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Abstract. This paper fully discuss the dynamics of the damped driven pendulum. The
governing equations of the dynamics are derived. The linear dynamics of the pendulum
are discuss in the cases of small angles approxiamions and no driving forces. The non-
linear dynamics when the driving force is involved are discussed. Many mathematical
tools are used for analysis
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1 Introduction

The pendulum is a very interesting dynamical system to study. In early studies, young students
use approximations to find the equation of motion of the pendulum. Next, students are exposed to
numerical methods for solving the more complicated pendula systems. This paper’s goal is to focus
on analytical methods for solving the equation governing the pendulum’s motion. Often there will
not be a solution; however, there will be tools that yield information about equation for motion
and give the student the ability to confidently discuss the motion of the pendulum.

This paper is organized as follows: In Section 2, we discuss the physical pendulum, and derive
the governing equation of motion. In Section 3, we discuss the simplest model of the pendulum
with neither damping nor driving forces. In Section 4, we discuss, the next step in difficulty, of a
model of the pendulum which includes the damping force. In Section 5, we discuss the damped
driven pendulum and find chaos, both in numerical sumulations of a dynamical system and in a
experimental system, the EM-50 Chaotic Pendulum constructed by the Daedalon Corporation. In
section 6, we summarize the findings of this paper.

2 The Physical Pendulum

Let us begin with the rotational analog to Newton’s equation:∑
Γ = Iα (1)

Define the following:
Torque as Γ
The direction of positive toque as out of the page
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Figure 1: Schematic of a pendulum

I as the moment of inertia equal to mr2, the theoretical pendulum is modeled as a point mass.
Angular Acceleration as α, also θ̈, which is the second derivative w.r.t. time of Angular Posistion θ
v = rω = rθ̇

Using fig. (1) one can begin deriving the equation of motion for the pendulum. Equation (1)
becomes, by use of ~Γ = ~r × ~F :

−dampingforce − gravityforce + drivingforce = Iθ̈ (2)

−bvr sin θ +−mgr sin θ + Fr sin θ = Iθ̈ (3)

Let the damping and driving forces be parallel to the motion of the pendulum. Let the driving
force be a function of time. Let D = bv, so the damping force is dependent on velocity, v or rθ̇.
Rearranging and substituting:

mr2θ̈ + br2θ̇ + mgr sin θ = F (t)r, (4)

θ̈ +
b

m
θ̇ +

g

r
sin θ =

F (t)
mr

. (5)

Equation (5) is the second order differential equation describing the dynamical system of interest.

3 Simple Pendulum

The simplest dynamics occur by letting F (t) = 0, b = 0, and by use of the small angle approximation
sin θ ≈ θ. However, this yields the extremely well-known solution of simple harmonic motion. We
will not analyze this case. Let us just forget about the small angle approxiamtion letting F (t) = 0
and b = 0 still. Equation (5) now becomes:
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θ̈ +
g

r
sin θ = 0. (6)

Let us nondimensionalize the system, following Strogatz [1]:

Two variables have units in eq. (6) dt and g
r . Imagine attempting to get a g

r term along with
θ̈, so you could multpily eq. (6) by r

g and remove the units. So we want dt2 to be equal to a
variable that when we write d2θ divided by that variable the g

r term appears. Let us write eq. (6)
differently.

d2θ

dt2
+

g

r
sin θ = 0 (7)

Now the variable discussed in the previous paragraph is:

dt2 =
r

g
dτ2. (8)

Substitute (8) into (7);

g

r

d2θ

dτ2
+

g

r
sin θ = 0 (9)

θ̈ + sin θ = 0 (10)

Note eq. (10) is written in standard dot notation; however, the derivatave is to be taken with
respect to the dimensionless time variable τ .

Now we will begin working with eq. (10). Eq. (10) is a 2nd order differential equation which
we can write as two 1st order differential equations, to begin working with the linearized system.
We will compute the Jacobian Matrix at fixed points.

Defining θ̇ = y, eq. (10) becomes
θ̇ = y = f(θ, y), (11)

ẏ = − sin θ = g(θ, y). (12)

The Jacobian is (
∂f
∂θ

∂f
∂y

∂g
∂θ

∂g
∂y

)
(θ∗,y∗)

=
(

0 1
− cos θ 0

)
(θ∗,y∗)

.

The fixed points can be directly discovered from eqs. (11) and (12). They occur when the
right-hand sides are equal to zero, meaning there is no change in θ or y. The fixed points occur
when (θ, y) = (nπ, 0). Evauluated at the fixed points, the Jacobian becomes(

0 1
±1 0

)
. (14)

From the Jacobian we can use the characteristic equation to find the eigenvalues.

λ2 − (±1) = 0 (15)

λ2 − 1 = 0 ⇒ λ2 = 1 ⇒ λ = ±1 (16)

Dynamics at the Horsetooth 3 Vol. 1, 2009



The Path From the Simple Pendulum to Chaos Bevivino

λ2 + 1 = 0 ⇒ λ2 = −1 ⇒ λ = ±i (17)

From this we discover hyperbolic equilibrium points when (θ, y) = ((2n + 1)π, 0) and non-
hyperbolic equilibrium points when (θ, y) = (2nπ, 0). The Hartman-Grobman states that for
hyperbolic equilibrium points the linearized flow is topoligically conjugate to the non-linearized
flow in some neighborhood of the fixed point.

Although the Hartman-Grobman theorem does not give us information about the non-
hyperbolic fixed points for the linearizations, we may use phase plane analysis to analyze the
system at the non-hyperbolic fixed points. The vector field and some trajectories are plotted in
fig. (2) using pplane7.m in MATLAB. This phase plane plot demonstates that the fixed points
are centers. This happens to be consistent with the linear analysis. Earlier, it was stated that the
approximation sin θ = θ would not be made. However, in fig. (2), one can see the centers represent
the case of the simple harmonic oscillator with the small angle approximation revealing the solution
to the simplest case. The linearization near the fixed points is shows in fig. (3), also generated by
MATLAB.

The Poincare-Bendixson theorem implies chaos is not possible in the two dimensional phase
plane. The dynamical system, Eq. (10) is confined to the phase plane; therefore, chaos is not
possible.

Figure 2: Phase plane of the simple pendulum

4 Will Damping Lead to Chaos?

Setting F (t) = 0, in eq. (5), we are left with

θ̈ +
b

m
θ̇ +

g

r
sin θ = 0. (18)

Again we will reduce the number of parameters:

dt2 =
r

g
dτ2 (19)
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Figure 3: Left: The linearization about the fixed points (θ, y) = (2nπ, 0) and Right: the fixed
points (θ, y) = ((2n + 1)π, 0).

Substituting eq. (19) into eq. (18), and letting, β =
√

g
r

b
m , we obtain after simplification the

equation,
θ̈ + βθ̇ + sin θ = 0. (20)

Again, we will begin working with the linearization of eq. (20).
Defining y = θ̇, eq. (20) yields

θ̇ = y (21)

ẏ = −βy − sin θ (22)

The Jacobian of this system is (
0 1

− cos θ −β

)
(θ∗,y∗)

. (23)

The fixed points of eqs. (21) and (22) are (θ∗, y∗) = (nπ, 0). The Jacobian evaluated at the fixed
points becomes (

0 1
±1 −β

)
. (24)

The characteristic equation is now also affected by the parameter β. Next, consider the specific
case for fixed points when (θ∗, y∗) = (2nπ, 0). The Jacobian is(

0 1
−1 −β

)
, (25)

and the characteristic equation is
−λ(−β − λ) + 1 = 0. (26)
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Solving for λ, we obtain

λ =
−β ±

√
β2 − 4

2
. (27)

Now I discuss the parameter β. If it were negative, b would be negative, and hence the torque
created by the force would push the pendulum from equilibrium versus pull it towards equilibrium.
The later is the required case; therefore, β > 0. First, let β ≥ 2. In this situation, there is
no imaginary part, and the eigenvalues are both negative. The fixed points are hyperbolic, the
linearization is justified, and they are categorized as sinks [2]. Second, let 2 > β > 0. We now
have eigenvalues that are both real and complex. The fixed points for this β range are no longer
hyperbolic, and they are categorized as sink-foci.

Next consider the specific case for fixed points when (θ∗, y∗) = ((2n + 1)π, 0). The Jacobian is(
0 1
1 −β

)
. (28)

The characteristic equation is
−λ(−β − λ)− 1 = 0. (29)

Solving for λ,

λ =
−β ±

√
β2 + 4

2
. (30)

When β > 0 the eigenvalues are real and of opposite sign. The fixed points when (θ∗, y∗) =
((2n + 1)π, 0) are hyperbolic and categorized as saddles [2].

Figure 4: phase plane of damped pendulum with β = .4

Figure 4 above is the phase plane of eq. (20) with β = .4. The equilibrium points are
saddles at (θ∗, y∗) = ((2n + 1)π, 0) correlating to the analysis. The other equilibrium points
at (θ∗, y∗) = (2nπ, 0) are sink-foci correlating to analysis. In the top panel of Figure 6 is the
linearization about the fixed points of the system of eq. (20) with β = .4. From left to right in

Dynamics at the Horsetooth 6 Vol. 1, 2009



The Path From the Simple Pendulum to Chaos Bevivino

Figure 5: Phase plane of damped pendulum with β = 2.001

the top panel of Figure 6 is the linearization about the fixed points when (θ∗, y∗) = (2nπ, 0) and
(θ∗, y∗) = ((2n + 1)π, 0), respectively.

Figure 5 below is the phase plane of eq. (20) with β = 2.001. The equilibrium points are
saddles at (θ∗, y∗) = ((2n + 1)π, 0) correlating to the analysis. The other equilibrium points
at (θ∗, y∗) = (2nπ, 0) are sinks correlating to analysis. In the bottom panel of Figure 6 is the
linearization about the fixed points of the system of eq. (20) with β = 2.001. From left to right
in the bottom panel of Figure 6 is the linearization about the fixed points when (θ∗, y∗) = (2nπ, 0)
and (θ∗, y∗) = ((2n + 1)π, 0), respectively.

When the Hartman-Grobman theorem reveals nothing about the non-hyperbolic fixed points,
compare the Jacobian from the linearization to the phase plane of the system. For the system
described by eq. (20) they are the same and the linearization describes the dynamics as well.

Finally answering our initial question, the dynamical system described by eq. (20) is confined
to the two dimensional phase plane. By the Poincare-Bendixson theorem, chaos is not possible.
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Figure 6: Linearizations about the fixed points Upper Left 2nπ when β = .4, Upper Right (2n+1)π
when β = .4, Bottom Left 2nπ when β = 2.001, and Bottom Right (2n + 1)π when β = 2.001.
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5 The Golden Goose, Chaos

We have finally arrived at the case of the pendulum where there will be no simplifications, sin(θ)
will not become θ by use of the small-angle approximation, unless the amplitude of the driving force
is small. The damping force by will be present as well as the driving force, which until now has
been set equal to zero. Let us begin discussing the driving force, F (t). We have already alluded
to the fact that the driving force is a function of time, just by use of notation. However, if we
allowed the driving force to be constant it would drive the pendulum to some equilibrium position
in the case that the amplitude was not great enough to over come the forces from gravity and
damping. If the amplitude were great enough to overcome the opposing forces it would surely drive
the pendulum in a repeated motion. Both these scenarios do not include chaos. So we will let the
driving force vary with time such that F (t) = F0 cos(ω ∗ t), where F0 is the amplitude and ω is the
drivng angular frequency.

Eq. (5) becomes

θ̈ +
b

m
θ̇ +

g

r
sin θ =

F0 cos(ω ∗ t)
mr

. (31)

Letting θ̇ = y, the system described by eq. (31) becomes

θ̇ = y, (32)

ẏ = − b

m
y − g

r
sin(θ) +

F0 cos(ω ∗ t)
mr

. (33)

Equations (32) and (33) seem to be a system described by a two dimensional-phase plane as
I have written it. The Poincare-Bendixson theorem will not allow chaos in the two-dimensional
phase plane. However, note that the system is nonautonomous, and it can be made into a three-
dimensional autonomous system by doing the following:

Let z = ω ∗ t. Differentating with respect to time, ż = ω. Now the sytem described by eqs.
(32) and (33) becomes

θ̇ = y, (34)

ẏ = − b

m
y − g

r
sin(θ) +

F0 cos(z)
mr

, (35)

ż = ω. (36)

The Poincare-Bendixson theorem no longer applies since we have a three-dimensional. Chaos is
not ruled out, but neither is is guaranteed

We may now begin the search for chaos. In John Taylor’s Classical Mechanics, chaos is
approached in an extremly elegant way and we follow his approach here, adopting his notation.
From eq. (31) let 2β = b

m , ω2
0 = g

r , and γω2
0 = F0

mr , where γ = F0
mg [3]. Equation (31) becomes

θ̈ + 2βθ̇ + ω2
0 sin θ = γω2

0 cos (ω ∗ t). (37)

This a very idealized textbook equation for the motion of a pendulum. We will also discuss a
real experimental system known as the EM-50 Chaotic Pendulum constructed by the Daedalon
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Corporation. The description of this system can be found in the instruction manual [4]. The
differences between the textbook pendulum and the real pendulum take place where the moment
of inertia is unknown analytically. The damping constant is just b; it comes from electromagentic
forces rather than a contact force. Eq. (4) would then be written as

Iθ̈ + bθ̇ + mgr sin θ = F (t)r, (38)

θ̈ +
b

I
θ̇ +

mgr

I
sin θ =

F0r

I
cos(ω ∗ t). (39)

Adopting again similar notation to Taylor’s Classical Mechanics, let 2β = b
I , ω2

0 = mgr
I , and

γω2
0 = F0r

I , where γ = F0
mg . We can write eq. (39) in the same form as eq. (37).

Next we begin discussing the parameters we will be using while searching for chaos. Again like
Taylor, we let ω = 2π. The driving period, T = 2π

ω , is then equal to one. There is no better choice;
this becomes extremely useful for future qualitative analysis. Taylor states that chaos is easy to
find when the ω0 is close to ω. Next we will use a numerical solver to view two solutions to discover
that we should let ω0 > ω.

Figure 7: Left: Solution with ω0 = 5
2ω and Right: ω0 = 2

5ω

In fig. (7) we see that when ω0 > ω the left panel we have a much more erratic behavior that
leads to chaos, although chaos is not yet present.

Next we discuss the damping parameter β. It is very evident that we prefer the damping to
be less than the natural frequency, ω0, of the pendulum, so we are not critically damped or over-
damped. It is not necesary though, given the amplitude of the driving force one can select a good
damping parameter.

We have chosen ω = 2π, and we want ω0 > ω, so let ω0 = 4
3ω = 8π

3 . We want β to be less than
the amplitude of the driving force, γω2

0, so let β = ω0
4 = 2π

3 . When γ = .2, β < γω2
0. The parameter

that varies in search of a chaotic regime is γ. I have used the above parameters in search of chaos
and although I may have found it, the approach through period doubling is unclear and may not
exist for the perscribed parameters.

To show a clear approach to chaos, we will adopt the parameters chosen by John R. Taylor in
his Classical Mechanics. This will also be useful later because Taylor’s parameters were used to set
all other parameters from ω0 in the actual experiment with the EM-50 Chaotic Pendulum.

Taylor’s parameters are defined as ω = 2π, ω0 = 3
2ω = 3π, β = ω0

4 = 3π
4 [3], and γ varies. With

these parameters, period doubling and chaos are easily seen, the easiest way to see that period
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doubling will occur and determine the values when period doubling or chaos occurs is by the use
of a bifurcation diagram. Figure (8) was produced using MATLAB and edited files, to model
the pendulum system, Programs 14f.m and Programs 14g.m written by Stephen Lynch [5]. From
Figure (8) we can see where the bifurcation begins. Figure (9) is a enlarged section of Figure (8),
where we can begin determining what values period doubling begins. By inspection of figure (9)
it seems below γ = 1.0675 the period becomes one and above γ = 1.0675 the period becomes two,
meaning that the period has doubled.

Figure 8: Bifurcation diagram for the damped driven pendulum, note γ has been shifted by one
and any value read from the graph should be interpreted as γtrue = γgraph + 1

Let us look at some solutions produced using MATLAB’s ode45 function. The first is for the
parameters stated above, with γ = 1.01, and θ = θ̇ = 0. In fig. (10), one can see the period is 1
second after the transient part of the solution has decayed. Next look at the solution with the same
initial conditions except now γ = 1.07. Figure (11) shows the solution where, after the transients
have decayed, the period is 2 seconds.

We return to fig. (9) again to see where γ will yield a period 4 orbit and it appears to happen
when γ > 1.075. We again plot the solution when γ = 1.07875 with the same initial conditions
as before. In figure (12), the solution has been scaled for the time interval shown, and one can
appoximately tell the period is 4 seconds.

Another method to determine the period is by the use of the phase plane (θ, θ̇) = (θ, ω). Figure
(13) shows the phase plane for the first solution with γ = 1.01. Looking at the darkest line shows
the orbit, with period 1, after the transient has decayed. Fig. (14) shows the orbit for γ = 1.07.
The zoomed right panel shows that there are two points which the pendulum is passing through
on its period-2 orbit.

We could continue to period 8 and period 16, but the numerical solutions are becoming less
accurate. This period-doubling that occurs when increasing γ is what many authors, including
Taylor, call the road to chaos. Before we continue in search of chaos we can make a Poincare
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Figure 9: Bifurcation diagram for the damped driven pendulum, note γ has been shifted by one
and any value read from the graph should be interpreted as γtrue = γgraph + 1

section by numerical methods. A Poincare section is made by following the variable of interest
such as θ̇ and θ in our case at intervals of time instead of as continous time [3]. For example, if we
choose the time interval to be the period of a function of sin (2π ∗ t), we know sin(2nπ) is always
equal to zero, where n =integers, beginning at one. The Poincare section for this example has a
single stable fixed point, correlating to the period of the motion. Thus the number of fixed points
in a Poincare section will tell us information about the period of the motion. The following figures
are produced using edited code, Programs 14d.m written by Stephen Lynch [5]. Figure (15) is the
Poincare section with γ = 1.01, one can see as the transient decays, the iterates of the Poincare
section approach a fixed point, this tells us the period is one. Figure (16) is the Poincare section
with γ = 1.07, we zoom in to see the section approaching two fixed points, this tells the period is
two, as we have verified before.
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Figure 10: Left: Solution with γ = 1.01, and θ = θ̇ = 0 and Right: zoom of the solution to see
period of 1 second.

Figure 11: Left: Solution with γ = 1.07, and θ = θ̇ = 0 and Right: zoom of the solution to see
period of 2 second.

So far we have discussed how to obtain the solution, the phase plane, and the Poincare section.
Let us go on a search for chaos armed with all of these tools. First, return to fig. (9) and choose
from the bifurcation diagram γ = 1.16. As before we shall plot the solution, phase plane, and
Poincare Section for this specific γ as well as θ = θ̇ = 0 for initial conditions. Figure (17) is the
solution. Figure (18) is the phase plane. Figure (19) is the Poincare section. In fig. (17) the motion
does not look predictable, in fig. (18) phase plane is full, and in fig. (19) the Poincare section is
also full. This definitely seems to be a chaotic solution to the pedulum equations. But, how can
one prove that we have a chaotic solution? Aleksandr Lyapunov defined an exponent in which the
difference between two solutions behaves exponentially.

∆θ(t) ≈ Ceλ∗t (40)

Where λ is the Lyapunov exponent [2]. There are three defining behaviors of systems depending
on the Lyapunov exponent. If λ < 0 the solution is attracted to a fixed point or a periodic orbit.
Note that eλ∗t → 0 as t → ∞, for negative λ, so ∆θ(t) → 0, and the solutions becomes identical.
If λ = 0 the solution is attracted to a fixed point, e0 = 1 and ∆θ(t) is a constant. The difference
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Figure 12: Solution with γ = 1.07875, and θ = θ̇ = 0.

between the solutions remains constant. Finally, if λ > 0 the solution is chaotic, eλ∗t → ∞ as
t → ∞ for posistive λ. The difference between solution increases exponentially for some time,
eventually saturation of the separtion occurs.

One could produce solutions from MATLAB code with slightly different initial conditions and
proceed to find the Lyapunov coefficient; however, it is much more interesting to do so for a real
system. From here we will continue to determine the Lyapunov coefficent of two solutions, but
it will be done for that of two solutoins that come from actual data from the EM-50 Chaotic
Pendulum, eq. (37), which is modelled identically to the thoeretical pendulum, eq. (39).

Figure (29) is of the EM-50 Chaotic Pendulum. M is a mass conencted to a rod. C is a magnet
which is driven by drive coils , E, which is the source of the driving force. B is a non-rotating
copper plate. Its distance relative to the magnet is controlled by F . When the magnet rotates
and the copper plate remains stationary eddy current is lost. B and its posistion are the source of
damping. A and D combine to collect data in the form of the posistion and velocity of disk A, this
correlates to measurements of M .

Figures (20) and (21) are the time versus measured angles, θ, for two solutions of the EM-50
Chaotic Pendulum. The initial conditions are θ = θ̇ = 0. Where the difference between the initial
conditions is less than ±.00001 radians. Actually the pendulum is allowed to settle into its resting
downward posistion which should be two identical initial conditions but the system that collects
the measurements of θ has accuracy on the order of .0001 radians. The data collected correlates
this fact; however, we do not assume that we know the measuremnt of θ any more accurately than
to .0001 radians. As stated above, we know the difference between the initial conditions is less than
±.00001 radians. We denote solution one as the red curve in fig. (20) as θ1 and solution two as the
blue curve in fig. (21) as θ2. Figures (22) through (24) are solutions one and two plotted together
at different time intervals to show the divergence and the simularities of the solutions. Let ∆θ(t)
denote the absolute value of the difference between the solutions, ∆θ(t) = |θ1−θ2|. Figure (25) is a
plot of the difference between the solutions. Does fig. (25) actually fit the model of an exponential
to a posistive power? We can do some math from eq. (40) and simplify this question.

Take the natural log of both side of eq. (40):
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Figure 13: Phase plane with γ = 1.01, and θ = θ̇ = 0.

ln (∆θ(t)) = Cλ ∗ t (41)

Now we can ask if there is an increasing linear region if we plot the ln (∆θ(t)). Figrues (26) and
(27) are the plots of the natural log of the difference between the solution at different time intervals.
In the zoomed time interval fig. (27) on can see a linear region for approximately the first 2000
data points measured. We fit a linear curve, colored blue, to a suspected linear region and plot it
in fig. (28). The slope is positive; therefore, Cλ is posistive. λ is also posistive. The existence of a
posistive Lyapunov coefficient proves the pendulum system was in a chaotic regime.

6 Conclusion

A completely deterministic system can have chaotic dynamics as well as extremely well
understood linear dynamics. Everything that was expected in the simplified and non-linear regime
of pendulum was discovered and proved. Chaos was discovered in theory and experimentally.
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Figure 14: Left: Phase plane with γ = 1.07, and θ = θ̇ = 0 and Right: zoom of the phase plane to
see period of 2 second.
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Figure 15: Poincare section with γ = 1.01, and θ = θ̇ = 0.

Figure 16: Poincare section with γ = 1.07, and θ = θ̇ = 0.
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Figure 17: Solution with γ = 1.16, and θ = θ̇ = 0.

Figure 18: Phase plane with γ = 1.16, and θ = θ̇ = 0.
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Figure 19: Poincare section with γ = 1.16, and θ = θ̇ = 0.

Figure 20: Solution one of the EM-50 Chaotic Pendulum.
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Figure 21: Solution two of the EM-50 Chaotic Pendulum.

Figure 22: Both solutions of the EM-50 Chaotic Pendulum.
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Figure 23: Both solutions of the EM-50 Chaotic Pendulum.

Figure 24: Both solutions of the EM-50 Chaotic Pendulum.
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Figure 25: Difference of the two solutions.

Figure 26: The natural log of the difference of the two solutions.
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Figure 27: The natural log of the difference of the two solutions.

Figure 28: The natural log of the difference of the two solutions with a fitted curve for a suspected
linear region.
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Figure 29: Schematic of the EM-50 Chaotic Pendulum
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