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This article describes a unit on oscillations, determinism and chaos developed for calculus-based
introductory physics students as part of the laboratory-centered Workshop Physics curriculum.
Students begin by observing the motion of a simple pendulum with a paper clip bob with and
without magnets in its vicinity. This observation provides an introduction to the contrasting concepts
of Laplacian determinism and chaos. The rest of the unit involves a step-by-step study of a
pendulum system that becomes increasingly complex until it is driven into chaotic motion. The time
series graphs and phase plots of various configurations of the pendulum are created using a
computer data acquisition system with a rotary motion sensor. These experimental results are
compared to iterative spreadsheet models developed by students based on the nature of the torques
the system experiences. The suitability of the unit for introductory physics students in traditional
laboratory settings is discussed. 04 American Association of Physics Teachers.
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[. INTRODUCTION doing equation verification experiments as those who study
under the lecture method, they have considerably more ex-

Many contemporary fields of physics require a knowledgeyerience making observations, collecting data, and using
of quantum mechanics or relativity. For this reason mostomputer tools.

calculus-based introductory physics courses rarely give stu-

dents any real insight into emerging fields of research. Th _— -

fact that the field of nonlinear dynamics is almost entirelyeB' _The role of the Oscillations, Determinism and Chaos
classical in nature provides us with an opportunity to giveun't
students first-hand experience with an active field of contem- The unit onOscillations, Determinism and Chabsom-
porary physics research. For this reason, we have developgiketes a series of 15 mechanics units that cover kinematics,
a unit onOscillations, Determinism and Chdoas a culmi-  Newton’s laws, momentum, mechanical energy, rotational
nating experience for calculus-based introductory physicsnotion, and simple harmonic motion. Most of the laboratory
students as they complete the mechanics portion of theork in the final unit on chaos involves recording and ana-

Workshop Physics curriculufn® lyzing the motion of a physical pendulum that is made in-
) ] creasingly complex until it becomes chaaotic.
A. The Workshop Physics Project In previous units, students gain considerable experience

The Workshop Physics Project began in the fall of 198@With mathematical model!ng by using the dyna_mic gra_phing
capability of Excel® to fit their data to analytic functions

with a grant from the Fund for Improvement of Postsecond i dratic. | d si dathe ch .
ary Educatior(FIPSB. As a result of continued support from _(megr, qua rac?c, mversk(]a, an s:cnl#]so) edchaos unit del
both FIPSE and the National Science Foundation, curriculaf’troduces students to the use of the spreadsheet to mode
materials have been produced including an Activity Gdide, MO"€ Complex systems using the Euler method for numerical
computer hardware and software, and apparatus to help iﬁntegrgtlﬁn. itudednts alsg usébut do not develor]? g
structors teach introductory physics without lectures. ThePréadsheet-based second-order Runge—Kutta method to ex-
major objective of Workshop Physics courses is to help Stuplore other possible behaviors of their chaotic pendulum sys-

dents understand the basis of knowledge in physics as tem and to test the sensitivity of the system to initial condi-

subtle interplay between observations, experiments, definflons-

tions, mathematical descriptions, and the construction of Because an overarching goal of the chaos unit is to ex-

theories. To this end, students use the Activity Guide to mak lore the _viability_ of Laplacian d_eterminism, the unit serves
predictions and observations, do guided derivations, an oth a philosophical and theoretical capstone to the study of
|

learn to use flexible computer tools to develop mathematicalleWtonian mechanics.
models of phenomena.

Instead of spending time in lectures and separate labord. THE CHAOTIC PHYSICAL PENDULUM SYSTEM
tory sessions, students in calculus-based Workshop Physi
courses center their work on the Activity Guide. The four
modules of the Guide contain 28 units covering topics in The apparatus that students spend most of their time using
mechanics, thermodynamics, electricity and magnetism, and a physical pendulum consisting of an aluminum disk
nuclear physics. At Dickinson College students spend 6nounted on the low friction shaft of a rotary motion sensor.
hours a week in a laboratory environment, and are able tdhis sensor is a digital encoder that transmits up to 1440
complete 27 of these units in two semesters—approximatelipgic pulses per revolution to a digital interface. When a
1 unit each week. Although Workshop Physics studentsmall mass is bolted to the edge of the disk and displaced
spend an equivalent amount of time solving problems androm vertical equilibrium, the system becomes a physical

® The experimental apparatus
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Fig. 1. The basic physical pendulum with adjustable eddy damping. = Magnets - -
Paper
pendulum[Fig. 1(a)]. Adjustable eddy damping is added by Base
means of a small magnet attached to a threaded[Bait
1(b)]- Fig. 3. This paper clip pendulum bob is reasonably insensitive to initial

Students can modify the pendulum so that a stringgonditions if no magnets are present.
springs, and a driver motor are coupled to it via a small drive
wheel attached to the pendulum digkig. 2). For certain
combinations of the springs, disk mass, edge mass, ed
damping, and driver motor frequency, the pendulum beCJYI' THE INTRODUCTORY CHAOS UNIT

comes chaotic. The unit is designed to fit within the 2-hour sessions that

are typically used in Workshop Physics courses. Although it
requires about 8 hours of student time to complete, the first 2
hours of activities do not require access to a laboratory and
can be done independently.

Session One: An Introduction to Cha&udents are asked

B. Commercially available chaotic pendula

In 1989 Priscilla Laws, Desmond Penny, and Brock Miller
began developing the chaotic physical pendulum system at : e )
Di(?kinson Collloegg. We used a?oéry en%oder deveI)c/)ped pip read several pages of introductory material in which the
Robert Teese and Ronald Thornton and a data acquisitio pncept of a dynamical system is introduced. The following

system distributed by Vernier Software and Technofogy. quote by Pierre LaPlace is pr_esented. “If an intellect were to
After several years of testing in Workshop Physicsknow ... all the forces that animate nature and the conditions

courses, personnel at PASCO improved and adapted comp8‘i all the objects that compose her, and were capable of

nents of the Dickinson College apparatus for use with theirSUbjeCting these data to analysis, then this intellect would

own driver motor and data acquisition system. These comENcompass in a single formula the motions of the largest

ponents are available for the study of large angle oscillation20di€s in the universe as well as those of the smallest atom;
magnetic damping, driven harmonic motion, and chaoticand thae future as well as the past would be present before its
motion”® The PASCO pendulum apparatus, when used witfY€S:

a relatively low cost data acquisition systéddistributed by d Beca_\usle stlidentsf havE_JL:]sthco?plete% 6; study (t))f 5|tmple
either PASCO or Vernier Software and Technolpgy suit- tﬁ/namlfa Sys emi ordw 'f q etho.rcfgst N \t/yg(tan_otjec S.t'”
able for use with our chaos unit. e system are well understood, their first activity is to write

There are at least two other chaotic dynamical systemg1 short essay about the viability of using Newton’s laws to

that can be purchased, including the Klinger Torsionpredict the state of the universe assuming that the forces of

Penduluni and the Daedalon Chaotic pendul@nf. How- interaction between all the objects in the universe are known.
ever, the use of either of these systems in an introductor Next students are asked to imagine whether or not the

hysics laboratory would require a significant modification otion of the falling leaf in a closed bQX actin_g ir_1 the pres-
gf )(;ur curricular n>1/aterials 9 g ence of known forces would be predictable in light of the

following quote by Henri Poincare‘lt may happen that
small differences in the initial conditions produce very great
ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes

e impossible... .12
Ir’f _.ﬁ_—m_m._.l]l = The 1-hour videotape produced by NOVA in 1989 entitled
A [ T N~ “The Strange New Science of Chasisows many examples

—_ sm. ’ of chaotic systems in different fields of study and provides an

m"‘;“' il ol overview of the emerging techniques for studying chaotic
= alesdgid "“9"“‘""‘-""*‘*j systems? Students view this video and answer some basic

, . A P Sacki viaro question about it.

o e e el L i The session ends with students observing the sensitivity of

o the subsequent motions of a paper clip pendulum with and

Fig. 2. A string attached to springs and a driver motor is wrapped around é(V'thOUt_magr‘Ets presefiig. 3). .
drive wheel consisting of a smaller plastic disk attached to the physical Session Two: Large and Small Angle Pendulum Oscilla-

pendulum disk. tions In this session and the two that follow, students build
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Fig. 4. The physical pendulum is displaced by an angle of 135° and re-
leased. The oscillations take just under 2 minutes to die out.
15
and explore the deterministic and chaotic behavior of the 10 i I %
physical pendulum system shown in Figs. 1 and 2. They also _ 5 * "_" | d ‘,
keep track of the forces acting on the system and use these 2 * . "" .
forces to develop either analytical or iterative models. T 0 “' | | »
The session begins with a series of qualitative predictions w * »

and observations of the motion of the disk mounted onalow & -5 - .
friction bearing first without and then with various edge =<t . ,"
masses. Then students collect data using the rotary motion -10 | ‘ot
sensor and a computer data acquisition system. They also
create time series plots of the angular displacement of the -15
pendulum as well as phase plots of rotational velocity as a 0.0 0.5 1.0 1.5 2.0
function of the angular displacement. When students release Time (s)

an edge mass from an angle of about 135°, the resulting

oscillations take about two full minutes to die out as shownFig. 6. Alarge angle cycle of period 1.8 s from the Fig. 4 datp graph

in Fig. 4. compared to small angle 0fsci||_atio_ns Fhat oceur in the same ¢tm§0m_
Students predict how the motions of two different runs Ofgraph. The small angle oscillation is sinusoidal and has a shorter period.

data will compare if they carefully start the pendulum in

exactly the same way. They are not surprised to find that with ] . ) .

some practice graphs of two identical runs match each othédngle motions of their physical pendulum. At first, students

almost perfectly. At this point, students also are introduced t@'e asked to predict how the period of the physical pendulum

reconfiguring the data acquisition software to produce phasg@nd the shape of a single cycle of position versus time might

plots (rotational velocity versus angular positjonf their  differ at small and large amplitudes. To save time, portions of

matched data sets. The data acquisition software uses t@e data graphed in Fig. 4 are re-plotted by an instructor to

smoothed first derivative of the angle versus time data t¢nable students to compare the periods and describe how the

create the rotational velocity versus time data. The phase plghape of the time series graph for a single pendulum oscilla-

for one data set is shown in Fig. 5. tion at large amplitude differs from the graph of a small
Session Two ends with a series of activities designed t@mplitude oscillation(see Fig. 6. Students often are sur-

help students compare the characteristics of large and smdlrised that the period is longer at large amplitudes than at
small amplitudes and that the large amplitude angle versus

time shape is not sinusoidal. Students note that the peaks are
broader at the large angular displacements than the sinu-
soidal plot of the angular displacement at small angular dis-
placements.

Session Three: Using Iterations to Model the Motidhis
session begins by preparing students to model their own
large angle physical pendulum data, which are similar to the
data shown in Fig. 3. Toward the end of the session, students
add eddy damping to their pendulum system and then collect
additional data. At the end of the session they are able to
model their new data for the damped system by modifying
the force term in their spreadsheet motidscribed beloy
_ to take the velocity dependent eddy damping force into ac-
100 count. For various reasons this session turns out to be the

toughest one in the entire unit.
Fig. 5. Aphase plot for the physical pendulum for about 25 s of oscillations. Students are first asked to review the derivation of the

Note that the plot is nonelliptical at first and then becomes more elliptical adifferential .equation that desqribes Sma.” ang_le s_imp_le pen-
smaller angles. dulum motion. As an extension to their derivation in the

Rotational Velocity (deg's)

-100

0
Angular Position (deg)
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Constants: Edge Mass m = 1.00E-02 [kg]
Disk Mass M= 0143 [kg]
Disk Radius R = 5.00E-02 [m]

Rotational Inertia I = 204E-04 [kg-rrr“Z]
Time Step: Iteration Interval Ar= 0,050 [s]
Initial Conditions: | Angular Position = 2.250 [rad]
Rotational Velocity W= 0.600 [rad/s]

DATA ITERATIVE EQUATIONS

[rad] [rad] [radls] |[rad/s"2]
Time (s)| 0-data | 5-model| a-model| a-model LARGE “i';'_g;g a"ﬂ;g}gg'éug'fﬂgg';']“ MODEL
000 225 225 060 -18.72 20
0.05| 223 223 034 -18.97
0.10] 247| 2.47| -1.28] -19.88 g .
015 2.08| 208 -228 -2129] £
020 189 189 334 2286 §
0.25]  1.67| 1.66] 449 2398 = 00|
0.30] 1.39] 1.38] 568 2362 o
035 1.08] 1.04] .86 -20.70] &-1.0
040 067| 064 -790] 1439 S
045] _0.24] 0.21] 862 502 £.50
050 -0.19] -0.23] -8.87] 556 i
055| 062 -066] 859 1481 Wi
0.60] -1.01] -1.08] -7.85] 20.04 : : , ;
065 -1.35 -1.40] -B.81] 23.69 0.0 0.5 1.0 1.5
0.70] -163] -168] -562] 2392 Time (s)

Fig. 7. A spreadsheet showing an overlay graph of data points and a curve representing the theoretical relation between angular position areldyce for o
of a physical pendulum oscillating with an amplitude of about 135°.

previous unit on harmonic motion, we give students some To perform the iterative calculations, students begin by
hints that enable them to determine the differential equatiogubstituting the initial value of the angular positié{®) into
that describes the motion of the physical pendulum oscillatEq. (1) to determine the initial rotational acceleratiaf0).
ing with a large amplitude. They find that Next a small time intervaAt (such as 1/20th of a seconid

et grav mgRsin(4(t)) chosen and used in E(B) along with the calculated value of
a)=—"=—"=- (I— : (1) «(0) and the initial value of rotational velocity(0) to find a
new value of the rotational velocity(0+ At) at a timeAt
where later. Then the new value(0+ At) is used in Eq(4) to find
| =mR+iMR? (2)  a new value of the angular displacemeD+ At) at time

is the rotational inertia of a disk of maséand radiuRthat  At- This process is repeated many times to find updated
has an edge mass of masslocated a distanc® from the values of the rotational acceleration, rotational velocity, and
center of the disk. angular displacement. Once the spreadsheet is set up prop-
Because the differential equation for large angle motiorerly, the computer does all the iterative calculations and
cannot be easily solved analytically, we introduce students tgraphing.
a modified Euler methd8—an iterative numerical integra-  To minimize the errors associated with the Euler method,
tion scheme for using the equation of motion to predict thewe ask students to model their angle versus time data at a
rotational acce_leratlon, vglocny, and position of the pendutime when the pendulum’s angular displacement is a maxi-
lum as a function of timé> ~ mum so that the initial rotational velocity is close to zero.
Our modified Euler method involves a step through timegefore starting the modeling, students are advised that they
that starts with the initial values for the pendulum’s angulary st transform their angular displacement data from degrees
displacement and rotational velocity. This iterative metho o radians
involves the use of E¢1) and two additional equations de- gy |40 se a spreadsheet template that we provide them
rived from the definitions of rotational acceleration and Ve'(alon with much instructor and teaching assistant agiize
locity. The first additional equation is based on the definition 9 . . g R
create a model to their data like the one shown in Fiff 7.

of rotational acceleration a(t)=dw/dt~Aw/At) and is Adding magnetic damping forces to the physical pendulum

given by ) o
system:In the next part of the session, students position a
o(t+At)~o(t) + a(t)At. (3 damping magnet very close to the face of the aluminum disk
The second equation is based on the definition of rotationdP create significant eddy damping and a real time graph of
velocity (o(t)=d6#/dt~A #/At) and is given by angular position versus time for an initial angular position of
about 135°. Then students were shown how to add the term
O(t+AD~6(1) + o(t+ADAL. 4) 79M= —he to Eq. (1) (the torque equation used in the it-
Equationg3) and(4) are good approximations to the original erative calculations Adding this term and copying it down
differential equations for small enougkt. through the column in which it appears gives students instant
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Fig. 8. An overlay graph of data points and a curve representing the theo- :'g 5
retical relationship between angular position and time for the physical pen- & Fa
dulum oscillating in the presence of eddy damping. Data are shown by open = ‘
circles, the line represents the modified Euler model of the data. 8 -5
-10
results for their new model. By using the damping coefficient -4 2 g 9 d 2 4
b as an adjustable parameter, students can obtain an excellen. (rad)

fit to thelr data I_lke that ShO\,Nn In F_lg' 8. L Fig. 9. (a) Rotary motion sensor data for the angular displacement of a
Session Four: The Chaotic Physical Penduldmthis fi-  chaotic physical pendulum vs time is shown in the top graphphase plot

nal session students modify their pendulum so that a stringjepicting rotational velocity vs angular position for the first 30 s of motion
springs, and a driver motor are coupled to the disk and edge the same pendulum.
mass as depicted in Fig. 2.

Exploring the natural frequencies of the systeBtudents
are asked to observe the natural oscillation frequencies of thgio| yalues of the angular position and rotational velocity
apparatus when it is configured in different ways. These ob

X helo th d 4 whv th on b that it is impossible for them to recreate the initial conditions
servations help them understand why the system motion D&;ecrately enough to repeat a pattern on either a time series
comes chaotic when it is driven at certain frequencies. Stu

dents start by observing and determining the frequency o raph or a phase plot for more than a few seconds. A typical

i the disk with he ed dded “‘example of this sensitivity is shown in Fig. 10.
(r)nsc?\lleastl?Jr;] doerttr?e ilﬁflu\ggcguéft tgrc?ugs (';gizse da bye sp?;gljtg Using an iterative model of the chaotic pendulum motions:
wrapped around the drive whe@lig. 2. Next they configure tudents are led through a guided derivation of the four

h dulum by addi Il ed torques that act on the disk of the pendulum, including the
the system as a pendulum by adding a small edge mass 10, itational torque on the edge mass, the eddy damping
and measure the natural frequency of the pendulum witho

rque exerted on the aluminum disk by the magnet, the

the springs. Then students re-attach the springs to the driv% ring torques, and the torque exerted by the driver. We write
wheel of the pendulum and re-balance the system so thg. o torque as

springs are stretched equally when the mass is perche , , ,
straight up on the top of the disk at its unstable equilibrium ~ 7"'= 7984 7damping,. spring,. driver %)
point (Fig. 9).

Next, students measure the left and right equilibrium
anglesd, and 6g with respect to a vertical axis as shown in
Fig. 2. If the springs are properly balanced, the magnitudes T
of these two angles are essentially the same. Finally students ¢~ | 6)

measure the natural frequency of oscillation of the spring— h h ional inertia of th dulum is ai b
pendulum system when the edge mass has fallen to the rigﬁg ere the rotational inertia of the pendulum is given by Eq.

of its highest possible position and again when it has fallert2): The notation gsed for the quantities needed in the model

to the left. are symmanzed in Table I. It can be shown that the torques
Driving the system at natural frequencieStudents are '€ given by

asked to set the drive frequency of their electric motor to one

of the natural frequencies they have measured, balance the

springs so the edge mass points straight up, turn on the mo 40

tor, and collect data for the angular displacement versus time 39 \

The rotational acceleration is given by the net torque divided
by the rotational inertia of the physical pendulum, or

net

Students find that whenever the motor is near a natural fre-fgf fjg
guency, the system settles rather quickly into a stable oscil-3 0.0

lation mode. -1.0
Driving the system chaotidn the next activity students 2

set the drive frequencies so that they are different from any .40
of the natural frequencies and see if they can achieve a situ 0.0 05 1.0 1.5 20 25
ation in which there is an irregular pattern in the time series t(s)

graph d_epu;ung the é‘.ngl;llla;r p(?]SItI(_)n VeI'Sl_JS time. r']o‘ tyglcﬁlFig. 10. An overlay time series graph of the first few seconds of two dif-
pattern i1s shown in Fig. or the time series graph and t ferent runs of chaotic physical pendulum. Both sets of data are recorded for

phase plot Of the ChaOtiC.phVSical pendulum system. similar initial conditions. Note that the two motions begin to diverge from
Students find that their systems are so sensitive to theach other within seconds.

Angl
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Table I. Summary of notation. (a)

Typical 6
Symbol Name value 4
m Edge mass 0.010 kg
R Disk radius 0.050 m S 2
M Disk mass 0.143 kg g 0 }
g Gravitational constant 9.8 ntls s
0 Angular displacement of Variable -2 + \
the edge mass from (rad)
upward vertical with -4 T
positive left -6
displacement
) Rotational velocity of Variable 0 10 20
the edge mass (rad/9 t(S)
b Magnetic damping 6.0x10°°
coefficient ((m9)/rad)
r Axle radius 0.025m) (b) v (rad’s)
Ay Driver amplitude 0.032m) 10 -
Ty Driver period 1.56(s)
t Current time Variable

(s
¢ Phase of the driver 0.0 (rad) ﬂ 0 (rad)
(assumed to be zero in

N
the model w

[en]

5 5
. -10 L
I¥=mRgsin g, (7)
dampin Fig. 11. Samples ofa) time series andb) phase plot graphs generated by a
TP — b, (8) second-order Runge—Kutta solution of the possible motion of a chaotic
' physical pendulum. The constants are similar to those used to obtain the Fig.
7SPING= — 2k 29, (9 10 data.
79Ve'= L krAq cod (27/ Tg)t+ ¢]. (10)

In principle, students can now develop an iterative spread- Finally, students are asked again to comment briefly on the
sheet model to describe the motion of the chaotic pendulungiability of Laplacian determinism. In general, the student
system. However, developing this model requires manyomments on determinism both before and after they work
hours of careful work which is not very instructive. In addi- on the unit are disappointing. We expected students to be
tion, the pendulum often obtains high rotational velocities asurprised that the state of a chaotic system is unpredictable
it whips back and forth. This motion means that the Eulereven if the torques acting on it are known. We hoped that
method students had used for numerical integration will acthey could speculate about what would happen in a nonquan-
cumulate integration errors unless the time steps are exum world if they could measure the initial state of the sys-
tremely small. For this reason the author used the secondem to infinite precision. Instead, students often commented
order Runge—Kutta integratidn. that Laplacian determinism is not feasible because of quan-

Students use the Runge—Kutta spreadshesexplore the  tum effects.
theoretical behavior of their pendulum. In particular, they are The question posed at the beginning and and revisited at
asked to run the model and devise a method for describinthe end of the unit needs to be worded more carefully. For
the sensitivity of its output to small changes in the initial example, students might be asked initially: Suppose that you
conditions (that is, the angular displacement and the rota-could know the mass, shape, position and velocity of every
tional velocity at timet=0). A sample screen shot of the object in the universe to eight significant figures, how the
output is shown in Fig. 11. Students observe that the timéorces and torques between them depend on these four quan-
series graphs and phase plots are similar to those that théiies, and that the universe is governed only by Newton’s
found. They also find that the motion of the theoretical sysdaws of motion. How well could you predict the future?” The
tem also is very sensitive to the initial values of angle andinal question might be changed to the following: Based on
rotational velocity. what you have learned by using Newton’s laws of motion

Revisiting of the concept of determinisifter finishing  and the known torques to model and predict the motion of
their work with their simulations of chaotic motion, the stu- your chaotic pendulum, what changes, if any, would you
dents are asked to read and consider the meaning of a shanake to your answer to the first questibh?
statement that summarizes the conditions for chaotic motion:

(a) It takes three or more independent dynamical variables tg; coNCLUSIONS

describe the state of the system at any given time (nthe

equation describing the net force or torque on the system Many of the topics that students need to understand and to
must have nonlinear term that couples several of thexplore the behavior of the pendulum are covered in previ-
variablest® These two statements do not require students t@us units. The required measurements are similar to those
revise their concept of determinism. used in many Workshop Physics activities on mechanics.
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Certain aspects of the sample activities used from the Chadscluding Paul Stokstad, Jon Hanks, and Ann Hanks, im-
Unit are typical of Workshop Physics sessions in that theyproved and tested the apparatus prior to its commercial dis-
demonstrate the interplay between predictions, observationgjbution. Patrick Cooney helped adapt the Runge—Kutta in-
experiments, and analysis, using both computer data acquiegration method for the chaotic physical pendulum. Last but
sition software and spreadsheet tools. not least | am grateful to several of my colleagues at Dick-
In spite of the overlap in the approach taken in the Chaoghson College who have helped with the teaching of Unit 15
Unit with others that preceded it, the relative complexity ofor have used the apparatus in upper level courses. They in-
the pendulum system and the introduction of the iterativecjude Hans Pfister, Robert Boyle, and David Jackson. Their

spreadsheet modeling are still a stretch for most studentagdvice on how to improve the unit has been invaluable.
Nevertheless, we found that the Chaos Unit is both vexing

and exciting to our students. Overall, we believe that ouragiectronic mail: lawsp@dickinson.edu

attempt to expose introductory physics students to profoundp. W. Laws and P. J. Cooney, “Workshop Physics: A sample class on

aspects of contemporary physics is well worth the effort. oscillations, determinism and chaosProceedings of the International
Adapting this unit to the laboratory portion of more tradi- Conference on Undergraduate Physics EducafiaiP Conf. Proc.399,

tional physics courses would require some modification. BUtzgS?/&liZ\?v]s' “Calculus-based physics without lectures,” Phys. Toddy

the physics concepts that students need to understand th?iz) '24_29’(199]). ' '

behavior on the chaotic pendulum are covered in the lecturep:/physics.dickinson.edwp. web/wphomepage.htril

portion of many calculus-based introductory physics courses?p. w. Laws Workshop Physics Activity Guidblodules 1-4(Wiley, New

Students would need to have prior experience in earlier labo-York, 1997.

ratory sessions with computer data acquisition software andReference 4, Module 2, Unit 15. -

be exposed to the process of fitting their data to analytical’Verier Software and Technology, 13979 SW Millikan Way, Beaverton,

functions using spreadsheets or other software tools. In thi$§§sgc@0i62180816 I?QM'VS[%G“EOQQWMe CA 957477100 4

case, this unit could be adapted for use in the last three or ’ ’ p ‘

. . .pasco.corn See PASCO 2003 Catalog, p. 174.
four laboratory pe”OdS at the end of a mechanics laborator)ﬁl A. Blackburn and G. L. Baker, “A comparison of commercial chaotic
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