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Phase diffusion in a chaotic pendulum
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The rate of expansion of the phase coordinate for a harmonically driven pendulum is considered. The
mean-squared displacement is found to grow as a linear function of time during chaotic motion, indicating
deterministic diffusion. The diffusion coefficient can be significantly influenced by the proximity of a window
containing a periodic solution. We find that diffusion associated with intermittent chaos can be described in
terms of an interleaving of the diffusion properties of the separate modes taking part in the intermittency.

PACS number(s): 05.45.+b, 74.40.+k

INTRODUCTION

The simple pendulum with velocity-dependent damping
and harmonic forcing has emerged as one of a select group
of model systems commonly employed in the investigation
of chaotic dynamics [1]. Motion of the pendulum mass about
the pivot can be viewed as an evolving trajectory in the
phase plane (6, ). When the physical parameters of the sys-
tem are chosen so as to result in chaotic behavior, the long-
time evolution of the phase space coordinate # may exhibit
expansion properties characteristic of classical diffusion—a
mean-squared amplitude that depends linearly on time. Such
deterministic diffusion is of course intimately tied to the na-
ture of the chaotic state from which it emerges —the process
is not propelled by any stochastic forces. The particulars of
this behavior are the issues of interest here.

Publications on the topic of chaos-induced diffusion have
appeared mainly within the past decade. Most of this
work has been based on the climbing-sine map
X, 1=x,— psin(2mx,) [2-5], although circle maps [6], logis-
tic maps [7], and piecewise linear maps [8,9] were also em-
ployed. Geisel et al. [10] analyzed the motion of a particle in
a two-dimensional “‘egg carton” potential, finding diffusive
behavior.

Deviations from linearity, such that the mean squared dis-
placement is proportional to ¢” with y# 1, are hallmarks of
what is termed anomalous diffusion. The relationship be-
tween anomalous deterministic diffusion and intermittent
chaos has been explored recently by a number of authors
[11-18] who have mostly focused on iterated maps.

While it may be convenient and even appealing to utilize
circle maps, sine maps, logistic maps, etc., as starting points
in the theoretical attack on various problems in chaos, nev-
ertheless the nonlinear physical world remains essentially
continuous in time and somewhat more complex, albeit some
two-dimensional maps have been demonstrated to model
analogs of three-dimensional time continuous systems [19].
In the spirit of returning to these realities, we consider here
the manifestation of deterministic diffusion in a driven pen-
dulum. This investigation derives additional motivation from
the well known isomorphism of the driven pendulum to cur-
rent biased Josephson junctions [20-22].
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THEORY

A pendulum is taken to consist of a mass m located at a
distance / from a pivot and oriented at an angle 6 with
respect to the vertical. The total moment of inertia of the
complete system, produced by m together with any other
corotating components, is /. Let b be the coefficient of
velocity-dependent friction. Then the equation of motion is

1d20+bd0+ /sin(0) =T 'si 1
Tz 7 Tms’ sin( #) =T'sin( w?), (1)

where I' and o are the amplitude and frequency of the ap-
plied ac torque. It is conventional practice to normalize time
to units of the reciprocal of the small amplitude natural fre-
quency wy=+\mg//1, employing overdots to signify dimen-
sionless time derivatives, and to express torque in units of
mg/ . Then (1) becomes

6+1
Qo

6+ sin( ) = esin(Q7), (2)

from which it is clear that there are in reality only three
independent (dimensionless) defining parameters for the
driven pendulum: they are Q=\mg/l/b, e=T/(mgt),
and )= w/w,.

It is well known [1,21-25] that chaotic motion for the
pendulum is easily achieved and that the zones of chaos in
the three-dimensional state space (Q,€,{)) form rather com-
plex structures. In point of fact, the very extent of this intri-
cately divided state space creates practical problems for any
study of particular aspects of chaos in this system. That is,
where should the investigation be localized? For this study,
we settled on drive parameter values, €=0.78 and
=0.62, although the results to be discussed are not in any
fundamental way tied to these exact numbers, and simula-
tions with other values revealed qualitatively similar behav-
ior. The normalized damping parameter Q was then allowed
to vary over the range 3.0=< Q0 =7.0 This placed the operating
point somewhere near the lower region of Octavio’s Fig. 4
[22], observing that in his notation B.=Q? p=e¢, and
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FIG. 1. Phase plane orbit for a chaotic state with
€=0.78,{2=0.62,and Q=15.14. As time proceeds, the outer limits
of the orbit expand to the left and right, as suggested by the arrows.
Angular velocity is measured in radians per dimensionless time
unit.

0 =0.65. This also situated the operating point near the
lower portion of the state diagram shown as Fig. 12 in Black-
burn et al. [23].

Numerical solutions of (2) were obtained using a fourth-
order Runge-Kutta algorithm with nominal fixed step size set
at 1% of the drive period. This time step was found to be
sufficiently small when simulating continuous time proper-
ties of the system. Simulations with half this time step re-
sulted in identical statistical behavior of Lyapunov exponents
and diffusion constants, which we will discuss in the follow-
ing sections. Here it is important to notice that due to the
inherent nature of chaos, only statistical properties can be
expected to compare well when the time step is changed.

DETERMINISTIC DIFFUSION

The general appearance of a typical chaotic phase plane
orbit is illustrated in Fig. 1, where the arrows indicate that,
over time, the trajectory is expanding outwards to the left
and right. Figure 2 presents a pair of time series of the square
of the pendulum angle [ 6(7)]? , each obtained as solutions
to (2) for nearly (but not quite) identical initial conditions
chosen close to the origin in the phase plane. It is immedi-
ately apparent that (a) the two curves are radically different
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FIG. 2. Typical time series 6?(7) for Q=4.00 computed from
almost identical initial conditions.
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FIG. 3. Ensemble averages ([ 8(7)]?) for three different values
of damping coefficient Q. The linearity of these plots indicates
deterministic diffusion.

from one another and (b) individually they are clearly not
monotonic in time.

In Fig. 3, ensemble averages {[ 6(7)]*) are plotted, where
the averaging () was taken over a 40X40 grid of initial con-
ditions centered around the origin #=0,6=0. That is, 1600
individual time series such as are shown in Fig. 2 are
summed. Each series spanned a total elapsed time of 2000
drive periods, and there were 100 integration steps per drive
cycle. Thus a total of 320X10° Runge-Kutta iterations are
executed for every fixed Q line in Fig. 3. The contrast be-
tween single time series as in Fig. 2 and the ensemble aver-
ages as in Fig. 3 is, however much anticipated, remarkable.
The slopes of these essentially linear characteristics yield
diffusion coefficients, or more precisely, 3(slope)=D. Plots
of very similar appearance, but obtained for 2000 starting
points of a sine map, are to be found in Fig. 1 of Geisel and
Nierwetberg [3].

The results to this point establish that the driven pendu-
lum does indeed exhibit phase diffusion during chaotic mo-
tion. However, the choice of dissipation constant Q has so
far been arbitrary in the sense that certain values have been
selected that certainly lead to the phenomenon of interest,
but no systematic role for Q has been explored; this we now
undertake.

As a necessary first step, a bifurcation diagram was com-
puted for a range of dissipation coefficients between 3.0 and
7.0, these being deemed to be physically sensible values.
Data were generated by sampling the evolving numerical
solution of (2) once per drive cycle (Poincaré section) for a
total duration of 1000 drive cycles. This was done for each of
200 Q values within the indicated range. The bifurcation
diagram shown in Fig. 4 reveals a not-unexpected richness of
detail, involving many periodic windows embedded within
the prevalent chaos. The dissipation coefficients Q=4.00,
4.15, and 4.16 chosen for the previous figure can be seen to
lie just inside the chaotic zone that precedes the largest pe-
riodic window.

It was quickly evident from simulation data that diffusion
coefficients of similar magnitudes could be found for chaotic
states over the entire range of dissipation constants used in
Fig. 4. In other words, D is certainly not any simple function
of Q. However, it was also apparent that the diffusion rate
could be considerably enhanced very close to the edge of a
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FIG. 4. A bifurcation diagram for the driven pendulum with
€=0.78 and 1 =0.62. Angular velocity is measured in radians per
dimensionless time unit.

periodic window. Two particular windows were selected
for closer examination: W4, [3.085,3.212]; and Wy, [4.175,
5.110]. W, contains closed period-3 orbits; W contains
running period-1 solutions.

From the slopes of plots of ([ #(7)]?) versus 7, diffusion
coefficients were determined at a number of selected Q val-
ues on either side of the two periodic windows. These are
displayed in Fig. 5. The most straightforward interpretation
of the general features in this graph is that the chaotic solu-
tion begins to “anticipate” the periodic state as the window
edge is approached, and consequently the diffusion coeffi-
cient D alters accordingly near a window boundary.

Nonrunning periodic orbits do not expand in phase
space—they form closed curves that repeat themselves—and
so must have an associated diffusion coefficient D =0. This
is the case within window W 4. As can be seen in the figure,
D remains quite small just outside the domain of W 4.

In contrast, window W ; consists of running solutions that
certainly do expand in phase space, but not in a diffusive
manner. The period-1 orbits are synchronized to the ac forc-
ing term and so each advance of 27 occurs in one drive
period. Neglecting undulations, an approximate expression
for this motion is 6~ 7 where 7 is dimensionless time
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FIG. 5. Diffusion coefficients (solid dots) determined from
slopes of (#%) versus 7 plots at selected Q values. The units of D
are radians? per drive period. The shaded regions are the periodic
windows referred to in the text. The parameter & is defined as
|Q— Qc|where Q is a window boundary.
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FIG. 6. Ensemble averages ([ §(7)]?) for values of the dissipa-
tion constant immediately on either side of the window boundary at
Q=>5.110. The dotted line is the limiting form for drift motion of
the phase coordinate.

as before and, for this study, Q=0.62. Thus
(6*)=(0.3844) 7% describes the limiting form of phase ex-
pansion associated with running periodic orbits in window
W . This quadratic dependence of the mean squared dis-
placement on time is fundamentally different from the linear
relationship associated with diffusion, and is instead the re-
sult of phase drift. This is illustrated in Fig. 6, where (6?)
versus 7 is displayed for Q values lying immediately on
either side of the window boundary at Q ~=5.110. The dot-
ted line is the pure drift curve.

Schell et al. [2] considered deterministic diffusion for the
climbing-sine map and concluded that “‘near bifurcation the
diffusion coefficient depends on the square root of the devia-
tion of the map parameter from bifurcation.”” For transitions
to running solutions they found the functional form (in our
notation) to be |Q— Q| ~?, and for transitions to periodic
solutions, the diffusion coefficient varied as |Q— Q| "2,
where Q. denotes a boundary value of the dissipation con-
stant. Our data for the driven pendulum are consistent with
these expressions, and the inverse square root dependence is
particularly convincing immediately on either side of win-
dow Wp, as is evident in Fig. 5.

Well away from window boundaries, the diffusion coeffi-
cient subsides to comparatively small values. It is tempting
to take the comment by Chaudhuri er al. [26], “...the
Lyapunov exponent is a measure of rate of divergence of
initially nearby trajectories, as a consequence of which the
diffusive motion in phase space takes place,” and seek an
explicit connection between the Lyapunov coefficient A and
the diffusion constant D. However, consider Fig. 7, which is
a plot of computed Lyapunov coefficients versus dissipation
constant for window W , . The region 3.186<(Q=3.212 has
positive A, is associated with nonrotating chaotic period-3
orbits, and does not exhibit deterministic diffusion. In fact,
D=0 throughout the window, while N\ ranges extensively
from negative to positive values, suggesting that no direct
relationship between N and D is possible in general. Simi-
larly, we have found large windows of nearly constant N\ for
which the diffusion constant varies dramatically. We note
parenthetically the interesting strong similarity of Fig. 7 here
to Fig. 11 in Kautz and Macfarlane [21] in which purely peri-
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FIG. 7. Lyapunov coefficient versus dissipation constant over a
region bracketing the period-3 window.

odic (A<<0) states for an rf driven Josephson junction pre-
cede locked-chaotic (A>0) ones, before full chaos is
reached.

INTERRUPTED DIFFUSION

As noted in the Introduction, recent work on iterated maps
[4,13] has suggested that a new behavior (anomalous diffu-
sion) appears during intermittent chaos. As a means of inves-
tigating this issue with respect to the driven pendulum, we
first located an intermittent mode at Q=15.78. This state is
characterized as having a pair of coexisting antisymmetric
nonrotating period-2 orbits. Numerical simulations revealed
that the system switches back and forth between these peri-
odic modes at irregular intervals, and that it is chaotic during
the transition phase. Such behavior is evident in the plot of
Fig. 8, where the horizontal plateaus result from one or the
other periodic motion. Brief chaotic bursts signal the transi-
tions.

The Poincaré section for Q=5.78 is shown in Fig. 9; it
was generated from a numerical simulation extending over
40 000 drive cycles, with one sampled point taken per drive
cycle. Any period-2 state manifests itself in a Poincaré sec-
tion as a pair of points or line segments that share “hits” on
alternate drive cycles; accordingly the boxed segments in the
figure are linked in pairs to signify each attractor. There are
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FIG. 8. Typical time series #°(7) for the intermittent case
Q=5.78. The system is periodic during horizontal plateaus, and
chaotic during transitional bursts.

FIG. 9. Poincaré section for Q =5.78. The linked boxes indicate
the locations of accumulation segments for each of the period-2
orbits on the attractor. Angular velocity is measured in radians per
dimensionless time unit.

then three constituent parts to this figure—short segments
(enclosed in boxes) associated with each of the two periodic
modes, and the much more extensive chaotic strange attrac-
tor.

In like fashion to the procedures associated with Fig. 3,
ensemble averages ([ #(7)]?) were computed for the inter-
mittent case Q=5.78, as well as for the purely chaotic case
0 =5.79. The results are plotted in Fig. 10. It is quite appar-
ent that the rate of expansion of the mean-squared amplitude
changes from that of a chaotic state at small time to a much
lower value above 7~200. The behavior at small time is in
fact only an artifact of the initial conditions employed in the
individual ‘simulation runs comprising the complete en-
semble total of 1600. The initial conditions were selected
from a cluster centered around the origin in the phase plane.
This choice always started the system in chaos from which it
inevitably moved to intermittency. In the ensemble averaging
the first-chaos behavior leads to a preliminary rapid diffu-
sion, as the figure indicates. However, after this early effect
has passed, a much lower slope in the mean-squared dis-
placement is evident. Furthermore, we have verified by
modifying the initial condition selection process that this
early effect can be eliminated entirely, with a linear expan-
sion occurring all the way to the origin. From the slopes in
Fig. 10 we conclude that the intermittent state (Q=15.78)
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FIG. 10. Ensemble averages ([ #(7)]?) for the intermittent case
Q0 =15.78 and for the neighboring chaotic case 0=15.79.
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diffuses approximately 20 times more slowly than the purely
chaotic state (Q=15.79).

An explanation for this observation can be found in the
following argument. The two periodic modes, as has been
mentioned, are nonrotating. Hence, during residence in either
period-2 state, there is no diffusion whatever. In fact it is
only during the chaotic bursts that diffusion can occur, and
that diffusion will proceed at a rate very nearly equal to the
slope of the Q=15.79 characteristic. In other words, the in-
tervals spent on the periodic attractors can be thought of as
“dead time” when diffusion is temporarily halted, while mo-
tion on the strange attractor is “‘active time.” Suppose that
7 represents the average ratio of dead time to active time.
Then diffusion will proceed only during the portion
1/(1+ 7n) of any total observation time and will be “inter-
rupted” for the portion #/(1+ 7). From the point of view of
a Poincaré section such as Fig. 9, 7 would be the ratio of the
number of points contained in the attractor boxes to the num-
ber of points on the strange attractor external to the boxes.
Data derived from a simulation run lasting for 8 10° drive
cycles yielded 7=(762288)/(36713)=20.7. Expressed an-
other way, the system spends about 95% of the time on one
or the other periodic attractor, and only 5% of the time mov-
ing between these attractors. This numerical value of % is in
good agreement with the value obtained from slopes in Fig.
10.

We emphasize that our model for interrupted diffusion as

an explanation for phase expansion during intermittent chaos
retains the fundamental notion that diffusion, when it hap-
pens, follows the conventional law (6?)cct.

Finally, we turn to the issue of anomalous diffusion,
which has attracted considerable interest recently [12—-18].
The iterated maps in these studies exhibited mean-squared
displacements that varied as ¢” when the systems were inter-
mittently chaotic. In contrast, our results show normal deter-
ministic diffusion (y=1) for purely chaotic states, inter-
rupted diffusion (y=1) for intermittent chaos, and drift
expansion (7y=2) in rotating periodic states. We think it sig-
nificant, for example, that Geisel and Nierwetberg [4] report
anomalous diffusion (y=2) only below what they term a
crossover time T,,. Above T, they find conventional diffu-
sion. So the ultimate expansion is always a standard diffu-
sion, and the early anomalous behavior is perhaps strongly
dependent on initial conditions—as we have seen in our re-
sults.
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