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1. Introduction

Chaos is familiar to all of us. Some mechanical, biological, electronic, social,
astronomical systems that exhibit chaos are well defined and have been extensively studied. A
key feature of a chaotic system is that future behavior cannot be predicted even though the
system can be fully described mathematically and its past behavior is completely known. In
recent years, chaos has become an active academic discipline that spans many branches of the
sciences and engineering. The damped driven pendulum is an example of a chaotic system that
can be readily formulated mathematically and can also be reproduced in a laboratory. For these
reason it is a good tool for teaching the fundamental properties of chaos. Systems that exhibit
chaos may also exhibit resonance, hysteresis, periodic and multi-periodic motion. The damped
driven pendulum can show all of these phenomena.

The Daedalon pendulum is mounted on a shaft that runs in miniature low friction ball
bearings. A torque converter is mounted on the same shaft as the pendulum. The torque
converter is a brushless, siotless, linear DC motor of the type that is found in many tape recorders
and it applies a torque that is proportional to the voltage that is applied to the torque converter. In
this application the torque converter is connected to an ac source in the electronic pendulum
driver supply. An eddy current damping ring, which is close to the permanent magnet of the
torque converter provides a damping torque, which can be calibrated. A digitizing wheel which
has 1000 small slots close to its circumference and which is mounted on the same shaft as the
pendulum and the torque converter measures the angular position of the pendulum. The slots of
the digitizing wheel pass through the gap of an optical encoder. On one side of the gap is an LED
light source. On the other side are a phase plate and two optical detectors. The phase plate is a
foil located in front of the optical detectors and it has two adjacent sets of stationary slots that are
the same width as those of the digitizing wheel. The two sets of slots are offset from each other
by a half a slot width. A photo detector is behind each set of slots. The photo detectors generate
two sets of electric pulses each time a slot of the digitizing wheel passes through the optical
encoder. The second set of pulses is termed the quadrature signal. These two series of pulses
are offset in time by a half pulse width. The two series of pulse are connected to an electronic
interface that calculates the angular position of the pendulum and the direction of rotation. The
electronic interface uses an internal clock to calculate the angular velocity of the pendulum from

the angular position and the direction of rotation. A timing pulse is generated at the start of each



electronic drive cycle and it is sent via a BNC cable to the electronic interface. The two standard
methods of viewing dynamic information are the phase plane plot and the Poincaré plot.

A phase plane plot has angular position plotted horizontally and angular velocity plotted
vertically. Every data point that is generated is plotted. Figure 1.1 shows periodic motion, which is
an ellipse. Multi-periodic motion will be a more complex figure that switches between two or more
distorted ellipses. Chaotic motion is manifest as many merging ellipses, and the figure may be so
complex that it is not possible to extract useful information. Chapter 6 discusses multi-periodic
and chaotic motion and fig. 6.1 and fig. 6.4 are examples of multi-periodic and chaotic phase

plane plots,
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The phase plot for chaotic motion can be complex. For this reason a subset of that plot, a
Poincare plot is also used. It is a plot of angular velocity versus angular position but with only one
data point per cycle that is determined by the timing pulse of the electronic drive oscillator of the
ac source. The phase plane plot is useful for identifying periodic modes but is not helpful with
understanding chaotic modes whereas the Poincaré plot is useful for to studying chaotic modes.
The software includés calculation of capacity dimension, Lyapunov exponent, and power spectra,
as well as numerical simulation procedures. The complete system is suitable for use in an

undergraduate laboratory.
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Description of the pendulum

Mechanical

The apparatus has a shaft that runs between two low friction ball bearings in cylindrical
carriers that are clamped into vee grooves of the support frame. The shaft carries the pendulum,
which is a short rod with a mass (M) on the end, a ring magnet (C) and a slotted wheel (A). The
ring magnet, which has eight poles, has two purposes. It rotates adjacent to a stationary copper
ring. Eddy currents that are generated in the copper ring provide a damping torque to the motion
of the axle. The magnitude of the damping torque can be adjusted by varying the distance
between the magnet and the copper ring. The micrometer screw on the top of the frame sets the
position of the copper ring. The ring magnet also forms part of the brushless slotless linear motor.
This enables a known torque to be applied to the axle. The two pair of coils (E) is the other part of
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the motor. The slotted wheel has a 1000 slots and it runs between the LED source and the optical
detector of the optical encoder (D).

USB interface

The electronic interface circuit has a microprocessor and a USB (Universai Serial Bus) engine.
The data from the optical encoder and the timing pulse are directed to a port of the
microprocessor which is programmed to calculate the angular position and the angular velocity
and it converts them and the timing pulse to the USB format. The microprocessor transmits this
information to the USB engine, which is programmed to communicate with a USB port of a PC via
a USB cable. The remainder of the data processing is carried out in the PC.

2. Software

Installing the software

Software is supplied for PC’s that are using either Windows XP or Windows 2000 operating
systems. Installation of the software should only take a few minutes.

1. Close ali of the existing applications.

2. Do not connect the interface electronics to a USB port at this time.

3. Find the letter of your CD drive.

4. Put the Daedalon CD into the drive.

5. If it does not start automatically, then go to START\RUN and enter D:\setup.exe where D
is the letter of your CD drive. Hit OK.

6. It will install eight bootstrap “.dll’ files. If any of these files already exists on your computer
and your version of the file is later than the one that is about to be installed then a panel
will alert you of this conflict and you should choose the option to keep your original file.
Do not install the earlier file. A “Welcome to the installation program” panel will appear
after the bootstrap files are installed. It will say that you cannot install shared files if they
are in use. If you have not already closed all other applications then exit the install
program and close all other applications and start again. Otherwise click on OK.

At the next panel click on the left most button in order to install the pendulum software.
The next panel should indicate that the program group is Daedalon. Click on continue.

A final panel indicating that the software has been successfully installed will appear. The
executable and supporting files will be in the folder c:\Program files\Daedalon\. Click on
OK.
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10. There is one further step. The driver file must be installed in the windows driver registry.
Connect one end of the USB cable to the Daedalon interface box and the other end to a
USB port of your PC.

11. Wait a few seconds and a message will appear that indicates that new hardware has
been detected.

12. A panel that is entitled “Welcome to the Found new Hardware Wizard” will appear. With
the CD still in the drive click on NEXT.

13. A panel will appear that says that the software that you are installing has not passed
Windows Logo testing. Click on continue anyway.

14. The "Completing the Found new Hardware Wizard” will appear. Click on Finish. The
drivers are now registered and the software is ready to use.

NOTE: What the LED’s show
The interface box has a microprocessor that collects data from the pendulum and

transmits it to the PC. However, the interface box does not have any program code
permanently stored in it. Each time that the interface box is connected to the PC, software is
downloaded from the PC to the microprocessor in the interface box. When the USB piug from
the interface box is connected to the PC a signal automatically is sent to the PC and an initial
Driver program for the interface box is located. During this process, the LED shows RED.
This initial driver program then signals the PC and initiates the download of a second driver
program to the interface box. This second driver program contains the microprocessor
software. This program starts running as soon as it has been loaded. At this point the LED
shows GREEN and the pendulum data starts to be sent to the PC. The complete process
may take a few seconds. The Daedalon program may be started at any time after the LED
shows GREEN.

Operating the software

DAEDALON CHAOTIC
PENDULUM

THIS IS A REAL TIME DATA ACQUISITION
SYSTEM AND ALL OTHER APPLICATIONS
SHOULD BE DISABLED AS WELL AS THE
SCREENSAVER. THE SCREEN SHOULD BE SET
FOR 1024 X 768. THE INTERFACE BOX MUST BE
CONNECTED TO A USB PORT.

Inieriare conascled

Figure 2.1
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As the Daedalon software collects data in real time it is necessary to close all other
applications and the screen saver (START\Settings\Control Panel\Display\Screen Saver\None).
When the Daedalon program is started it will open with a message (Figure 2.1) that the

interface is or is not connected. If the interface box has not been connected you may quit the
program at this point or you may proceed and use any of the program utilities that do not require
the pendulum and the interface circuit. If the interface has been connected then click yes and

continue to the main window (Figure 2.2).

Figure 2.2
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If the interface is connected, all thirteen buttons of the menu will be usable but if the interface
is not connected then the three menu buttons that control the acquisition of data from the
experimental pendulum will not be visible but the ten remaining buttons that control the utilities

will be active.

What the buttons do

The main menu bar looks like this

Ulilities
Clear I,_Se_r;,h-m :* Exit prqglam‘ “ Plot e T FFT | Print |Dimaﬁsiop[5imp|qr@on.| “Help [

{ Plot data l Sevie ottt '}3,375 pq?nca'ga]

l' Drata acquisition: l» program
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Plot data will record data from the experimental pendulum and plot the data on the screen to a

Phase plot and to a Poincaré plot. Clicking on the GREEN HALT button will stop data recording.

Save urwre winreoord data from the experimental pendulum and plot the data to a phase plot on

the screen and it will save data to a file. You will be asked to enter the number of phase data
points and a file name. The default is 1000 phase points. The pendulum generates 500 phase
data points per second. The maximum number of phase data points that can be stored in a file is
4000000. The session may be halted at any time by clicking on the RED HALT button that will
change to gray at the completion of recording data and the file will be deleted.

Data to a file is recorded in an ASCIl format. The first line of the file reads either PHASE or
POINCARE. The second line of the file is the number of data points. The data follows with one
data point per line. The first item on a line of data is the angle (radians) in the range [-rT<angle<r].
The second item is the angular velocity (rad/second) and in the case of PHASE data the third
item is the number of times (integer) that the pendulum has rolled over since the data started to
be recorded. The POINCARE data file does not record the rollover. The three items are

separated by single spaces.

T

Save Poincaré will record data from the experimental pendulum and plot a Poincaré plot on the
screen. The data is also saved on a file. You will be asked to enter the number of Poincare data
points and a file name. The Poincaré data points are generated at the same rate as the drive
frequency — about one point every second. The session may be halted at any time by clicking on
the RED HALT button and the file will be deleted. The red HALT button will switch to gray at

completion of the recording.

] i»F'rogxam cartrol——
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HALT will stop the recording of data under any circumstance. The HALT button will be green
while plotting experimental or simulated data to the screen and it will be red while saving
experimental or simulated data to a file. The HALT button is yellow during calculation of
dimension. The HALT button is magenta while the FFT and the Lyapunov exponent are being

calculated.

e

vl Clear f Setr

Clear will erase the phase plot screen during the recording of data from either the experimental
pendulum or from the simulation. It will not halt the recording of data but only data from this point

forward will be recorded.

1 Setrange | Exitpr

Set range enables the horizontal scale of the screen phase plot to be changed by a slide bar
from {— to 11} to one of {~nm to nm} where n is an integer 3, 5, 7, 17, or 33. This will not affect the
saving of phase data to a file or a Poincaré plot. So-called chaotic diffusion can be observed by

setting n to a large value.

1 L
ge | Exi program l “

Exit will terminate the program and return to the windows desktop as long as the software is not

collecting or processing data.

]I ‘ TPt | FF

Plot file enables either previously recorded phase data or Poincaré or power spectra data from a

file to be plotted on the screen. Set phase may be used to change the horizontal scale of the
phase plot. You will be asked to enter the file name. But you do not have to enter the extension.
Each data file has a header that indicates whether it is a set of Phase plot data, a set of Poincaré
data or FFT data. Clicking on the YELLOW HALT button will halt the session.

e | FFT | P
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FFTis a Cooley-Tukey fast Fourier routine that generates a Power spectrum from a time series of
velocity data in a file. The FFT uses 2048 data points that are spaced 0.036 seconds apart. The
data acquisition takes readings spaced 0.002 seconds apart. Thus the FFT uses only every
eighteenth data point. The points in the spectra are 0.08522 r/s apart. You will then be asked to
select a “window”.

Farzen
Harnning
Welch
Souare

Zelectan FFT window

An FFT can only analyze a finite number of data points. A correct spectrum requires an infinite
number of points. To partially compensate for the finite data set a modified data set is created by
multiplying the experimental data set by an arbitrary window function. This process does not
completely compensate for the finite data set and a number of arbitrary window functions can be
used that provide various types of partial compensation. See pages 423-428 of reference 2. The
window functions that are included with this software are defined in the following ways. Where j is
the data point number and n is the total number of data points: -

(j—0.5(n—1))’ o)

Parzen= 1-
iO.SinH ))

Hanning = O.5(1—cos(ﬂ)) (2.2)
n

Welch = 1—(0"0'5(n—1)))2 (2.3)

©0.5(0+1))

Square = 1 (2.4)

The FFT spectrum of a chaotic system has two parts — a continuous but noisy background and a
number of dominant peaks which are difficult to observe because of the noise. However, the
dominant peaks may be re‘adily observed by averaging a number of spectra for the same
pendulum parameters. In addition the program can enhance spectral characteristics by averaging
a number of spectra. The software has this capability. At the start you will be asked for the file
name of the phase data and then the maximum number of spectra that may be averaged is
shown. The number of spectra that you choose to average must be less than or equal to the
maximum number shown. You should save at least 37000 data points for each FFT calculation.
The total number of points to save is 37000 times the number to be averaged.
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Another measure that differentiates chaotic and non-chaotic motion is the Lyapunov exponent
o , , . , de
and this is calculated after the FFT is completed. A trajectory is defined by the variables G,Et—

as a function of time. A trajectory will change when the initial conditions are changed from
(91 (0)(9%59_))) to (62 (O)(de—ét(o—))) . Where 0, (O)—— 0, (O) is small. In a non-chaotic mode

the trajectory will coalesce to a single trajectory even though the initial conditions are different.
However, in a chaotic mode a new trajectory will diverge away from a previous trajectory. As long
as the two initial conditions differ by only a small amount, the difference

2

a(t)z \!(91 - 82)2 + (—d—;ti -—%9,[3-) will follow an exponential divergence - 8(t)= s(O)Xt as

long as t is small. The complete data set is divided into n short data sets and the local exponent,

A , for each short data set is calculated. In a large data set the local exponent, A , will vary. The

Lyapunov exponent, _, is the average of many local exponents throughout the data set.

A= A Ln( Si(t)) Where n is large.
né ai(O

The Lyapunov exponent is calculated and displayed after the FFT spectrum has been displayed.
An algorithm that was developed by Wolf et al (See ref. 9) has been used.

T _va_'>¥3fnnt ~{.Dim

Print causes any Phase, Poincaré or Power spectra plots that are displayed on the screen, to be
sent to the printer.

int | Dimension | Simul

Dimension is a measure of the complexity of a Poincaré plot. There are many definitions of
dimension but capacity dimension is one that can readily be applied to experimental data and it is
calculated here. A Poincaré plot that comprised a single point would have dimension 0. Whereas
a Poincaré plot that had every site on the plot filled with a point would have a dimension 2. A
continuous line would have dimension 1. In practice all chaotic Poincaré plots will have a
dimension that is somewhere between 1 and 2.

Imagine that a one-dimensional structure (a line) is of length, L, and that it is covered by

boxes of length, €. There are Nz )= (L / & ) boxes.
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Now imagine that a structure that is a square of side length, L. The square is covered by boxes of
side length, €. There are N(£)= (L/a)2 boxes. Considering a three dimensional object

N(£)= (L/s)a. In general, for an object of dimension D the number of boxes is N(e')= (L lef.
The logarithm of N(_) is given by

IN(N(E)) = D In(L) + In( 1/ €) (2.5)
. p__ In(NE)
mhatis: B =00+ inftre) 26)
if &<<L then In{L)<<In(1/¢) @2.7)

b - In(NG))

)

In practice, a Poincaré plot is covered by boxes of side, €, and N( €) is found by counting the

(2.8)

number of boxes that have at least one point in them. This is repeated for a range of values of €.

A straight line is fitted to a plot of ln(N(e ))versus |n(1 / s)and the slope is the capacity dimension,

D. When the Dimension button is activated it will first ask for a file of Poincaré data which will be

plotted to the screen and then the capacity dimension and the number of points wiil be displayed.

sirjn'['jﬁih]ubtion l +

- Pendulum paiameatars e ommees

Simulation is a numerical routine that uses a fourth order Runge Kutta oo mge= 0000798 Mmoo
_ Inettia= 10 000009876 | Karm -

~ Damping= {0.000017754 | Nms

Drive ampltuds= |0 0005306 N

integration aigorithm to solve the driven pendulum equation and display the

data in the same way that the experimental data is shown on the screen.

; i prCys {5 9119 ) I
When the simulation button is activated the upper left logo switches from the | D*e fieauency= [58113 tadfs
. Drive phase= |0 radian
experimental pendulum to a laptop computer and screen and a data panel Initial arile= [1 radian- |
(shown below) immediately appears. The equation parameters may be : lﬂit‘la!_velocfrty;' 1.0 fad/s
< Tire outs |0 5

changed in this data panel. The default values approximate to those of an

e Similation speed -
. [F] Real time o
: D’Computer time '

experimental pendulum. But do bear in mind that no two pendulums are

exactly alike. Eq. 2.9 is the equation of motion of a damped driven pendulum.

d 8  do ?"Sa}ee datato afils — g
ey bd— +mgrsin(®)= Acos(@t+®) (29) O
where D Raincars plot v
mgr is the product of the weight and radius of gyration of the bob structure, Lo LO““W"’ i v Lﬂ”C*"‘ "

| is the moment of inertia,
b is the damping constant,
A is the amplitude of the drive torque,

Q is the drive frequency, and
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® is the phase of the drive torque. The Poincaré data is

recorded when modulo Qt = 2m.

The default parameter values (I, b, A, € and mgr) are shown in the screen panel. The
parameters (I and mgr) were set to be as close as possible to those of one experimental
pendulum. Other experimental pendulums may have slightly different values. The default values

of (b, A, ®, ©) were chosen to set the pendulum in a chaotic state.

The speed of simulation may be set to real time by clicking on the “Real time” box in the
simulation speed frame or to computer time by clicking on the Computer time box. Computer time
will be much faster.

Clicking on either of the Phase plot box or the Poincaré plot box in the “Save data to a
file” frame followed by the continue button will cause a request for the number of data points
panel followed by request for a file name panel. The simulated data will be saved to a file at the
same time as it is generated.

Time out allows you to set a time period where data is calculated but it is not displayed or

recorded. This is a useful feature for identifying periodic modes that may have a settling time.

it |- _fHElﬂ -

Help activates the help file.

3 Calibration "éézP;%@c{edweg |

Equation of motion of a driven pendulum

The pendulum may be described as a mass m suspended a distance r from the system

axis. The total moment of inertia, I, is due to both this mass and
the inertia of all the additional rotating components attached to the axle
(primarily the optical encoding wheet and the annular ring magnet). If a torque T is applied to the
system via the motor then the equation of motion of the pendulum is

d’e , do :

|— +b—+mgr sm(e):T (3.1)

dt dt
where b is the damping coefficient arising from the electrodynamic interaction
between the rotating ring magnet and the fixed eddy-current plate. T is the torque that is applied

by the torque converter.
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(NOTE. In the following sections, actual data obtained from a pendulum will be presented. It
should be noted that the precise values of system parameters extracted from the associated
graphs are specific to a particular apparatus. Somewhat different numbers will be obtained for a
different pendulum/drive-module combination. In other words, these results are included only in
order to suggest the general appearance of results, which may be expected, and as an aid in

carrying out the calibration process.)

Experiment #1

To determine the natural frequency of the pendulum

Release the lighted pushbutton (on the front panel) to the OFF position,
thereby preventing any drive circuit leakage current from flowing through
the motor coils; this will eliminate any residual torque offset. Adjust the
micrometer so that the copper plate is well separated from the ring magnet
(1 cm or more); b is thus approximately zero. Turn off any torque signal (T=0). The pendulum
equation in this case becomes
2

Eg?q+ mgr sin(0)=0 (3.2)

For small angles, sin(@)z 0 and the oscillation frequency is

mgr
W, = ‘/——19— (3.3)

The period of oscillation for arbitrary maximum angular displacement _n, can be found analytically
from the differential equation, and is

P_P, [%K(k)} (3.4)

where K(k) is a complete elliptic integral of the first kind, k=sin(_n/2), and Py is the pendulum
period in the limit of infinitesimally small oscillations. The variation of period with maximum

angular displacement is illustrated in figure3.1 where the normalized period is P/Po.

Experimental procedure

To determine P, proceed as follows. Displace the pendulum manually through and angle
_m and release it. Using the Save orbit button record a time series of n data points (n should be
chosen large enough to include at least five oscillation cycles; i.e. approximately 3000 points. An
analysis of this data (by means of a computer program or visually inspecting the data) for zero



EM-52 Chaotic Pendulum Page 16

crossings will give the pendulum period P for the oscillation amplitude 0. Equation 3.4 will then
yield Po.

An alternate procedure would be to measure the pendulum period for a series of
diminishing maximum angles and then extrapolate the data to the zero-amplitude period Po, as

indicated in the figure. By either method the natural frequency is then evaluated from

w, =2n/P,.

Undamped Oscillations
1.2
o, 7]
Figure 3.1: “8 /%
N
“fg 141 ﬁﬁ/
5 e
5 M:{:.nfﬁswﬁ;/
T 1.0
o
e
o
Q.
O 9 1 | { l ) i I { i
0 nl2
Angle (radian)
Experiment #2
~ To determine the damping b/l as a function of the micrometer reading
Method 1

Turn off any torque signal, release the lighted push button to disconnect the drive circuit,
and set the micrometer to a desired value. Manually displace the pendulum bob through a small

initial angle, release it and record the resulting motion in the form of a time series 6(t). Under

these conditions, the general equation of motion reduces to

d’0 , de
|l—+b—+mgr6=0 35
a e M 59
In the underdamped case (_>b/2l), the analytic solution is
0=0, e coslwt) (3.6)

where _ = (b/2l) and ©7 = (o)§ - a? )
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Time has been normalized in units of Pp. Since wyg has already been determined from Experiment

#1, and 60 is just the initial angle. The positive or negative peaks of the time series for 0 can be

least squares fit to a semilog plot of e " and therefore a, for a particular micrometer setting, can

be determined from the slope of the resulting straight line. The relative damping parameter is then

given by b/l = 2a. By repeating this procedure for a number of micrometer settings, a calibration

curve of b/l versus damping plate separation can be constructed.
Method 2

Turn off any torque signal, release the lighted pushbutton to disconnect the drive circuit,
and set the micrometer to a desired value. Turn the entire apparatus on-end so that the pendulum
mass will now move in a horizontal plane (be careful to support the apparatus only on its rigid
frame, and not on either the end bearing or the sliding top plate). This orientation effectively turns

gravity OFF, in which case the governing differential equation becomes.

igz—e + bd—e— =0 (3.7)

dt? at
If the pendulum is given an initial spin by hand, then its angular velocity will simply decay with
time according to the expression

% {_d_g} exp|- (/1] (3.8)

dt dt |,
Experimental data are displayed in figure 3.2. The procedure used was to choose a micrometer
setting, select the data acquisition parameters (file name, number of points, etc.), initiate the data
collection, then immediately set the system spinning with a careful flick of the finger. Several
hundred data points were sufficient. The initial zero velocity segment of the plot is just that portion
of the data prior to the impulse that set it in motion. Recall that angles and velocities are sampled

at about 2 millisecond intervals.

80
nor K

60|~ X,
50 AN
40 - S
30 e
20} g
101

Figure 3.2:
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The decay portion of the data in fig. 3.2 can be replotted in the form of the natural log of the
normalized angular velocity versus time; this is shown in fig. 3.3.
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Experiment #3

To determine the relationship between input voltage and torque
IMPORTANT: disable the internal voltage by releasing the lighted pushbutton to its OFF state.

Turn the apparatus on-end so that gravity is OFF, and begin by applying about 1 volt
from a separate DC supply to the “Torque Calibrate” inputs at the rear of the drive unit. Adjust the
micrometer (damping) so that the pendulum is spinning at no more than 1000 rpm. Under these

conditions, the equation of motion is

2
Iig + bE’E =T (3.9)
dt dt
The pendulum will accelerate until a terminal velocity is reached. Setting d?e/dt> =0 in
Equation (3.9) yields
T=b d—e (3.10)
dt term

The critical torque of the pendulum is T, = mgr; this amount of applied torque would cause the
pendulum to be displaced by 90 degrees from the vertical. An infinitesimal increase in T above T,
would set the pendulum into rotation. In normalized units T./I = mgr/l. But the natural frequency of

the pendulum is given by u)(z) =mgr/l,andso T, /1= (ug where w, is known from Experiment

#1. So
T 1 by [d%6
?“ = ’—‘2_ '_!‘ "d"t'z'_ (311)
c Wy Y term
and the first two bracketed terms on the right hand side are already known from previous
experiments. By measuring the terminal velocity for several different applied voltages, it is

possible to construct a plot of torque T /T, versus V as shown in Fig. 3.5. Such a plot will reveal

deviations from linearity in the drive circuit; these typically will appear at larger applied voltages.
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4. Resonance

If the pendulum is subjected to a harmonic applled torque, which is suffi cuently weak that
the resulting oscillations are of small amplitude (and hence sm(@ )z 6), then the governing

equation becomes

d 0 do :
+b—+mgr 6=T, sinfot 4.1
o TPt mer 0= Tosin(ut) @
The steady state solution of this equation is given by
I .
T/ sm(u)t - ) 4.2)
"ot o) < b1
where
b/l
tan(p)-—01) 3
W, — W

After the initial transients have died away, the pendulum will oscillate at the drive frequency _, but
with a phase shift ¢ . Figure 4.1 illustrates the amplitude response of the system for
w, =1.0and T, /I =0.25 . For a given damping b/l, the oscillations will have maximum

amplitude at a drive frequency somewhat less than the natural frequency of the pendulum. In fact

the expression for this optimum drive frequency is
w? =w? - [b/NY/2. (4.4)
Equation (4.1) may be expressed in the form

d*e , Qo 0

a2 T Qdt + 0y ejlp“sm(“’t) (49

,
where Q = —>

b/l

Figure 4.1:

Amplitude {radian)
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Experiment #4

To study the resonant response of the pendulum
Adjust the micrometer so that the Q is about 4 or 5 (this is determined by b/l and already

determined ). Set the amplitude of the internal sine-wave generator to a value that produces
pendulum oscillations of about 20 to 30 degrees when the drive frequency equals ®, / 25t . Now
select a number of frequencies for the sine-wave generator, ranging from about 0.5 ((1)0 /23‘5) to

1.5 (wo /275), and for each frequency determine the average of the maximum displacements of

the pendulum to the right and the left. This can be done

Figure 4.2: 7

2 i

sMM

5 6 7 8
Micrometer Setting

by recording and then examining a time series G(t) for each drive frequency. A plot of 0, .,

versus o (or f) will exhibit the resonance peak. Typical experimental data are included in Fig.4.3.
This experiment can be repeated for several different values of Q. Compare your resonance
curves with the predictions of Equation (4.2) as represented by the solid line in Fig. 4.3.

Repeat the procedures above, but with drive amplitude for which the oscillations are much larger
amplitude — say about 80 or 80 degrees. Discuss any deviations, which are now observed
between the experimental data and Equation (4.2).
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5. Hysteresis

Hysteresis is well known in the B — H behavior of a ferro-magnet and in the force -
acceleration plot of an object on a rough horizontal surface. Hysteresis may also be observed in
the torque — angular velocity plot of a driven pendulum. If an applied dc torque is very slowly
increased from zero, the pendulum angle will equally slowly increase. When the torque reaches
the critical value T, the angle will be 90 degrees with respect to the vertical. A slight increase in T
above T. will cause the pendulum to suddenly begin to rotate. The angular velocity will not be

constant, but instead will undulate slightly between a maximum value (pendulum is at its lowest

point) and a minimum value (pendulum is at its highest point). Let the time average of d0/dt be

denoted <d6/d’t>. A hypothetical plot of T/T, versus <d6/d’[> is shown in Fig.5.1. Notice that
once the pendulum is rotating, the torque may be decreased below the value to Tmm before an

abrupt switch to an oscillating but non-rotating state with <d6/dt> = 0 will take place. This is an

example of hysteresis, which, for the pendulum, is due to inertia.

Experiment #5

To observe hysteresis in the driven pendulum

IMPORTANT: disable the internal voltage source by releasing the lighted pushbutton to its OFF
state.
Set the damping for a Q of about 4. Apply torque voltages from an external DC source in a series

of steps beginning just below V. and increase to about 2V.. At each voltage, record a time series
9(’() and d0/dt. From this sequence obtain the average <d8/dt> , and plot these points
horizontally versus normalized torque vertically. Now decrease the torque voltage in steps,
obtaining <d6/d’(> for each V, until a transition occurs to a non-rotating state. Plot these points

and note the amount of hysteresis. Carry out the whole procedure for a different Q value and note

the change of hysteresis.



EM-52 Chaotic Pendulum Page 24

2.0

15

,
/

Figure 5.1:

1.0 ]
hysteresis %/
05 pd
A
0.0 L& : - : - 1
0 1 2 3 4 5 6
Average Angular Velocity

Normalized Torque




EM-52 Chaotic Pendulum Page 25

6. Multiperiodic and chaotic behavior

As noted in section 1 (Introduction), two special plots are usually constructed from the

pendulum’s observed time series G(t) and dO/dt.

PERIOD - 3 ORBIT

(o
L

o 9 o o

Figure 6.1:

s

Velocity (rad/fsec)

Angle (radian]

A phase plane orbit is a representation of the motion formed by piotting the succession of
coordinate pairs (6, dB/dt). If the displacement 8 were measured relative to the vertically
downward rest position, the simple oscillating motion would, for example, appear as an elliptical
orbit in the phase plane and would be contained within the range ~ < 6 < . When rotations

(flipping over the top) occur, two strategies can be followed:
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(a) the range of O can be extended to (—- 3, 3517), (— 5, 575), etc. (b) motion outside of the

principal domain (~ T, n) can be folded back into this domain. This second choice is the one

very commonly followed in the literature. Its advantage is compactness; its disadvantage is that
the folding can obscure certain features in the orbits. As an example, consider Figures 6.2 and
6.3 that are plotted from the same experimental set.

In this particular situation, the unfolded representation conveys the repetiveness of the
closed phase plane orbit. In cases where an overall winding (clockwise or counterclockwise) is
superimposed on the oscillations, it will not be possible to contain the orbit within any finite range




EM-52 Chaotic Pendulum Page 27

of _. Nevertheless, an extended range can still help in visualizing the motion, as can be seen in
Fig.6.4.
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Figure 6.4:
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We also introduced the Poincaré plot in section 1. 1t is obtained by sampling the
pendulum motion once only in each period of the sinusoidal drive torque and it can be thought of
as a stroboscopic portrait of the phase plane motion. Period 2 motion of the pendulum would
produce a Poincare plot containing just two points. And so forth. Because these maps represent
stable periodic states of the system, they are called attractors.

In section 4 on resonance, a weak harmonic drive torque was applied to the pendulum at

frequencies bracketing the natural frequency mo. It was seen that the resulting steady state

motion was also harmonic at w, phase shifted by ¢, and had maximum amplitude when

0 = w - (b/l)2 /2 . More complex motion of the pendulum may result from the application of

a stronger sinusoidal torque to this nonlinear system at lower frequencies. Because the

differential equation for the pendulum

|£?+bd_9+mgr sin(6)=TOsin(u)t) (6.1)

dt dt

is deterministic, the “classical” expectation would be that periodic or multiperiodic motion would
arise. In other words, the oscillations would remain repetitive, but with an overall cycle time of
perhaps several drive periods. While this picture is indeed correct at relatively low drive
amplitudes (for which non-linearity is weakly contributing) or large drive frequencies, thatis, T >
Te and _< _o. Within this domain of (T, _), chaos can appear. More information on this extensive

subject can be found in reference 11.
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For the pendulum, chaos is manifested as oscillations and/or rotations, which contain no
repetitive pattern. The orbit in phase space (8, de/ dt) is endlessly changing. The motion is,
therefore intrinsically unpredictable.

The chaotic dynamics of the driven pendulum can be explored with this apparatus by choosing

various drive amplitudes and frequencies within the domain mentioned previously and then
observing both phase plane orbits and Poincaré maps. A Q between 4 and 5 is suitable.

Simulation Data

Angular velocity (rad/sec)

Figure 6.5:
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Figure 6.7 is a Poincaré plot from the screen that was generated by the simulation using the
default parameters. The Lyapunov exponent (0.312) and the dimension (1.1878) both give a
measure of the degree of chaos whereas an FFT spectra can give some detail of the structure of

the chaos in frequency space.

1

Figure 6.7
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Poincare plot
Using the same parameters a time series of 1000000 points of the velocity was recorded. Since

the angle coordinate has discontinuities, the velocity was chosen for the FFT calculation. The
FFT is shown in fig. 8.8. The vertical decibel scale is calculated from 10logso(relative power).

Fourier Spectrum
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Figure 6.8 shows a rather noisy spectrum that decreases approximately as 1/f. Figure 6.9 shows

the average of 5 FFT's.
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Figure 6.9 shows less noisy continuous spectrum with a sharp peak at the drive frequency 5.8 r/s

and a broad peak centered at about 10 r/s. The low amplitude natural resonance frequency is at

8.99 r/s. There is a hint of higher harmonics but it would not be prudent to make such a

conclusion from this plot.
Figure 6.10 is the average of 20 FFT’s.
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The drive frequency is the peak visible at 5.8 r/s with the third harmonic at about 17 r/s and the
fifth harmonic at 29 r/s. (Odd harmonics are characteristic of a periodic nonlinear pendulum. (Ref.
10)) A number of other peaks are becoming clearer including that at about 10 r/s. During chaotic
motion there will be short time periods when the pendulum is synchronized to the drive frequency
which gives rise to the sharp peaks in the FFT spectra. At other short bursts of time the pendulum
will be oscillating at its resonant frequency. Nonlinearity of the pendulum makes the resonant
frequency a function of the amplitude, giving rise to breadth in the resonant peaks. Clearly the

FFT can yield information that neither the dimension nor the Lyapunov exponent has.
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- Suggested madmg$ e

The Pendulum - a case study in physics, Gregory L. Baker and James A.Blackburn,
Oxford University Press (20056). A comprehensive discussion of linearized and nonlinear
periodic pendulums, as well chaotic and coupled pendulums.

Numerical Recipes, W.H. Press, S.A. Teukolsky, B.P. Flannery, and W.T.

Vetterling, Cambridge University Press (1986). A useful algorithm for com-

puting complete elliptic integrals is given on pages 187-188. See pages 423-428 for a
discussion of windows that can be used with FFT.

Mathematical Methods in the Physical Sciences, Mary L. Boas, Wiley (1966). See pages
346-348 for a discussion of resonance in harmonically forced linear oscillator.
Microelectronic Circuits, Second Edition, A.S. Sedra and K.C. Smith, Holt,

Rinehart and Winston (1987). See pages 718-719 for resonance plots for a second order
system.

Modern Control Systems, 2nd Edition, R.C. Dorf, Addison-Wesley (1974).

See page 207 for resonance plots for a second order system.

Chaotic Dynamics: an introduction, Second Edition, G.L. Baker and J.P.

Gollub, Cambridge University Press (1996). A compact introduction to chaos, and
nonlinear dynamics with extensive reference to the driven damped penduium. See, in
particular, pages 135-139.

Chaotic Vibrations, F.C. Moon, Wiley (1987). An excellent discussion of a

variety of chaotic systems and a readable account of theoretical techniques for analyzing
chaotic behavior.

Chaotic Dynamics of Nonlinear Systems, S.N. Rasband, Wiley (1990). An

accessible introduction to the theory, technigues, and applications of chaos. Slightly
deeper and more formal than Moon's book.

Determining Lyapunov exponents from experimental data, A. Wolf, J.B. Swift, H.L.
Swinney and J.A. Vastano, Physica 16D, 285-317 (1985).

Probability, pendulums, and pedagogy, Gregory L. Baker, 74, Am. J. Phys. 482-489
(20086) A discussion of some characteristics (including frequency spectra) of the
increasingly complex behavior of the pendulum as developed from the linearized
approximation to the fully chaotic state.

Experimental study of Chaos in a damped Driven Pendulum, J.A. Blackburn, Yang Zhou-
ing, S. Vic, H.J.T. Smith and M.A.H. Nerenberg, Physica 26D, 385-395 (1987).
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3. Suggested exercises

1. The FET of a chaotic time series
Adjust the pendulum parameters until itis in a chaotic mode. Record a long phase plot time series.
Plot the FFT. Note that there are a number of peaks and a noisy but continuous background.
Measure the frequencies of the peaks. Are the frequencies of the peaks multiples of either the drive
frequency or the small angle resonant frequency or are they multiples of the difference of the drive
and resonant frequency. Can the continuous background of the FFET be fitted to a 1/f function?

2. Capacity dimension of a Poincaré plot

The aim of this exercise is to investigate how the estimate of the dimension varies with the number
of data points. Adjust the pendulum parameters until it is in a chaotic mode. Record sets of
Poincaré data to files with 100, 200, 500, 1000, 2000 points. Find the capacity dimension for each
data set. Make a plot of dimension versus number of data points. Note that the dimension increases
with the number of points up to a plateau region. Estimate the least number of points at the plateau
region for a consistent estimate of dimension.

3. Simulation

The aim of this exercise is to reconcile experimental data with simulation data. Adjust the pendulum
parameters until it is in a periodic mode. The phase plane plot should look like an ellipse. Note the
pendulum parameters, Q (or b/l and the drive frequency and amplitude of the drive. Activate the
simulation button and set these parameters into the panel that has appeared. Run the simulation.
The simulated phase plot should look like the experimental phase plot. If it does not, make small
adjustments to the simulation parameters until the phase plots look the same. Repeat with the
pendulumin a multi-periodic mode. You will find that it is more difficult to obtain agreement
between experimental and simulated plots in the multi-periodic mode. Now set the pendulum into a
chaotic mode. The phase plots will be too complex too yield any information. Record an
experimental Poincaré plot. Set the simulation with the same parameters as the experimental
pendulum. If the experimental and simulated Poincaré plots are not similar adjust the simulation
parameters in small increments until they do agree. This may take some time, as the chaotic mode
is very sensitive to parameter values.

4. FFT window functions

The purpose of this exercise is to observe the effect of the various FFT window functions on an FFT
spéctra. Adjust the pendulum parameters until the experimental pendulum is in a chaotic mode.
Record a phase plane set of data (~50000 points). Click on the FFT button and select a window
function. Plot the FFT and print it. Repeat for each of the window functions. Note the differences

among the four spectra.
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5. Temporary chaotic behavior .

On setting a system into motion, it is possible for it to show chaotic behavior initially before settling
down to periodic or muilti-periodic behavior. Click on the simulation button and change the drive
frequency to 5.0 r/s when the parameter panel appears. Leave the other parameters at their default
values. Click on continue. Initially both phase plot and the Poincaré plot will indicate a chaotic
mode. However after a short while it will settle down {o a multi-periodic mode. This is typical
behavior of a system that has both chaotic and multi-periodic modes. The aim of this exercise is o
get the simulated pendulum to start off in the multi-periodic mode. After the simulated pendulum
has settled down to the multi-periodic mode, pick a point on its path and note the phase velocity
and the phase angle. Return to the parameter panel and set the initial angular velocity and the
angle to the values that you have read off the phase plot. Re-start the simulation. If all is well it will
start in the multi-periodic mode. However, this is not an easy exercise and you may have to have
several attempts to make it work. '

6. Three dimensional display of muitiple Poincaré plots

This exercise will show that the Poincaré plot that is displayed on the screen is a slice from a three-
dimensional plot of angle, angular velocity and drive phase of the source. Click on the simulation
button and choose to record a Poincaré data to a file. In order to speed things up choose computer
time in the parameter panel and then choose 1000 data points in the next panel. Repeat for drive
phase angles of 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8 and 3.2. Plot these files to the screen in turn and
print each one. In order to view the plots you might like to try gluing each to separate cards. Attach
each card in order of drive phase in a vertical position to a horizontal base and separate each from
each other by about an inch. View all the plots from above and at an angle of about 45 degrees and
you will get an impression of the total three dimensional Poincaré plot. Now use the software to
calculate the capacity dimension of each plot. You should find the values for each plot differ from
each other by only a few percent.

7. Dimension

Although the included software can calculate capacity dimension it is instructive to carry out a ‘box-
counting’ calculation using pencil and paper as follows. Use either the experimental pendulum or
the simulation to generate a Poincaré plot with about a thousand points. Print ten copies of the

data. On the first copy draw lines that divide the whole plot into four equal boxes. The length, €, of
the side of a box is 0.5. Count the number of boxes N( €) that contain at least one point. Repeat
with 16 equal boxes. The length of the side of one box is 0.25. Then with 64 boxes and so on
where length of the side of one box is 0.125. Continue in this manner until your patience runs out.
Make a plot of Ln(N( €)) versus Ln(1/g). This plot should have a region that is linear and the slope
of this linear region is the box-counting dimension. Compare your answer to that calculated by the

software.



