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THEORY

A pendulum is taken to consist of a mass m located at a
distance # from a pivot and oriented at an angle & with
respect to the vertical. The total moment of inertia of the
complete system, produced by m together with any other
corotating components, is f. Let b be the coefficient of
velocity-dependent friction. Then the equation of motion is
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where [ and @ are the amplitude and frequency of the ap-
plied ac torgue. It is conventional practice to normalize time
to units of the reciprocal of the small amplitude natural fre-
quency wy= Jmgs M, employing overdots to signify dimen-
sionless time derivatives, and o express torgue in units of
mgs . Then (1) becomes

-
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from which it is clear that there are in reality only three
independent (dimensionless) defining parameters for the
driven pendulum: they are Q= mgs b, e=1/{mgs),
and 0= w/wy.
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FIGG. 1. Phase plane orbit for a chaotic state  with
e=0T8,0=0.62and =514, As time proceeds, the outer limits
of the orbit expand to the left and right, as suggested by the arrows.

Angular velocity is measured in radians per dimensionless time
umnit.



As a necessary first step, a bifurcation diagram was com-
puted for a range of dissipation coefficients between 3.0 and
7.0, these being deemed to be physically sensible values.
Data were generated by sampling the evolving numerical
solution of (2) once per drive cycle (Poincaré section) for a
total duration of 1000 drive cycles, This was done for each of
2000 @ wvalues within the indicated range. The bifurcation
diagram shown in Fig. 4 reveals a not-unexpected richness of
detail, involving many periodic windows embedded within
the prevalent chaos. The dissipation coelficients Q=4.00,
4.15, and 4.16 chosen for the previous figure can be seen to
lie just inside the chaotic zone that precedes the largest pe-
rindic window,
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FIG. 4. A bifurcation diagram for the driven pendulum with
e=0.78 and {}=0.62. Angular velocity is measured in radians per
dimensionless time unit.
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FIG. 9. Poincaré section for = 5.78. The linked boxes indicate
the locations of accumulation segments for each of the period-2
orbits on the attractor. Angular velocity is measured in radians per
dimensionless time unit,



Control of the chaotic driven pendulum
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A method of controlling chaos (due to Ott, Grebogi, and Yorke) is illustrated with a simulated
chaotic pendulum. The method consists of stabilizing a previously unstable periodic orbit through
a feedback mechanism that periodically adjusts the damping parameter of the pendulum. The
presentation is pedagogical and describes the method in more detail than is typical of the research
literature on controlling chaotic systems. © 905 American Association of Physics Teachers.



II. THE CHAOTIC PENDULUM

The chaotic pendulum is a driven pendulum that is oper-
ated in a parameter regime where the motion is chaotic. In
dimensionless form its equation of motion may be written as

d’e 1de
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where £ is the angular displacement of the pendulum from
the vertical, g is a friction parameter, g is the forcing ampli-
tude, and wp, is the forcing frcqucncy (Small values of g
imply large damping.) Variation of the parameter set
(q.8,op) results in various types of dynamical behavior,
including chaos. The bifurcation diagram of Fig. 1 illustrates
some of this variety. In Fig. 1 the horizontal axis shows the
increase in the friction parameter g {actually a decrease in
the damping) and the vertical axis shows the value of the
angular velocity, w=d 8/dt, taken at the beginning of each of
many forcing cycles, after initial ransients have died away.
If the motion is periodic at the forcing frequency, then only
one point occurs repeatedly for that value of g. If only a few
points occur then the motion is periodic with a periodicity
indicated by the number of points. For example, a period-3
window occurs at about g=3.24. Such periodic orbits are
stable motions. If there are many points—a broad spectrum
of values of w—then the motion never repeats and is chaotic.
In this case, infinitely many periodic orbits are present, but
all are unstable. For this discussion we focus on the dynam-
ics associated with a parameter set (g=1.5, g=3.9, wp=2/3)
that lies well inside the chaotic zone, as indicated in the
bifurcation diagram.
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PENDULUH — BIFURCATION DIAGRAM
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Fig. 1. A bifurcation diagram for the driven pendulum. The angular velocity w of the penduium at the beginning of each forcing cycle is plotted for many
cycles at each value of the friction parameter g. In regions where there are many values of angular velocity, the motion is chaotic, The forcing parameter is
£=015 and the forcing frequency wy=2/3,
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Fig. 2. A Poincar¢ section for the pendulum when g=15, g=3.9, and wy=2/3. The values of angular velocity w and angle & are plotted at the beginning of
each forcing cyele, for 10 000 cycles, The solid square near (1.5, —0.5) contains an unstable fixed point, (See later text for explanation.)
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