A. Regular motion

We now consider the damped, driven pendulum whose
dissipative losses are replaced by the injection of energy by
periodic forcing. For simplicity we assume that the forcing
has the form of a single sinusoid. Furthermore, by choosing
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Angular Distribution: Nonlinear pendulum
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Fig. 4. Angular distribution of the nonlinear pendulum. The amplitude is
3 radians. The bin counting technique is used. Note the slightly different
shape from Fig. 1.

a time scale in units of 27/ w, and a torque measured in units
of the critical torque mgl (required to maintain the pendulum
in a stationary horizontal position), the equation of motion is
written as

0 1do

— +—— +sin 0= F cos wpt, (7)

dr- qdt
where ¢ is the reciprocal of the damping factor, wp is the
drive frequency, and F is the amplitude of the forcing term.
(In these units, the resonant angular frequency of the corre-
sponding low amplitude pendulum is unity.) Sets of values
of the parameters (g, wp, F) are points in a three-dimensional
parameter space. A particular point in parameter space deter-
mines the motion of the pendulum. Its behavior may range
from regular motion, characterized by the single frequency
of the external force, to complex chaotic motion with a con-
tinuum of frequencies.

These motions may be represented in a bifurcation dia-

gram as shown in Fig. 5 in which the amplitude F, indicated
along the horizontal axis, is varied while the other param-

Bifurcation Diagram
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Fig. 5. A bifurcation diagram showing the regular and chaotic behavior of
the pendulum. The angular velocity is sampled once every forcing cycle.
Period doubling occurs at forcing amplitudes where two points occur in the
region 0.658 <F <<0.666. Chaos is evident when many points occur. The
other pendulum parameters are g=4,wp=2/3.
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Angular Distribution (Using Eq. (8))
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Fig. 6. The fundamental (amplitude=2.5rad) and one subharmonic
(amplitude=0.2 rad) generate the angular distribution given by Eq. (8).

eters are kept constant. (Other bifurcation diagrams may be
generated using the other parameters.) The vertical axis
shows repeated sampling of the pendulum’s angular velocity
at a particular phase point once during the forcing cycle. For
some values of F, the graph only shows a single point, indi-
cating that the motion is periodic with a period correspond-
ing to that of the external force. For some other values of F,
two points appear, indicating that the pendulum requires two
forcing periods to make a complete periodic motion.'* This
transition to periodic motion at one-half of the forcing fre-
quency is called period doubling and occurs for 0.658 <F
<0.666. For larger F, there is a larger but still finite number
of points, indicating more complex motion, with period cor-
responding to the number of points. Finally, for sufficiently
large F, the pendulum’s motion is chaotic, moving endlessly
from one unstable periodic orbit to another.

We now consider period two behavior for which the pen-
dulum takes two forcing periods to complete one cycle. It
may be approximately described by periodic motion with
two terms: One at the forcing frequency and one at half the
forcing frequency:

ﬂ(t) =A1 COS th+A1/2 COS(CUD/Z)[. (8)

Monte Carlo sampling is used to develop the angular distri-
bution P(6#) shown in Fig. 6, with amplitudes stated in the
Fig. 6 caption. This distribution shows two peaks arranged
symmetrically on either side. The power spectrum of Fig.
7(a) shows that more than the two harmonic terms suggested
by Eq. (8) are required for an accurate distribution. To incor-
porate these further harmonics, the sampling is now applied
to the numerical solution of the equation of motion, Eq. (7),
with the results shown in Fig. 7(b). Like Fig. 6, the primary
feature is the pair of peaks, but unlike the two-term sam-
pling, the distribution is slightly asymmetric, which indicates
that the pendulum’s motion is not symmetric about its verti-
cal axis and is determined in part by the initial phase coor-
dinates of the pendulum’s motion. That is, depending on the
initial angular position and velocity, the motion will be in
one of two possible period-2 orbits."?

The distribution of first return times for the period 2 pen-
dulum is somewhat more complicated than that of the linear-
ized pendulum which had only one spike. The time series is
slightly offset from 6=0 (the asymmetry mentioned above),
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Fig. 7. Period doubling. g=4,w,=2/3,F=0.664 (a) Semilog power spec-
trum of a period doubled time series of the angle. The doubling is shown by
the peak at about f=0.5 fp which is half of the fundamental forcing fre-
quency, that is indicated by the largest peak at about f=f},. Other peaks
occur at half-integral values of the forcing frequency. (b) Angular distribu-
tion for period doubling. Note the double singularities at the edges of the
distribution. (c) The distribution of first return times. Note that the range of
the data is about double the forcing period, Tp.

the range over which the distribution occurs is double the
period, and the combination of both effects yields several
peaks within a time equal to t,,,=47/wp, as illustrated in
Fig. 7(c).

We expect that if further period doubling or period tripling
occurs, the distribution will have further complexity. As an
example consider the bifurcation diagram shown in Fig. 8(a)
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Angular Velocity

Bifurcation Diagram: Period-15
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Fig. 8. Period-15 motion. g=4,w;,=2/3. (a) A bifurcation diagram near the
regime of period-15 motion. 1.299<F<1.311. (b) Angular distribution in
which the 15 singularities on either side of #=0 indicate the presence of
period-15 motion. F=1.305. (c) Semilog plot of the first return distribution,
F=1.305. The time is in units of the forcing period, Tp.

which illustrates a regime where the motion is regular yet
quite complex. The periodic window in the region of F
=1.305 has a period 15 times that of the forcing period. This
complexity is represented in the distribution function for the
angular displacement as shown in Fig. 8(b). The distribution
now exhibits many singularities and a careful count shows
15 singularities on either side of 6=0.

The complexity of the probability distribution for the an-
gular displacement suggests that despite the regularity of the
motion, the pendulum returns to a fixed interval such as

486 Am. J. Phys., Vol. 74, No. 6, June 2006

(b)

Time (units of #Tp)

Fig. 9. Chaotic motion, g=4,w,=2/3,F=4. (a) Angular distribution. The
many peaks of the period-n regular motion have now coalesced into a
bumpy, but approximately rectangular distribution. The distribution is ap-
parently symmetric around the 6=0. (b) First return distribution, to the
interval |#—6,|=|0-0.01|rad. The exponential decay model approximates

the data.

0.0=60=0.01 at a variety of different times. The return time
distribution shown in Fig. 8(c) demonstrates this behavior.

B. Chaotic motion

The transition to chaotic motion is often due to an increas-
ing number of period doublings.13 The motion becomes so
complex that a transition occurs to an infinite number of
periodic, but unstable, orbits. The system now becomes sen-
sitive to initial conditions and is chaotic. The singularities of
the distribution shown in Fig. 8(b) grow in number such that
they merge, and the distribution for the chaotic pendulum
becomes bumpy with a slight rise toward #=0, as shown in
Fig. 9(a). The distribution is approximately rectangular, and
the pendulum spends roughly equal times in each angular
interval. Yet there are bumps. What do they signify? The
motion of the pendulum may be represented on an attractor

in the phase space whose coordinates are (6, 6). For regular
motion the shape of the attractor is that of a periodic limit
cycle. For chaotic motion, the shape of the pendulum attrac-
tor is of a fairly dense attractor, yet the density of points
(from a discrete time simulation) is variable and therefore the
rectangular distribution does have some bumps. The fact that
it is uniformly dense is confirmed by the fact that the distri-
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bution is approximately rectangular and the bumpiness does
not change significantly even when the number of counting
bins is significantly increased. Thus the pendulum spends
roughly equal times in all segments along the @ axis of the
phase space.

Similar considerations apply to the return time distribu-
tion. As noted, chaotic motion is characterized by the exis-
tence of an infinite number of unstable periodic orbits. That
is, the pendulum spends a brief time in one periodic orbit and
then jumps to another periodic orbit for another brief time.
The time spent on a given unstable orbit is variable. The
motion may seem regular for a finite time before a series of
short term visits to a collection of unstable orbits. In other
words, some unstable orbits are less unstable than others.
Thus, for some choices of the return location 6, the distribu-
tion of the first return times may have a few spikes, but
rather than being sharp as for regular motion, the spikes de-
cay exponentially. For other choices of 6, the motion is more
random with no obvious spikes and the distribution of return
times is approximately exponential. This exponential decay
behavior can be modeled by a simple random process, as
follows.

Consider a set of Bernoulli trials for which two states are
possible. One state occurs when the pendulum lands in a
particular (small) angular interval A6 about 6 and the prob-
ability of this event is u. If the interval is small, then u is
small. The other state occurs when the pendulum lands in
any other angular interval with probability 1—u. For the re-
turn time distribution to the particular interval we require the
probability that the pendulum angle has a value close to 6
given that ¢ time units has occurred since the last time the
pendulum was near this value; that is, Pyg(t:u)=u(l—pun)
X(1=w)...(1=w) for (z—1) time units. This expression may
be rewritten as

e—t/T

(=1) — M ¢! In(1-w) Me—,ut —

- T

)

Pag(t;p) = (1= )

bl

as u=1/7becomes very small. Therefore, the distribution of
first return times is exponential and is characterized by an
average decay time 7 because

Number of possible favorable outcomes

(ty= fm tP(t)dt=T. (10)
0

Figure 9(b) shows the first-return time distribution of the
chaotic pendulum from a numerical simulation. In this case,
the semilogarithmic plot indicates that single exponential be-
havior is dominant as suggested by the simple model. The
first return statistics give a strong indication that despite its
deterministic equation of motion, the pendulum acts
stochastically. 14

V. DISCUSSION

We have studied a range of behavior from the most regular
and simple, as for the linearized pendulum, to the complex
behavior of the nonlinear chaotic pendulum. Our purpose is
to use a concrete physical system to encourage discussion of
the meaning and use of probability distributions for deter-
ministic systems. The subject of probability as applied to
chaotic systems is complex. A hierarchy of randomness ex-
ists in chaotic dynamics. The distinctions are subtle and re-
quire sophisticated mathematical logic, well beyond the
scope of this paper.15 However, a few comments can be made
that may help students in thinking about probability and de-
terminism.

The economist John Maynard Keynes described probabil-
ity as a primitive term and wrote that “A definition of prob-
ability is not possible... We cannot analyze the probability-
relation in terms of simpler ideas.”'® Despite this view Roy
Weatherford has noted the existence of a classification
scheme that includes eleven different categories of meanings
of probability.17 For this introductory discussion, we follow
the more usual and simpler schema of two broad categories
of meaning for probability.1

The first definition of probability, often attributed to Pierre
Simon LaPlace and Daniel Bernoulli, is from the classical
theory of probability, and is sometimes called the classical
definition. The observer makes an a priori estimate or expec-
tation of a certain favorable event. A given event may occur
in several ways, each way being an outcome. If all outcomes
are equally probable, the probability of a given event is the
ratio of the number of ways (outcomes) the favorable event
can occur to the number of ways that all events (and thus all
outcomes) can occur. That is

P(favorable event) =

Number of possible outcomes

The favorable event might be the system landing in a certain
interval in some sort of system state space. The outcomes
might be “cells” in the state space.

Another definition of probability, sometimes called the fre-
quency definition, utilizes the frequency of occurrence of the
favorable event in an experiment, and if the favorable event
can occur in several ways, then probability is defined as
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(11)

Frequency of favorable outcomes

P(favorable event) =
Frequency of all outcomes

(12)
We remind ourselves that the pendulum is a deterministic

system. This fact has consequences for the classical defini-
tion of probability. In this definition, is assumed that at any
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time all outcomes are equally possible. For the deterministic
regular or periodic pendulum, the probability that the pendu-
lum’s angular displacement is within a certain range about 6
at any given time is either 1 or 0. That is, the pendulum’s
angular displacement is either in a certain interval or it is not,
and there is no fractional probability because the pendulum’s
angular dlsplacement is well known at any time. There is no
information entropy ? Thus, the use of classical probability
for the regular periodic pendulum seems inappropriate if
probability is defined as in Eq. (11).

On the other hand, the frequency definition of probability
is applicable to the periodic pendulum. Indeed, there is a
certain frequency of occurrences for a given angular interval
and it seems appropriate that we can derive distribution func-
tions such as given by Eq. (4) or those determined by sam-
pling, as for example, shown in Fig. 7(b). Similar consider-
ations apply to the first return distributions for the periodic
pendulum. Again the classical definition of probability seems
awkward whereas the frequency definition is more accept-
able. Yet even with the frequency definition, the fact that
frequencies are accumulated from non-random, periodic oc-
currences suggests that a probability interpretation is still
conceptually problematic. Thus, for the periodic pendulum,
probability distributions are formalistic mathematical devices
rather than expressions of the likelihood of random events.
(We note that the distributions in this paper are calculated
using frequency of occurrences.)

The case is different for the chaotic pendulum. Although
the state of a deterministic chaotic system is well known in
principle, the sensitivity to initial conditions means that an
infinite number of digits is required to precisely specify the
pendulum’s trajectory. Because such specificity is impossible
in a laboratory experiment or a computer simulation, the
pendulum’s angular displacement becomes random. There is
now nonzero information entropy and for many sg/stems the
information entropy is a linear function of time.

Chaotic systems therefore have some degree of random-
ness. Section I alluded to the ex1stence of a hierarchy of
randomness in chaotic dynamlcs The least random systems
are those that obey the ergodic hypothesis; that is, statistical
averages over some sort of state space are equivalent to av-
erages in time. Or statistical averages calculated using the
classical definition of probability are equ ual to averages cal-
culated using the frequency definition.” This ergodicity is
exhibited by the chaotic pendulum. But for the chaotic pen-
dulum, randomness goes beyond ergodicity.

Because the pendulum has friction, its motion in (6, 6)
phase space evolves onto an attractor with a fractal geometry.
A small subset of initial points (initial states) on the attractor
will evolve through stretching and shrinking of the set such
that the individual points will at a much later time move to
all parts of the attractor. Because of this mixing of nearby
pieces of the attractor, the system is said to be mixing, and
the pendulum attractor has this property. A mixing system is
more random than an ergodic system.

Further along the randomness scale is a K-system (K for
Kolmogorov) for which the information entropy increases
linearly. The increase of entropy is related to the character-
istic sensitivity to initial conditions. This sensitivity is most
easily quantified for a one-dimensional system. Suppose that
two points, x; and x, are initially a distance Ax(0)=|x;—x,|
apart. Then, at some later time, the separation will be Ax(r)
=Ax(0)eM, where \ is the Lyapunov exponent and is positive
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if the system is chaotic. There are three Lyapunov exponents
for the forced, damped pendulum For chaotic motion, one
exponent must be positive in order to provide the character-
istic sensitivity to initial conditions and therefore mixing. In
this way, the chaotic pendulum meets the criterion for a
K—system as well. The pendulum’s entropy does increase lin-
early in time.”* However, for reasons that are beyond the
scope of this paper the chaotic pendulum is not usually con-
sidered to be more random than a K—system ? Nevertheless,
the data of Fig. 9(b) and its comparison with the simple
Bernoulli model are intriguing. There may be large regions
of the chaotic pendulum’s phase space where it behaves like
a random two-state system. But whatever its precise degree
of randomness, the distributions associated with the chaotic
pendulum are reasonably called probability distributions.

VI. SUMMARY

Despite the underlying deterministic nature of the pendu-
lum, there is a noticeable difference in the applicability of
probability concepts to regular periodic deterministic sys-
tems and to chaotic deterministic systems. Both the classical
and frequency definitions of probability are relevant to these
differences and both enhance the discussion. Students are
familiar with the pendulum and can be introduced to its rich
behavior, e1ther by sampling or appropriate laboratory
equ1pment 3 It is, therefore, an ideal system with which to
illustrate and motivate a discussion about determinism and
probability.
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