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By scattering light from small particles, their geometrical structure and their state of motion can be
measured. An experiment is described for measuring the diffusivity of small particles undergoing
Brownian motion using the technique called photon correlation spectroscopy or dynamic light
scattering. The necessary experimental apparatus and the related theory are discussed. Photon
correlation spectroscopy is a powerful tool for studying the dynamical behavior of fluids near
critical points, and a discussion is given of this phenomenon. The same experimental technique also
can be used to study laminar or turbulent flows, and the associated theory is introduced to enable
such experiments to be interpreted. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

Fractals, continuous phase transitions, spinodal decom
sition, Brownian motion, the Wiener–Khinchine theore
the Brown–Twiss effect, photon correlation spectrosco
and turbulence. Many phenomena and ideas of great im
tance in statistical and condensed matter physics can b
troduced by studying dynamic light scattering. The goal
this paper is to introduce this technique by describing a
experiments that can be performed by undergraduate
dents. The experimental possibilities are sufficiently rich t
they can be stimulating to graduate students as well.
measurements require inexpensive optical components
as a small He–Ne laser~output power of a few mW!, a few
lenses and lens holders, and a photodetector. In additio
more expensive device is needed, namely a photon
relator. Many correlators that may have been discarded
researchers may serve the purpose perfectly well.1 A new
correlator can be purchased for several thousand dollars

Considerable emphasis is placed on the Brownian mo
of micron-size particles diffusing in a background fluid su
as water, because an understanding of Brownian mo
opens the door to understanding a broad range of subj
including the dynamical behavior of fluids and fluid mi
tures, and magnetic materials near their respective crit
points.

Near the critical point of fluids, we can observe fluctu
tions by eye and also by using a very small laser. Sectio
describes a desktop experiment for doing so. It turns out
these fluctuations produce the same effects as those se
the scattering of light by small particles in Brownian motio
Readers who have only a qualitative interest in light scat
ing can skip directly to Sec. II. The remainder of the pape
intended for readers who are interested in setting up t
own apparatus to study Brownian motion or fluid dynam
quantitatively. The same equipment can be used to m
measurements in fluids near the critical point.

Suppose that the experimental components have bee
sembled and arranged on a table as indicated in Fig. 1.
beam of the low-power He–Ne laser is directed at a sm
vial or test tube filled with water in which small particle
have been suspended. For the particle suspension, a dr
skim milk in water will do, but it is best to use particles, a
of which have the same diameterd in the 0.01 micron to 50
micron range.2 With the proper particle concentration, th
sample will be pale blue when viewed in room light. A las
1152 Am. J. Phys.67 ~12!, December 1999
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beam passing through the sample should appear as a b
line which is well defined throughout the entire scatteri
volume.

The experimental setup in Fig. 1 shows a photodetec
that collects light at a scattering angleu equal to 90°. To
satisfy the spatial coherence condition discussed below
distanceR between the center of the sample cell and
photodetector should be large; say, 30–100 cm. In addit
a small pinhole of diameterh should be placed close to th
photodetector face. It is helpful to mildly focus the incide
laser beam on the sample volume, using, say, anf 520 cm
lens. Ideally, the scattering particles will produce a shar
defined bright line in the fluid. Only a segment of the sc
tered beam should fall on the face of the photodetector. T
segment can be defined by a pair of parallel closely spa
black masking tape strips placed on the sample tube~sepa-
ration of the order of a mm!. Alternatively, a lens can be
used to form the image of the scattering volume on a slit
adjustable widthL. The photodetector then accepts lig
from scattering particles within the segment. Spatial coh
ence is achieved by choosingh, L, and R to satisfy the
condition

B5hL/Rl&1. ~1!

wherel is the wavelength of light in the water sample
refractive indexn, and l is related to the vacuum wave
length of the laser beamlvac by l5lvac/n. For watern
51.3.3 The optical coherence condition in Eq.~1! is familiar
from elementary optics. When Eq.~1! is satisfied, the photo-
detector collects light from only the first diffraction max
mum produced by a slit of widthL. For studies of Brownian
motion, one might want to chooseL, R, andh so thatB is
less than 10 or so~for studies of fluid motion discussed i
Sec. IV,B should be less than unity!.

The photodetector should be operated as a pulse coun
device rather than in an analog mode, that is, it should se
the individual photoelectron pulses. The width of the
pulses is not relevant to the experiment; only their spacing
time is important. It is preferable if all the photopulses are
the same width and amplitude, which is accomplished
passing the photodetector output through a discrimina
The individual pulses coming out of the discriminator shou
be less than 1ms in width and ideally less than 0.1ms. Many
photodetectors come with a built-in discriminator with
TTL output.
1152© 1999 American Association of Physics Teachers
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To be sure that all the optics and electronics are arran
correctly, it is useful to observe the chain of TTL pulses
an oscilloscope before sending them to the correlator. If
TTL pulse width is shorter than 0.1ms, use very short inter
connecting cables or be sure that all outputs and inputs
terminated in the characteristic impedance of the ca
which is 50V for RG58U cable. This is to avoid reflection o
pulses from the ends of the cable due to impedance m
matching problems. Data collection will be tedious if th
mean photon counting ratêI & is less than 1000 counts/s.

Figure 2~a! shows a chain of photodetector pulses p
duced by incoherent light falling on the photodetector. T
pulses occur at random times, with their mean spacing be
inversely proportional tôI &. Figure 2~b! shows the detecto
output from light that is scattered by diffusing particles in t
sample. In both experiments the photon pulses have pa
through a discriminator, assuring that all the pulses have
same height and width. In Fig. 2~b! the pulses are correlate
in time, that is, they are bunched together within a corre
tion time tc which is determined by the diffusion coefficien
of the particles and the scattering angle. The photon c
relator identifies this clustering effect by measuring the c
relation function

Fig. 1. Experimental setup for studying the Brownian motion of particles
water. The sample is labeledS. The laserL directs the incident beam ver
tically upward. The photodetector PD converts the scattered light in
pulse string which is fed to the correlator COR.

Fig. 2. ~a! The output of the PD for immobile scatterers, as might be
case if the sample has been frozen or if the sample is a piece of milk g
or even a piece of paper. The arrival time of the photopulses is pu
random in this case.~b! The PD output of moving particles which are Dop
pler shifting the frequency of the incident light. Note that the pulses ten
cluster in time. This clustering time or correlation timetc is inversely pro-
portional to the diffusivity of the randomly moving particles that scatter
light.
1153 Am. J. Phys., Vol. 67, No. 12, December 1999
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K~t!5^I ~ t !I ~ t1t!& ~2!

or its dimensionless counterpart

g~t!5^I ~ t !I ~ t1t!&/^I ~ t !&2. ~3!

Experimentally, the average designated by the bracket
Eq. ~3! is a time average over the data collection intervalT:

K~t!5
1

T E
0

T

I ~ t !I ~ t1t!dt, ~4!

where T typically ranges from seconds to many minute
with the choice dictated by the desired signal-to-noise ra
The mean intensity is the time average,̂ I &
5(1/T)*0

TI (t)dt.
In the experiments discussed here, the system is in the

equilibrium, or as in Sec. V, in a stationary state. In eith
case^I (t)&5^I (t1t)&, a fact that will be invoked repeat
edly. Of course, K(t) is not independent of t; its
t-dependence is what we are interested in measuring
calculating. Its characteristic decay time will be denoted
tc . Typically tc is in the range of hundreds of microsecon
to milliseconds, depending on the particle size used.

The signal-to-noise ratio,S/N, will always improve if the
data collection timeT is increased. Suppose that we are co
tent with data for whichg(t) is measured within 1%. Firs
assume that the counting rate^I & is so large that the quality
of the measurements is not determined by the low coun
rate, but is limited by the numberNc5T/tc , of ‘‘fluctua-
tions’’ collected in the timeT. According to Poisson
statistics,4 S/N51/ANc , and hence, one percent accuracy
achieved by settingT/tc5104.

Next consider the opposite limit where the scattered int
sity ^I & is very low. In this limit, the fluctuations ing(t) will
be governed by so-called shot noise and will vary as
inverse square root of the measuring timeT. In this low
counting rate limit, where Poisson statistics is again relev
T/tc is no longer the controlling parameter; to make a m
surement to 1% accuracy, chooseT^I &5104.

Figure 3 shows a measuredg(t) produced by small par-
ticles in Brownian motion. The solution in which they a

a

ss
ly

o

Fig. 3. Plot ofg(t) versust measured in a soap film which was only a fe
mm thick. The soap solution was a 1% dish washing detergent in water.
seed particles were polystyrene spheres of diameter 1m. Note thatg(0)
.2.
1153W. I. Goldburg
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moving is a soap film only a fewmm thick. For spherical
Brownian particles diffusing in the background solvent,
can be shown4 that the function

G~t![g~t!21 ~5!

decays exponentially, with the decay rate given by

tc
2152 Dq2. ~6!

Here D is the diffusion coefficient of the particles andq is
the scattering wavevector whose magnitudeq is given by

q5uqu5
4p

l
sin

u

2
, ~7!

whereu is the scattering angle andl is lvac/n.
In a time t a particle will diffuse a mean square distan

^r 2& that is proportional toDt. The diffusion produces a
large fluctuation in the intensity in a timet8 such thatt8
.1/(Dq2). This characteristic timet8 is of the ordertc . It is
these intensity fluctuations that a photon correlator measu
Helpful discussions of diffusion can be found in Refs. 4 a
5.

The diffusion coefficientD depends on the particle diam
eter d. For spherical particles,D5kBT/3phd,6 whereT is
the temperature,kB is Boltzmann’s constant, andh is the
viscosity of the background fluid. From this relation, w
haveh50.01 g cm21 s21 andD54.431029 cm2/s for a dif-
fusing particle 1mm in diameter in water at room temper
ture. From a measurement ofg(t), we can obtaintc

21 and
find the radius of the diffusing particles, even if they are t
small to be observed with a microscope.~See Fig. 4.! Simi-
larly, a measurement ofg(t) enables us to measure the r
dius of gyration of polymer molecules diffusing in solutio
and to determine the correlation length of fluctuations in d
sity or concentration in a fluid or mixture near its critic
point.7,8 Measurements ofg(t) can be a powerful tool for
studying phenomena that have nothing to do with diffusi
for example, the determination of the width of a narro
spectral line9 or the diameter of a distant double star.10 The
latter experiment gave birth to the technique of photon c
relation spectroscopy.

Fig. 4. Sketch of diffusing particle with an incident beam traveling from l
to right. The particle is located at the origin of the coordinate system at t
t50 and at timet its position isr (t). The photodetector is labeled PD. Th
directions of the incident and scattered beams are shown.
1154 Am. J. Phys., Vol. 67, No. 12, December 1999
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All photodetectors generate output pulses even when th
is no light shining on them. This dark count rate can be a f
Hz to several kHz. Except at very smallt, these dark count
pulses occur roughly randomly in time and hence give a
background tog(t), reducing the relative contribution o
G(t), the quantity in which we are really interested. In roo
light the photodetector will have the same effect. It is the
fore necessary to employ a laser-generated counting rate
is many times larger than the dark count rate and room li
count rate, in addition to satisfying the condition^I &tc@1.
The contribution tô I & from room light can be reduced b
placing an inexpensive interference filter11 directly in front
of the photodetector and interposing a tube between it
the sample. A cardboard tube works well. For the m
noise-free results, turn off the room lights when the c
relator is making measurements.

If a flowing fluid is seeded with small particles, we ca
learn a lot about the flow by measuringg(t). The fluid flow
problem is treated in Sec. V. It will be seen thatg(t) gives
information about velocity differences between pairs
points in the flow. Laminar and turbulent flows can be stu
ied in the laboratory12–14 using the same apparatus as th
employed in the Brownian motion measurements.

In Sec. III the intensity correlation function is calculate
for a single Brownian particle, with the assumption that t
photodetector is so small that the scattering wave vectorq is
sharply defined. The calculation will be valid even wh
many particles are present in the sample, as long as they
sufficiently far apart that they do not interact. We will se
that whenB is no longer very small,G(t) is diminished by
a factor f (A) which takes into account the fact that photo
scattered from the most widely separated diffusing partic
in the sample will interfere with each other to give

G~t!5g~t!215 f ~A!e22Dq2t. ~8!

The argumentA in f (A) is the area of the photodetector, a
important parameter in the subsequent calculation off (A) in
Sec. IV.

The single-particle calculation ofg(t) is presented in Sec
III. To find f (A) in Eq. ~8!, we must consider the motion o
many Brownian particles, because its attenuating eff
arises from the interference of the electric fields scattered
these particles. The calculation off (A) appears in Sec. IV.

The basic theory developed in Secs. II and III can be
plied with little modification to the study of laminar an
turbulent flows, which is the subject of Sec. V. Some co
cluding remarks are given in Sec. VI.

II. CRITICAL PHENOMENA, LIGHT SCATTERING,
AND BROWNIAN MOTION

Light scattering is a very powerful tool for studying crit
cal phenomena. Some of the central features of continu
phase transitions are easily observed and can be presen
a lecture demonstration or observed on a desktop.

Here we briefly review the subject of critical phenome
and describe an experiment for observing a striking mani
tation of it, namely critical opalescence. You can obse
this effect with a very small laser of the type used as
pointer in lecture halls. In addition, you will need a sma
glass container to hold the sample, which might be a mixt
of 2,6-lutidine and water~LW!, available from a chemica
supply house. A convenient sample cell is a vial of diame

e
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'1 cm and a height of several centimeters. The vial sho
have a good screw top, because 2,6-lutidine15 has a very
unpleasant smell. The trick is to prepare the LW mixture
that the lutidine concentrationc is close to the critical con-
centration,cc , which is 28% by weight. In a binary mixtur
such as LW, the concentration variable plays the same
as the density in a simple fluid such as water or CO2.

16

Sample preparation should be carried out under a hoo
in a very well ventilated space. After the water and lutidi
have been placed in the container with its composition wit
a few percent ofcc and shaken up, it will be in one phase
the temperature is less than the critical temperature,Tc

533.4 °C. Place the cell in a beaker of water, which w
serve as a temperature bath. The bath is then heated by
ing hot tap water. When the sample is held for a few minu
at a high temperature well aboveTc , it will separate into two
well-defined phases, with the heavier water-rich phase on
bottom.

If you were successful in preparing a sample close to
critical concentration, the volumes of the two phases will
almost equal. If not, insert a syringe into the cell and dr
out the excess phase~or add a drop or two of the appropria
minority component!, so that the two phases have equal v
ume. After this single iteration, you have probably prepa
the mixture adequately close toTc .

To observe critical opalescence, return the sample ce
the water bath and heat it slowly, shaking the sample
now and then to bring the mixture to the same temperatur
that of the surrounding bath. WhenT is increased throughTc
from below, droplets will form, and after several minute
the more dense water-rich phase will settle to the bottom
two sharply defined phases will be seen. The most instruc
observations are made when the system is still in one ph
so increase the bath temperature slowly asTc is approached.

When the temperature becomes close toTc , the sample
will develop a brownish appearance because it is stron
scattering the room light. The scattering may become
large that the laser beam, which you should now be send
through the sample, may hardly go through it. This pheno
enon is called critical opalescence. Place a sheet of pap
that you can view the transmitted beam. You should see
the scattered light consists of speckles that flash on and o
a random fashion.

How are we to understand this strong scattering phen
enon when the system is in one phase but close toTc? Near
the critical point, small regions of water rich and lutidine ric
phases momentarily form and then diffuse away. This sa
phenomenon occurs far from the critical point, but the size
the regions is much smaller than the wavelength of light, a
the regions come and go so quickly that most measu
instruments will not be able to record them. Similarly,
glass of water near room temperature undergoes fluctua
in density, but these fluctuations are so small in spatial ex
and in amplitude that they cannot be easily observed. Mo
over, the fluctuation rateG is very fast far above or below
Tc , because small-scale density variations diffuse aw
faster than large ones, making them unobservable by eye
even by very fast electronic equipment.

Near the critical point, the free energies of the one-ph
states and the two-phase states are almost the same.
result, the system makes brief excursions or fluctuati
from the one-phase state to the two phase state, that
locally tries to phase separate, even though the syste
1155 Am. J. Phys., Vol. 67, No. 12, December 1999
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globally in one phase. These local fluctuations in density
composition produce local variations in the refractive ind
n. It is these local variations inn that scatter the light, just a
a small lens would. AsTc is approached, these compositio
fluctuations grow in magnitude and in spatial extentj and
can become even larger than the wavelength of light. T
fluctuations of sizej cause G(t)5g(t)21 to vary as

e22Dq2t, just as for Brownian particles~provided qj,1).
The diffusivity D in G(t) is the same as that of a Brownia
particle, except that the radiusd/2 of the diffusing particle is
replaced byj.

The reader interested in learning more about critical p
nomena and the role of light scattering has many source
information available, such as those collected in Refs. 8,
and 17.

III. INTENSITY CORRELATION FUNCTION FOR
BROWNIAN PARTICLES

We first deduce the limiting value ofg(t) for t@tc . In
this limit the intensities att and t1t are unrelated, so
K(t)5^I (t)&^I (t1t)&→^I (t)&25^I (t1t)&2 in steady or
equilibrium states. Thereforeg(t→`)51 in Eq. ~3!.

In the opposite limitt!tc , the scattered intensities at th
times t and t1t are almost equal, so thatg(t)→^I 2&/^I &2,
which is in general greater than unity. For the Browni
motion problem, we will see thatg(t→0)52. If the sample
contains large specks of dust that produce occasional br
flashes of light when floating through the laser beam, we
no longer dealing with the Gaussian statistics of Brown
motion, andg(0) can greatly exceed two.

We are interested ing(t) generated by non-interactin
Brownian particles such as polystyrene latex spheres of
ameterd51 mm in a small container of water. As a startin
point, consider a particular particle located atr (t) at time t
that was atr (0) at t50. A laser beam traveling along they
axis illuminates the particle, which then scatters the incid
beam. The photodetector, which is located a large distancR
from the origin, senses the scattered field, producing ph
pulses at the~fluctuating! counting rateI (t). The intensity
I (t) is proportional to the square of the incident electric fie
Ei , which is assumed to be of complex form:

Ei5E 0e2 iki•r (t0)1 ivt0, ~9!

wherev is an optical frequency of the order of 1015Hz and
t0 is the instant when the scattered wave leaves the part
Herek i has the direction of the incident beam and its ma
nitude isk052p/l. Because we are ultimately interested
the ratio of scattered intensities, nothing is lost by taking t
field to be expressed in dimensionless units. The scatte
field Es is a spherical wave whose amplitude is proportion
to the incident field amplitude:

Es~R,t !}
Ei~ t0!e2 ik0uR2r (t0)u

uR2r ~ t0!u
eiv(t2t0). ~10!

The intensity is

I ~ t !5ConstEs~R,t !Es* ~R,t !. ~11!

The constant of proportionality depends on many para
eters, includingE0 and R. The factoreivt in Eq. ~10! will
sometimes be suppressed because it will always be canc
1155W. I. Goldburg



tri

e

wn

ti

os
n

e

a
re
he
.
e

t
e
.
in
e
a
t-
ng

bl
p

is-

is-

q.

s
f
ly
its
m-

ric

-
tor
ity

o-
t, so
at-
nly

tor
t

cor-
the

on.
out for any measurable quantity. The units of the elec
field will be chosen such thatEs(t)Es* (t)5I (t). In the next

section, quantities likeK andQ ~the analog ofQ̃) will have
different units, but the quantities of interest, namelyg(t)
and f (A), will remain dimensionless.

Equation~10! can be simplified by taking advantage of th
fact thatuRu is much greater thanur (t)u in all cases of experi-
mental interest. Then the exponent in Eq.~10! can be ex-
panded to give the phase factor

Df~ t !5k0uR2r ~ t0!u

5k0AR222R•r1r ~ t0!2.k0R2k0R•r ~ t0!/R.

We define the scattered light wave vectorks5k0R/R, so
that, to a good approximation,Df5k0R2ks•r (t0). Defin-
ing

q5ks2k i , ~12!

we can write the total scattered field at timet produced by
the Brownian particle as

Es~ t !}
e2 iq•r (t0)1 ivt

R
,

where we have dropped ther -independent factoreik0R. In
addition, the denominator is approximated byR, because in
all experimentsR@r . The vectors appearing here are sho
in Fig. 4.

Because the flight time of the photon,t2t0 is very short
~much shorter than the time for a particle to diffuse an op
cal wavelength!, t0 can be replaced byt, so that the above
equation, combined with Eq.~9!, can be written

Es~ t !}
e2 iq•r (t)1 ivt

R
. ~13!

The scattering of photons by the small particles is alm
perfectly elastic, so that the magnitude of the incident a
scattered photons is equal,uksu5uk i u52p/l[k0 . If the
scattering angle isu, then q52k0 sin(u/2). This result is
quickly obtained from a sketch of the two vectorsks andk i
drawn so that their tails touch each other, with the anglu
between them. As expected, whenu is zero andp, q is zero
and 2k0 , respectively.

In this discussion, the vector nature of the electric field h
been ignored, so polarization effects were not conside
Such effects are not important if the refractive index of t
scattering particle is close to that of the surrounding fluid18

If this condition is fulfilled, the scattered light will have th
same polarization as that of the incident beam, because
scattering particles behave almost like point dipoles, th
dipole moment being induced by the incident electric field19

The above derivation is for an ensemble of non-interact
Brownian particles, a condition that is well fulfilled if th
particle density is low enough that the beam traces a sh
line through the fluid. In the limit of extreme multiple sca
tering,ks would no longer be well-defined, and the scatteri
wave vectorq5ks2k i would have lost its meaning.

In a macroscopic time intervalt, the distancer (t) tra-
versed by a Brownian particle is a Gaussian random varia
its position in a liquid is the sum of many independent ste
of atomic size. According to the central limit theorem,5 a
random variabler5(dr i which is the sum of a very large
1156 Am. J. Phys., Vol. 67, No. 12, December 1999
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number of independent random variablesdr i , has a Gauss-
ian distribution, regardless of the functional form of the d
tribution of the individual terms. In three dimensions20

P~r !5~4pDt !23/2e2r 2/4Dt. ~14!

This probability density function describes the position d
tribution of a large assembly~or ensemble! of particles ini-
tially located atr50 at t50. The integral ofP over all space
is unity att50 and at all subsequent times. According to E
~14!, P is an infinitely sharp spike or delta function att
50. As time progresses,P broadens, but its maximum doe
not shift. This broadening ofP(t) describes the diffusion o
an ink drop that is initially infinitely small and subsequent
spreads out as a spherically symmetric cloud, fading at
edges. Of course, ink particles are Brownian particles the
selves, rendered observable by their color.

We now turn our attention to a calculation of the elect
field correlation functiong1(t), a complex quantity defined
as

g1~t![^Es* ~ t !Es~ t1t!&/^I &

5^eiq•r (t)&eivt5E P~r !eiq•rd3reivt, ~15!

so that

g1~t!5~4pDt!23/2eivtE
2`

`

e2r 2/2Dte2 iq•rd3r

5e2Dq2teivt. ~16!

Written out in full, K(t) in Eq. ~2! is

K~t!5^Es* ~ t !Es~ t !Es* ~ t1t!Es~ t1t!&. ~17!

The motion of a single particle will Doppler shift the fre
quency of plane waves falling upon it, but a photodetec
will not record a fluctuation in the total scattered intens
Es(t)Es* (t), since the time-dependent phase factors inEs(t)
andEs* (t) cancel. To observe intensity fluctuations in a ph
todetector, one must have at least two particles presen
that their relative motion will generate a beating of the sc
tered electric fields. It turns out, as one will see, that the o
terms contributing tog(t) are such pairwise terms.

We are interested ing(t)5^I (t)I (t1t)&/^I &2, when the
sample consists of a very large numberN of particles ex-
posed to the incident plane wave. Writing out the numera
and denominator ofg(t) in full and dropping the subscrip
‘‘ s, ’’

g~t!5K~t!/Q̃2

5 (
i , j ,k,l

^Ei~ t !Ej* ~ t !Ek~ t1t!El* ~ t1t!&/Q̃2, ~18!

where

^Q̃~ t !&5^I ~ t !&5(
i , j

E0
2^ei (q•r i (t)e2 i (q•r j (t)&.

There areN4 terms inK and in Q̃2, but in the ensemble
averaging operation, most of them are zero because they
respond to fluctuations at optical frequencies or because
particles are, by assumption, uncorrelated in their moti
~See the next section for more details.! The only surviving
1156W. I. Goldburg
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terms are those for whichi 5 l and j 5k. The absence of a
correlation between the particles enables one to factor fu
tions like^Ei(t)El* (t1t)Ej* (t)Ek(t1t)& into the product of
pairwise correlation functions withi 5 l and j 5k, so that this
product may be written̂ Ei(t)Ei* (t1t)&^Ej* (t)Ej (t1t)&
with iÞ j . Because all particles scatter identically, this te
has the same value asu^Ei(t)Ei* (t1t)&u2, even though it
represents a beating term between different particlesi and j .
There will be N22N.N2 such electric field correlation
function terms inK(t).

Now consider those terms for whichi 5 j and k5 l ,
namely ( i , j^Ei(t)Ei* (t)Ej (t1t)Ej* (t1t)&. It is equal to
N2E0

25^I &2, or equivalentlyN2u^E(t)&u2, where E is the
field scattered by a single particle.

Collecting these results and putting them in Eq.~15! per-
mits one to write

g~t!511u^~E~ t !E* ~ t1t!&u2/u^E~ t !u2&u2. ~19!

Or equivalently,

g~t!511ug1~t!u2. ~20!

The correlation function is written in the above way b
cause the result holds more generally than suggested by
derivation; Eq.~20! is valid for any N-particle system, as
long as the the total scattered field,Es5( jEj is a ~two-
dimensional! Gaussian random variable. This importa
equation is called the Bloch–Siegert theorem. Its full deri
tion can be found in Ref. 21.

Becausê uE* (t)E(t1t)&/^uE(t)u2&25e22Dq2t, we have,

g~t!511e22Dq2t, ~21!

which is our central result.
Equation ~21! gives the correctt dependence ofG(t)

5g(t)21, even whenB is large andf (A) in Eq. ~8! is
correspondingly small. On the other hand, it fails when
plied to flowing fluids, where the particles are no long
moving independently. In that case, the factorization of
fourfold correlation function inK(t) is no longer permis-
sible, and one must turn to the formalism presented in S
V.

For a sample containing a spread of particle diamet
such as dilute milk,g(t) will consist of a sum or integral o
exponentially decaying contributions of the for
e22Di (d)q2t, with each term appropriately weighted by a co
centration factorci(d). There exists a large body of literatur
dealing with this weighting problem, as it is of great practic
importance.22 Further complications arise if the Brownia
particles are not spherical in shape.7

So far we have considered only the limitB!1, so that the
photodetector is receiving light from a single scattering v
tor, ks . That restriction is lifted in the next section. In man
experiments, the finite area of the photodetector chan
only the amplitude ofG(t), but for fluid flow, the shape o
this function can be appreciably changed ifB is not less than
unity.12,13

IV. THE EFFECT OF SPATIAL INCOHERENCE

The goal of this section is to calculate the~de!coherence
factor f (A) in Eq. ~8!. This function will depend on the
precise shape and size of the source as seen by the pho
1157 Am. J. Phys., Vol. 67, No. 12, December 1999
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tector and on the same parameters for the photodetector
face with areaA. Consider the special geometrical arrang
ment shown in Fig. 5. The wave numberk i of the incident
laser beam has been chosen to lie in the plane of the pa
and the photodetector receives light from a range ofks val-
ues. The mean value of the scattered wavevector^ks& points
along thez axis in Fig. 5, so the average scattering vectoq
is given by q5^ks&2k i . Its direction and magnitude ar
shown in Fig. 5.

The rectangular coordinate system is centered at a p
near the center of the sample. Another coordinate systemx8,
y8, z8 is also employed. The origin of this coordinate syste
is at the geometrical center of the photodetector; its fac
assumed to be square, with dimensionsh. If the photosensi-
tive area is circular, its radius is also taken to beh.

The detector collects light from a range of scattered v
tors ks , and the photon momentum transfer is designated

Dk5ks2k i5q1dk. ~22!

For the j th particle the scattered electric field is

Ej5E0e2 iDk•r j (t)1 ivt. ~23!

The subscript ‘ ‘s’ ’ in the scattered field has now bee
dropped. It will be assumed, as before, that all scatter
particles have the same diameter, so that the scattering
plitude E0 is common to all of them. Therefore it does n
appear ing(t), and we set it equal to unity.

The correlation functionK(t) in Eq. ~8! is the product of
four electric field factors, each of which is now a sum ov
all N particles in the sample. The scattered photons will go
all points on the face of the photodetector, and for ea
point, the momentum transferDk will be different. We need
to sum over all such points or rather integrate over the p
tosensitive areaA.

At time t, the productEi(t)Ej* (t) will contain terms such
as ei (q1dk)•(r j (t)2r i (t)), where we have replacedDk by its
equivalent,q1dk. In writing this expression, it has bee
recognized that to a very good approximationq1dk is inde-

Fig. 5. Schematic diagram showing the scattering geometry and the co
nate directions discussed in Sec. IV. The incident beamk i , like all the other
wave vectors shown, lies in the plane of the paper. The scattering w
vector~or the momentum transfer! for the photon striking the photodetecto
surface at the point (x850,y8) is Dk5ks2k i5q1dk. Hereq is the aver-
age value ofDk. In the detailed calculations presented here, the incid
beam is travelling in the2y direction, and the photodetector is a square
areah3h or a circle of diameterh. A second coordinate systemx8, y8, z8
is at the geometrical center of the photodetector.
1157W. I. Goldburg
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rea
pendent of the particle positionsrn(t), so this momentum
change is independent of particle position in the sample.

The notation is simplified by lettingr i j 5r j (t)2r i(t). In
the short time intervalt, particlesi and j change their rela-
tive positions by a distancedr i j (t), so at timet1t, the
difference in positions of this particle pair isr i j (t)1dr i j .
Integrating the scattered intensity over the area of the ph
detector for bothI (t) and I (t1t), we obtain

g~t!5K~t!/Q25K E
A
I ~ t !dA8E

A
I ~ t1t!dA8L Y Q2, ~24!

where

Q~ t !5K E
A
I ~ t !dA8L 5K (

i , j
E

A
ei (q1dk)•r i j (t) dA8L

5(
i , j

K E
A
ei (q1dk)•r i j (t) dA8L .

~25!

The summations and integrations are freely interchan
here.

Writing out K(t) in full, we have

K~t!5(
i , j

K E
A
ei [(q1dk)•r i j (t)] dA8

3(
l ,m

E
A
e2 i (q1dk)•[ r lm(t)1(dr lm(t)] dA8L . ~26!

Remember that each little area elementdA on the face of the
photodetector has a differentdk associated with it. This fact
will be used when we come to evaluate this integral in tw
spatial cases: a square and a circular photodetector.

Because the particles have random positions at all tim
the ensemble average implied by the brackets, will give z
contribution to Q unless i 5 j and in that case,r i j (t)50.
ThusQ5NA and

Q25N2A2. ~27!

For K(t), we have no such simplification. Every term in E
~26! not involvingdk can be taken out of the integral, so th
this equation can be written in full as

K~t!5 (
i , j ,l ,m

^eiq•(dr l (t)2drm(t))e2 iq•(r j 2r i1r l2rm)BlmCi j &,

~28!

where, for anyi and j

Ci j 5E
A

eidk•r i j dA85Cji* ~29!

and

Blm5E
A

eidk•(r lm(t)1dr lm(t)) dA8. ~30!

For every particle pair, the relative change in the parti
positions dr lm(t) is small compared to their separatio
r lm(t), so we can setClm5Blm . Also, the randomness of th
particle positions again allows us to simplify the expressio
the only terms in Eq.~28! that will not average to zero are
those for whichi 5 j and l 5m or i 5 l and j 5m. For these
terms (r j2r i1r l2rm) in Eq. ~28! is zero.
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BecauseN is typically very large, we can neglect theN
terms for whichi 5 j 5 l 5m, there being onlyN of these
terms compared to theN(N21).N2 particle pairs that do
not satisfy this fourfold equality. Taking advantage of th
fact, we write

K~t!5N2A21 (
l ,mÞ l

^eiq•[dr l (t)2drm(t)]ClmClm* &. ~31!

The first term on the right comes from settingi 5 j and l
5m. Particles undergoing Brownian motion are uncor
lated, so we can write

K~t!5N2A21N2^eiq•dr lm(t)ClmClm* &

5N2A21N2^ClmClm* &^eiq•drml(t)&. ~32!

We are justified in averaging the productClmClm* 5uClmu2

separately from the remaining phase factor term, because
change in separationdr i j (t) in the intervalt has nothing to
do with the initial~random! separationr i j (t) of the Brownian
particles. This major simplification is lost when the particl
are moving coherently, as discussed in Sec. V for fluid flo

In the present notation, for anyl

^e6 iq•dr l (t)&5e2Dq2t, ~33!

and the independence of the motion of the particles perm
us to write

^eiq•drml(t)&5^eiq•dr l (t)&^e2 iq•drm(t)&. ~34!

Thus

K~t!5N2A21N2^uClmu2&e22Dq2t. ~35!

Dividing by Q25N2A2 from Eq. ~28! gives the result we
seek for the case of~uncorrelated! Brownian motion of par-
ticles in the sample:

g~t!511 f ~A!e22Dq2t, ~36!

where f (A)5^uClmu2&/A2.
The functionClm depends on the particle separationsr lm ,

and for all applications of interest, we can treat this sepa
tion as a continuous variable. ThenClm can be replaced by
C(r ) wherer is theseparationof pairs of diffusing particles.
We must integrate over allr lying in the sample volume. In
addition, there is an integration over the facex8, y8 of the
photodetector~see Fig. 5!. For algebraic simplicity, we con
sider the special case of the incident laser beamk i traveling
along they axis and illuminating the Brownian particles ove
the vertical distance 0<y<L. In the integration over the
illuminated sample volume, account must be taken of
fact that there is a larger likelihood of finding a pair of pa
ticles separated by a short distancey, compared to the prob
ability of encountering particles of separation slight
smaller thanL. Because the illuminated region is a thin ve
tical line ~see Fig. 5!, the normalized probability density
function w(y) has a particularly simple formw(y)5(2/L)
3(12y/L) for a light source of lengthL.12,13 The reader is
reminded thaty is a component of the separation of a pair
particles and not the coordinatey in Fig. 5. In this caseC(r )
is real and̂ C(r )C* (r )&5*0

Lw(y)C(y)2 dy.
Before proceeding to the final integration that yieldsg(t),

we simplify the exponentdk•r in the expression forC(r ) in
Eq. ~26!. Assuming that the detector is square, has an a
1158W. I. Goldburg
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h3h, and its face is normal to the direction of^ks&, the
scalar product in Eq.~24! is dk•r5k0yy8/R. Then

C~r !5hE
2h/2

h/2

eik0yy8/R dy85
h2 sin~k0hy!

k0hy
5h2 sinc~k0hy!.

~37!

We use Eq.~37! and the fact thatQ25N2h4, because the
square photodetector has sidesh, we have

f ~A!5E
0

L

~2/L !~12y/L !sinc2~k0yh/R!dy. ~38!

It has been implicitly assumed in the above calculation t
the incident laser beam has a square profile. In reality, la
beams usually have radially Gaussian intensity variati
This fact does not alter the above derivation as long as
beam lengthL seen by the photodetector is long compared
the Gaussian beam radius.

Consider next the case where the aperture in front of
photodetector is circular with diametera. Again the incident
laser beam is a thin line of light traveling along they-axis in
Fig. 5. We switch to cylindrical coordinates,dks•r
5k0r yy8/R, wherer y is the component of source coordina
r in the y direction. Takinga to be the diameter of the
detector, we obtain

C~r !5C~r y!5E
0

a/2E
0

2p

ei (k0r yr 8/R)cosf df dry

52pE
0

a/2

J0Fk0r yr 8

R G r 8 dr8, ~39!

where Jn(u) is a Bessel function of ordern. Using
*0

uJ0(u8)u8 du85uJ1(u), we find

G~t!54E
0

L

~2/L !~12r y /L !

3@J1~k0ary/2R!/~k0ary/2R!#2dry e22Dq2t

5 f ~A!e22Dq2t. ~40!

Again, f (A) falls below unity whenB is no longer small,
because the photodetector is accepting light from many
dependently fluctuating speckles~intensity maxima!, which
tend to average out the intensity fluctuations.

V. FLUID FLOW

We now ignore the effect of Brownian motion and inste
calculateG(t) under conditions where the velocity is chan
ing from point to point and is a function of timet. The above
derivation requires surprisingly little modification, eve
though the functional form ofG(t) will be entirely different
when the particles in the flow are not moving independen
The calculation will show thatG(t) decays in a timetc

governed by the velocity variation measured acrossL. Let
V(L) be the rms velocitydifferenceacross the source widt
L. We will find thattc.(qV(L))21 if B!1. If, on the other
hand, the photodetector collects light from many speck
the shape ofG(t) will be altered.
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Again focus attention on a pair of particles,l andm, mov-
ing at velocitiesvl(t) andvm(t). We can replacedr i j (t), the
relative change in position of this particle pair in a timet, by

V lmt5E
t

t1t

@vl~ t8!2vm~ t8!#dt8. ~41!

We have used the fact that in the short timet whereG(t) is
appreciable, the change in velocity differenceVlm is almost
constant. If the flow is turbulent,Vlm is a random variable as
measured in an experiment that spans many correlation ti
in the measuring timeT.

With this change, the above results can be used, excep
the fact that the factorization in Eq.~32! is no longer permis-
sible. Therefore we have

K~t!5N2A21 (
i , j ,iÞ j

^eiq•Vi j tCi j Ci j* &. ~42!

Here there is no justification for averaging the factorCi j Ci j*
separately. To understand this point, consider a pair of p
ticles that are near each other in the source and another
that is widely separated. There will be a coherence factoB
associated with each of these pairs, because closely sp
particles will produce a broader speckle than those that
not, just as a narrow slit produces a broader diffraction ma
mum than does a wide slit. Thus, the widely spaced pair w
receive a smaller weight inG(t). It is therefore necessary t
assure thatB5hL/Rl!1 if the measurements are to have
reasonably direct interpretation. Reference 13 discusse
calculation and a measurement of the effect onG(t) whenB
is not small, so that the photodetector collects light fro
many speckles.

As before, the seeding density of the particles is assum
to be sufficiently high thatV i j can be replaced byV(r ),
wherer is the distance between a particle pair. BecauseV(r )
is a random variable that generally will not be Gaussian,
probability distributionP must be left as an unknown func
tion to be determined by the experiment. LetVq(r ) be the
component of the velocity differenceV alongq. We will see
that the measuredG(t) is closely related to the Fourie
transform ofP(Vq). @If light is carried from the sample to
the photodetector by single-mode optical fibers, no integ
overA is required, andG(t) andP(Vq) are cosine transform
pairs.23#.

By repeating the same steps needed to obtainG(t) for
Brownian motion, we calculate that for a source in the fo
of a thin line of lengthL and for a scattering angle of 90°

G~t!5
1

A2 E
Vq(r )52`

Vq52` E
0

L

w~r !P~Vq ,r !

3cos~qVqt!uC~r !u2 dVq~r !dr. ~43!

In Eq. ~43! the exponential factor in Eq.~42! has been re-
placed by the cosine, becauseK(t) is real.

For a photodetector with a square face of areah3h,

G~t!5E
0

LE
Vq

~2/L !~12y/L !P~Vq ,r !cos~qVq~r !t!

3@sinc~k0hry/2R#2 dVq~r !. ~44!

For laminar flowsVq is not a random variable and n
integration overdVq is necessary. For turbulent flows it ha
1159W. I. Goldburg
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not been possible to deriveP(Vq ,r ), even when the turbu
lence is isotropic. For this reason the subject of turbule
remains a very active one,24 to which the photon correlation
technique can be employed to advantage.

For a simple example of a laminar flow that is easily stu
ied, consider the seeded sample to be cylindrical in sh
and rotating about its axis on, say a record turntable. Le
angular frequency bev, so that the azimuthal velocity i
given by vf5rv. To avoid having to take into accoun
Brownian motion of the seed particles, one might want
choose a solvent having a large viscosity, such as a mix
of glycerine and water. This choice will makeD small, so

that the decay terme22Dq2t can be ignored. If parameters a
chosen to assureB!1, so that the factorsC(r ) can be ig-
nored as well, a simple integration of Eq.~43! establishes
that

g~t!511@sinc~x!#2, ~45!

where x5qVqt/25k0Lvt/2. The decaying oscillations o
this function are easily observed.

VI. CONCLUSION

Dynamic light scattering has long been a powerful tool
studying a wide range of phenomena, only a few of wh
have been discussed here. In these and many other app
tions, the scattering is generated by small particles that h
been introduced into a solvent, which is assumed to sca
light weakly. But many fluid-like and glassy systems, such
gels, strongly scatter light by themselves, so that no pr
particles need be introduced. The experiments sugge
here could easily provide a launching point for original i
vestigations.

No mention has been made of the use of optical fiber
couple the light from the source to the photodetector. W
this new technical development, dynamic light scattering
periments become much more convenient. Because sin
mode fibers will conduct light having a single wavenumb
we can satisfy the coherence conditionB!1 without having
to put the photodetector and sample far from each othe
useful introduction to this technique can be found in rec
work by Duet al.23 The measurements shown in Fig. 3 we
made with a relatively inexpensive optical fiber that did n
preserve polarization.
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