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This article describes a unit on oscillations, determinism and chaos developed for calculus-based
introductory physics students as part of the laboratory-centered Workshop Physics curriculum.
Students begin by observing the motion of a simple pendulum with a paper clip bob with and
without magnets in its vicinity. This observation provides an introduction to the contrasting concepts
of Laplacian determinism and chaos. The rest of the unit involves a step-by-step study of a
pendulum system that becomes increasingly complex until it is driven into chaotic motion. The time
series graphs and phase plots of various configurations of the pendulum are created using a
computer data acquisition system with a rotary motion sensor. These experimental results are
compared to iterative spreadsheet models developed by students based on the nature of the torques
the system experiences. The suitability of the unit for introductory physics students in traditional
laboratory settings is discussed. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Many contemporary fields of physics require a knowled
of quantum mechanics or relativity. For this reason m
calculus-based introductory physics courses rarely give
dents any real insight into emerging fields of research. T
fact that the field of nonlinear dynamics is almost entire
classical in nature provides us with an opportunity to g
students first-hand experience with an active field of conte
porary physics research. For this reason, we have devel
a unit onOscillations, Determinism and Chaos1 as a culmi-
nating experience for calculus-based introductory phys
students as they complete the mechanics portion of
Workshop Physics curriculum.2,3

A. The Workshop Physics Project

The Workshop Physics Project began in the fall of 19
with a grant from the Fund for Improvement of Postseco
ary Education~FIPSE!. As a result of continued support from
both FIPSE and the National Science Foundation, curric
materials have been produced including an Activity Guid4

computer hardware and software, and apparatus to help
structors teach introductory physics without lectures. T
major objective of Workshop Physics courses is to help s
dents understand the basis of knowledge in physics a
subtle interplay between observations, experiments, de
tions, mathematical descriptions, and the construction
theories. To this end, students use the Activity Guide to m
predictions and observations, do guided derivations,
learn to use flexible computer tools to develop mathemat
models of phenomena.

Instead of spending time in lectures and separate lab
tory sessions, students in calculus-based Workshop Phy
courses center their work on the Activity Guide. The fo
modules of the Guide contain 28 units covering topics
mechanics, thermodynamics, electricity and magnetism,
nuclear physics. At Dickinson College students spend
hours a week in a laboratory environment, and are able
complete 27 of these units in two semesters—approxima
1 unit each week. Although Workshop Physics stude
spend an equivalent amount of time solving problems
446 Am. J. Phys.72 ~4!, April 2004 http://aapt.org/ajp
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doing equation verification experiments as those who st
under the lecture method, they have considerably more
perience making observations, collecting data, and us
computer tools.

B. The role of the Oscillations, Determinism and Chaos
unit

The unit onOscillations, Determinism and Chaos5 com-
pletes a series of 15 mechanics units that cover kinema
Newton’s laws, momentum, mechanical energy, rotatio
motion, and simple harmonic motion. Most of the laborato
work in the final unit on chaos involves recording and an
lyzing the motion of a physical pendulum that is made
creasingly complex until it becomes chaotic.

In previous units, students gain considerable experie
with mathematical modeling by using the dynamic graph
capability of Excel® to fit their data to analytic function
~linear, quadratic, inverse, and sinusoidal!. The chaos unit
introduces students to the use of the spreadsheet to m
more complex systems using the Euler method for numer
integration. Students also use~but do not develop! a
spreadsheet-based second-order Runge–Kutta method t
plore other possible behaviors of their chaotic pendulum s
tem and to test the sensitivity of the system to initial con
tions.

Because an overarching goal of the chaos unit is to
plore the viability of Laplacian determinism, the unit serv
both a philosophical and theoretical capstone to the stud
Newtonian mechanics.

II. THE CHAOTIC PHYSICAL PENDULUM SYSTEM

A. The experimental apparatus

The apparatus that students spend most of their time u
is a physical pendulum consisting of an aluminum d
mounted on the low friction shaft of a rotary motion sens
This sensor is a digital encoder that transmits up to 14
logic pulses per revolution to a digital interface. When
small mass is bolted to the edge of the disk and displa
from vertical equilibrium, the system becomes a physi
446© 2004 American Association of Physics Teachers
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pendulum@Fig. 1~a!#. Adjustable eddy damping is added b
means of a small magnet attached to a threaded bolt@Fig.
1~b!#.

Students can modify the pendulum so that a stri
springs, and a driver motor are coupled to it via a small dr
wheel attached to the pendulum disk~Fig. 2!. For certain
combinations of the springs, disk mass, edge mass, e
damping, and driver motor frequency, the pendulum
comes chaotic.

B. Commercially available chaotic pendula

In 1989 Priscilla Laws, Desmond Penny, and Brock Mil
began developing the chaotic physical pendulum system
Dickinson College. We used a rotary encoder developed
Robert Teese and Ronald Thornton and a data acquis
system distributed by Vernier Software and Technology.6

After several years of testing in Workshop Phys
courses, personnel at PASCO improved and adapted com
nents of the Dickinson College apparatus for use with th
own driver motor and data acquisition system. These co
ponents are available for the study of large angle oscillatio
magnetic damping, driven harmonic motion, and chao
motion.7,8 The PASCO pendulum apparatus, when used w
a relatively low cost data acquisition system~distributed by
either PASCO or Vernier Software and Technology!, is suit-
able for use with our chaos unit.

There are at least two other chaotic dynamical syste
that can be purchased, including the Klinger Torsi
Pendulum9 and the Daedalon Chaotic pendulum.8,10 How-
ever, the use of either of these systems in an introduc
physics laboratory would require a significant modificati
of our curricular materials.

Fig. 1. The basic physical pendulum with adjustable eddy damping

Fig. 2. A string attached to springs and a driver motor is wrapped arou
drive wheel consisting of a smaller plastic disk attached to the phys
pendulum disk.
447 Am. J. Phys., Vol. 72, No. 4, April 2004
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III. THE INTRODUCTORY CHAOS UNIT

The unit is designed to fit within the 2-hour sessions t
are typically used in Workshop Physics courses. Althoug
requires about 8 hours of student time to complete, the fir
hours of activities do not require access to a laboratory
can be done independently.

Session One: An Introduction to Chaos. Students are aske
to read several pages of introductory material in which
concept of a dynamical system is introduced. The followi
quote by Pierre LaPlace is presented. ‘‘If an intellect were
know ... all the forces that animate nature and the conditi
of all the objects that compose her, and were capable
subjecting these data to analysis, then this intellect wo
encompass in a single formula the motions of the larg
bodies in the universe as well as those of the smallest at
and the future as well as the past would be present befor
eyes.’’11

Because students have just completed a study of sim
dynamical systems for which the forces between objects
the system are well understood, their first activity is to wr
a short essay about the viability of using Newton’s laws
predict the state of the universe assuming that the force
interaction between all the objects in the universe are kno

Next students are asked to imagine whether or not
motion of the falling leaf in a closed box acting in the pre
ence of known forces would be predictable in light of t
following quote by Henri Poincare´: ‘‘It may happen that
small differences in the initial conditions produce very gre
ones in the final phenomena. A small error in the former w
produce an enormous error in the latter. Prediction beco
impossible... .’’12

The 1-hour videotape produced by NOVA in 1989 entitl
‘‘ The Strange New Science of Chaos’’ shows many examples
of chaotic systems in different fields of study and provides
overview of the emerging techniques for studying chao
systems.13 Students view this video and answer some ba
question about it.

The session ends with students observing the sensitivit
the subsequent motions of a paper clip pendulum with
without magnets present~Fig. 3!.

Session Two: Large and Small Angle Pendulum Osci
tions. In this session and the two that follow, students bu

a
al

Fig. 3. This paper clip pendulum bob is reasonably insensitive to ini
conditions if no magnets are present.
447Priscilla W. Laws
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and explore the deterministic and chaotic behavior of
physical pendulum system shown in Figs. 1 and 2. They a
keep track of the forces acting on the system and use t
forces to develop either analytical or iterative models.

The session begins with a series of qualitative predicti
and observations of the motion of the disk mounted on a
friction bearing first without and then with various edg
masses. Then students collect data using the rotary mo
sensor and a computer data acquisition system. They
create time series plots of the angular displacement of
pendulum as well as phase plots of rotational velocity a
function of the angular displacement. When students rele
an edge mass from an angle of about 135°, the resul
oscillations take about two full minutes to die out as sho
in Fig. 4.

Students predict how the motions of two different runs
data will compare if they carefully start the pendulum
exactly the same way. They are not surprised to find that w
some practice graphs of two identical runs match each o
almost perfectly. At this point, students also are introduced
reconfiguring the data acquisition software to produce ph
plots ~rotational velocity versus angular position! of their
matched data sets. The data acquisition software us
smoothed first derivative of the angle versus time data
create the rotational velocity versus time data. The phase
for one data set is shown in Fig. 5.

Session Two ends with a series of activities designed
help students compare the characteristics of large and s

Fig. 4. The physical pendulum is displaced by an angle of 135° and
leased. The oscillations take just under 2 minutes to die out.

Fig. 5. A phase plot for the physical pendulum for about 25 s of oscillatio
Note that the plot is nonelliptical at first and then becomes more elliptica
smaller angles.
448 Am. J. Phys., Vol. 72, No. 4, April 2004
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angle motions of their physical pendulum. At first, stude
are asked to predict how the period of the physical pendu
and the shape of a single cycle of position versus time m
differ at small and large amplitudes. To save time, portions
the data graphed in Fig. 4 are re-plotted by an instructo
enable students to compare the periods and describe how
shape of the time series graph for a single pendulum osc
tion at large amplitude differs from the graph of a sm
amplitude oscillation~see Fig. 6!. Students often are sur
prised that the period is longer at large amplitudes than
small amplitudes and that the large amplitude angle ver
time shape is not sinusoidal. Students note that the peak
broader at the large angular displacements than the s
soidal plot of the angular displacement at small angular d
placements.

Session Three: Using Iterations to Model the Motion. This
session begins by preparing students to model their o
large angle physical pendulum data, which are similar to
data shown in Fig. 3. Toward the end of the session, stud
add eddy damping to their pendulum system and then co
additional data. At the end of the session they are able
model their new data for the damped system by modify
the force term in their spreadsheet model~described below!
to take the velocity dependent eddy damping force into
count. For various reasons this session turns out to be
toughest one in the entire unit.

Students are first asked to review the derivation of
differential equation that describes small angle simple p
dulum motion. As an extension to their derivation in th

e-

.
t

Fig. 6. A large angle cycle of period 1.8 s from the Fig. 4 data~top graph!
compared to small angle oscillations that occur in the same time~bottom
graph!. The small angle oscillation is sinusoidal and has a shorter perio
448Priscilla W. Laws
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Fig. 7. A spreadsheet showing an overlay graph of data points and a curve representing the theoretical relation between angular position and time fne cycle
of a physical pendulum oscillating with an amplitude of about 135°.
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previous unit on harmonic motion, we give students so
hints that enable them to determine the differential equa
that describes the motion of the physical pendulum oscil
ing with a large amplitude. They find that

a~ t !5
tnet

I
5

tgrav

I
52S mgRsin~u~ t !!

I D , ~1!

where

I 5mR21 1
2MR2 ~2!

is the rotational inertia of a disk of massM and radiusR that
has an edge mass of massm located a distanceR from the
center of the disk.

Because the differential equation for large angle mot
cannot be easily solved analytically, we introduce student
a modified Euler method14—an iterative numerical integra
tion scheme for using the equation of motion to predict
rotational acceleration, velocity, and position of the pen
lum as a function of time.15

Our modified Euler method involves a step through tim
that starts with the initial values for the pendulum’s angu
displacement and rotational velocity. This iterative meth
involves the use of Eq.~1! and two additional equations de
rived from the definitions of rotational acceleration and v
locity. The first additional equation is based on the definit
of rotational acceleration (a(t)[dv/dt'Dv/Dt) and is
given by

v~ t1Dt !'v~ t !1a~ t !Dt. ~3!

The second equation is based on the definition of rotatio
velocity (v(t)[du/dt'Du/Dt) and is given by

u~ t1Dt !'u~ t !1v~ t1Dt !Dt. ~4!

Equations~3! and~4! are good approximations to the origin
differential equations for small enoughDt.
449 Am. J. Phys., Vol. 72, No. 4, April 2004
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To perform the iterative calculations, students begin
substituting the initial value of the angular positionu~0! into
Eq. ~1! to determine the initial rotational accelerationa~0!.
Next a small time intervalDt ~such as 1/20th of a second! is
chosen and used in Eq.~3! along with the calculated value o
a~0! and the initial value of rotational velocityv~0! to find a
new value of the rotational velocityv(01Dt) at a timeDt
later. Then the new valuev(01Dt) is used in Eq.~4! to find
a new value of the angular displacementu(01Dt) at time
Dt. This process is repeated many times to find upda
values of the rotational acceleration, rotational velocity, a
angular displacement. Once the spreadsheet is set up p
erly, the computer does all the iterative calculations a
graphing.

To minimize the errors associated with the Euler meth
we ask students to model their angle versus time data
time when the pendulum’s angular displacement is a ma
mum so that the initial rotational velocity is close to zer
Before starting the modeling, students are advised that t
must transform their angular displacement data from deg
to radians.

Students use a spreadsheet template that we provide
~along with much instructor and teaching assistant advice! to
create a model to their data like the one shown in Fig. 716

Adding magnetic damping forces to the physical pendu
system:In the next part of the session, students position
damping magnet very close to the face of the aluminum d
to create significant eddy damping and a real time graph
angular position versus time for an initial angular position
about 135°. Then students were shown how to add the t
tdamp52bv to Eq. ~1! ~the torque equation used in the i
erative calculations!. Adding this term and copying it down
through the column in which it appears gives students ins
449Priscilla W. Laws
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results for their new model. By using the damping coefficie
b as an adjustable parameter, students can obtain an exc
fit to their data like that shown in Fig. 8.

Session Four: The Chaotic Physical Pendulum. In this fi-
nal session students modify their pendulum so that a str
springs, and a driver motor are coupled to the disk and e
mass as depicted in Fig. 2.

Exploring the natural frequencies of the system:Students
are asked to observe the natural oscillation frequencies o
apparatus when it is configured in different ways. These
servations help them understand why the system motion
comes chaotic when it is driven at certain frequencies. S
dents start by observing and determining the frequency
oscillation of the disk without the edge mass added a
moves under the influence of torques caused by spr
wrapped around the drive wheel~Fig. 2!. Next they configure
the system as a pendulum by adding a small edge mass
and measure the natural frequency of the pendulum with
the springs. Then students re-attach the springs to the d
wheel of the pendulum and re-balance the system so
springs are stretched equally when the mass is perc
straight up on the top of the disk at its unstable equilibriu
point ~Fig. 9!.

Next, students measure the left and right equilibriu
anglesuL anduR with respect to a vertical axis as shown
Fig. 2. If the springs are properly balanced, the magnitu
of these two angles are essentially the same. Finally stud
measure the natural frequency of oscillation of the sprin
pendulum system when the edge mass has fallen to the
of its highest possible position and again when it has fa
to the left.

Driving the system at natural frequencies:Students are
asked to set the drive frequency of their electric motor to o
of the natural frequencies they have measured, balance
springs so the edge mass points straight up, turn on the
tor, and collect data for the angular displacement versus t
Students find that whenever the motor is near a natural
quency, the system settles rather quickly into a stable os
lation mode.

Driving the system chaotic:In the next activity students
set the drive frequencies so that they are different from
of the natural frequencies and see if they can achieve a
ation in which there is an irregular pattern in the time ser
graph depicting the angular position versus time. A typi
pattern is shown in Fig. 4 for the time series graph and
phase plot of the chaotic physical pendulum system.

Students find that their systems are so sensitive to

Fig. 8. An overlay graph of data points and a curve representing the t
retical relationship between angular position and time for the physical p
dulum oscillating in the presence of eddy damping. Data are shown by o
circles, the line represents the modified Euler model of the data.
450 Am. J. Phys., Vol. 72, No. 4, April 2004
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initial values of the angular position and rotational veloc
that it is impossible for them to recreate the initial conditio
accurately enough to repeat a pattern on either a time se
graph or a phase plot for more than a few seconds. A typ
example of this sensitivity is shown in Fig. 10.

Using an iterative model of the chaotic pendulum motio
Students are led through a guided derivation of the f
torques that act on the disk of the pendulum, including
gravitational torque on the edge mass, the eddy damp
torque exerted on the aluminum disk by the magnet,
spring torques, and the torque exerted by the driver. We w
the net torque as

tnet5tgrav1tdamping1tspring1tdriver. ~5!

The rotational acceleration is given by the net torque divid
by the rotational inertia of the physical pendulum, or

a5
tnet

I
, ~6!

where the rotational inertia of the pendulum is given by E
~2!. The notation used for the quantities needed in the mo
are summarized in Table I. It can be shown that the torq
are given by

o-
n-
en

Fig. 9. ~a! Rotary motion sensor data for the angular displacement o
chaotic physical pendulum vs time is shown in the top graph;~b! phase plot
depicting rotational velocity vs angular position for the first 30 s of moti
of the same pendulum.

Fig. 10. An overlay time series graph of the first few seconds of two d
ferent runs of chaotic physical pendulum. Both sets of data are recorde
similar initial conditions. Note that the two motions begin to diverge fro
each other within seconds.
450Priscilla W. Laws
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Fig.
tgrav5mRgsinu, ~7!

tdamping52bv, ~8!

tspring522kr2u, ~9!

tdriver51krAd cos@~2p/Td!t1f#. ~10!

In principle, students can now develop an iterative spre
sheet model to describe the motion of the chaotic pendu
system. However, developing this model requires ma
hours of careful work which is not very instructive. In add
tion, the pendulum often obtains high rotational velocities
it whips back and forth. This motion means that the Eu
method students had used for numerical integration will
cumulate integration errors unless the time steps are
tremely small. For this reason the author used the seco
order Runge–Kutta integration.17

Students use the Runge–Kutta spreadsheet16 to explore the
theoretical behavior of their pendulum. In particular, they
asked to run the model and devise a method for describ
the sensitivity of its output to small changes in the init
conditions ~that is, the angular displacement and the ro
tional velocity at timet50). A sample screen shot of th
output is shown in Fig. 11. Students observe that the t
series graphs and phase plots are similar to those that
found. They also find that the motion of the theoretical s
tem also is very sensitive to the initial values of angle a
rotational velocity.

Revisiting of the concept of determinism. After finishing
their work with their simulations of chaotic motion, the st
dents are asked to read and consider the meaning of a
statement that summarizes the conditions for chaotic mot
~a! It takes three or more independent dynamical variable
describe the state of the system at any given time, and~b! the
equation describing the net force or torque on the sys
must have nonlinear term that couples several of
variables.18 These two statements do not require student
revise their concept of determinism.

Table I. Summary of notation.

Symbol Name
Typical
value

m Edge mass 0.010 kg
R Disk radius 0.050 m
M Disk mass 0.143 kg
g Gravitational constant 9.8 m/s2

u Angular displacement of
the edge mass from
upward vertical with
positive left
displacement

Variable
~rad!

v Rotational velocity of
the edge mass

Variable
~rad/s!

b Magnetic damping
coefficient

6.031025

~~ms!/rad!
r Axle radius 0.025~m!
Ad Driver amplitude 0.032~m!
Td Driver period 1.56~s!
t Current time Variable

~s!
f Phase of the driver

~assumed to be zero in
the model!

0.0 ~rad!
451 Am. J. Phys., Vol. 72, No. 4, April 2004
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Finally, students are asked again to comment briefly on
viability of Laplacian determinism. In general, the stude
comments on determinism both before and after they w
on the unit are disappointing. We expected students to
surprised that the state of a chaotic system is unpredict
even if the torques acting on it are known. We hoped t
they could speculate about what would happen in a nonqu
tum world if they could measure the initial state of the sy
tem to infinite precision. Instead, students often commen
that Laplacian determinism is not feasible because of qu
tum effects.

The question posed at the beginning and and revisite
the end of the unit needs to be worded more carefully.
example, students might be asked initially: Suppose that
could know the mass, shape, position and velocity of ev
object in the universe to eight significant figures, how t
forces and torques between them depend on these four q
tities, and that the universe is governed only by Newto
laws of motion. How well could you predict the future?’’ Th
final question might be changed to the following: Based
what you have learned by using Newton’s laws of moti
and the known torques to model and predict the motion
your chaotic pendulum, what changes, if any, would y
make to your answer to the first question?19

IV. CONCLUSIONS

Many of the topics that students need to understand an
explore the behavior of the pendulum are covered in pre
ous units. The required measurements are similar to th
used in many Workshop Physics activities on mechan

Fig. 11. Samples of~a! time series and~b! phase plot graphs generated by
second-order Runge–Kutta solution of the possible motion of a cha
physical pendulum. The constants are similar to those used to obtain the
10 data.
451Priscilla W. Laws
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Certain aspects of the sample activities used from the Ch
Unit are typical of Workshop Physics sessions in that th
demonstrate the interplay between predictions, observati
experiments, and analysis, using both computer data ac
sition software and spreadsheet tools.

In spite of the overlap in the approach taken in the Ch
Unit with others that preceded it, the relative complexity
the pendulum system and the introduction of the iterat
spreadsheet modeling are still a stretch for most stude
Nevertheless, we found that the Chaos Unit is both vex
and exciting to our students. Overall, we believe that
attempt to expose introductory physics students to profo
aspects of contemporary physics is well worth the effort.

Adapting this unit to the laboratory portion of more trad
tional physics courses would require some modification.
the physics concepts that students need to understand
behavior on the chaotic pendulum are covered in the lec
portion of many calculus-based introductory physics cours
Students would need to have prior experience in earlier la
ratory sessions with computer data acquisition software
be exposed to the process of fitting their data to analyt
functions using spreadsheets or other software tools. In
case, this unit could be adapted for use in the last thre
four laboratory periods at the end of a mechanics labora
sequence.

In this introductory treatment of chaotic dynamics, we
not attempt to find the Lyapunov exponents needed to ve
that the pendulum motions are truly chaotic. In addition,
do not introduce students to the concept of the Poincare´ sec-
tion. However, if a more sophisticated data acquisition s
tem is used, these topics can be introduced in an adva
laboratory course. For example, Robert DeSerio has de
oped and improved the PASCO Chaotic Physical Pendu
and has reported on the results of a rigorous experime
investigation of his system including three-dimension
phase space data, the acquisition of Poincare´ sections for
almost all drive phases, and the calculation of Lyapunov
ponents for several chaotic system configurations.20
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or have used the apparatus in upper level courses. The
clude Hans Pfister, Robert Boyle, and David Jackson. Th
advice on how to improve the unit has been invaluable.
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