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By scattering light from small particles, their geometrical structure and their state of motion can be
measured. An experiment is described for measuring the diffusivity of small particles undergoing
Brownian motion using the technique called photon correlation spectroscopy or dynamic light
scattering. The necessary experimental apparatus and the related theory are discussed. Photon
correlation spectroscopy is a powerful tool for studying the dynamical behavior of fluids near
critical points, and a discussion is given of this phenomenon. The same experimental technique also
can be used to study laminar or turbulent flows, and the associated theory is introduced to enable
such experiments to be interpreted. 1899 American Association of Physics Teachers.

[. INTRODUCTION beam passing through the sample should appear as a bright
line which is well defined throughout the entire scattering
Fractals, continuous phase transitions, spinodal decompdolume. ) o
sition, Brownian motion, the Wiener—Khinchine theorem, The experimental setup in Fig. 1 shows a photodetector
the Brown—Twiss effect, photon correlation spectroscopythat collects light at a scattering angleequal to 90°. To
and turbulence. Many phenomena and ideas of great impoﬁatisfy the spatial coherence condition discussed below the
tance in statistical and condensed matter physics can be iflistanceR between the center of the sample cell and the
troduced by studying dynamic light scattering. The goal ofphotodetector should be large; say, 30—100 cm. In addition,
this paper is to introduce this technique by describing a fewa small pinhole of diameten should be placed close to the
experiments that can be performed by undergraduate styhotodetector face. It is helpful to mildly focus the incident
dents. The experimental possibilities are sufficiently rich thataser beam on the sample volume, using, sayf=a20cm
they can be stimulating to graduate students as well. Thiens. Ideally, the scattering particles will produce a sharply
measurements require inexpensive optical components sudefined bright line in the fluid. Only a segment of the scat-
as a small He—Ne laséoutput power of a few mW a few  tered beam should fall on the face of the photodetector. This
lenses and lens holders, and a photodetector. In addition, segment can be defined by a pair of parallel closely spaced
more expensive device is needed, namely a photon coblack masking tape strips placed on the sample (skpa-
relator. Many correlators that may have been discarded byation of the order of a mijn Alternatively, a lens can be
researchers may serve the purpose perfectly Wallnew  used to form the image of the scattering volume on a slit of
correlator can be purchased for several thousand dollars. adjustable widthL. The photodetector then accepts light
Considerable emphasis is placed on the Brownian motiofrom scattering particles within the segment. Spatial coher-
of micron-size patrticles diffusing in a background fluid suchence is achieved by choosirg L, and R to satisfy the
as water, because an understanding of Brownian motiopondition
opens the door to understanding a broad range of subjects,

including the dynamical behavior of fluids and fluid mix- B=hL/RA=1. (D)
tures, and magnetic materials near their respective critical ) S
points. where\ is the wavelength of light in the water sample of

Near the critical point of fluids, we can observe fluctua-refractive indexn, and A is related to the vacuum wave-
tions by eye and also by using a very small laser. Section llength of the laser beam,,. by N=X\,./n. For watern
describes a desktop experiment for doing so. It turns out that 1.3.2 The optical coherence condition in Eq) is familiar
these fluctuations produce the same effects as those seenfiom elementary optics. When E({l) is satisfied, the photo-
the scattering of light by small particles in Brownian motion. detector collects light from only the first diffraction maxi-
Readers who have only a qualitative interest in light scattermum produced by a slit of width. For studies of Brownian
ing can skip directly to Sec. Il. The remainder of the paper ismotion, one might want to choodg R, andh so thatB is
intended for readers who are interested in setting up theiless than 10 or s¢for studies of fluid motion discussed in
own apparatus to study Brownian motion or fluid dynamicssec. IV, B should be less than unjty
quantitatively. The same equipment can be used to make The photodetector should be operated as a pulse counting
measurements in fluids near the critical point. device rather than in an analog mode, that is, it should sense

Suppose that the experimental components have been age individual photoelectron pulses. The width of these
sembled and arranged on a table as indicated in Fig. 1. Theulses is not relevant to the experiment; only their spacing in
beam of the low-power He—Ne laser is directed at a smalime is important. It is preferable if all the photopulses are of
vial or test tube filled with water in which small particles the same width and amplitude, which is accomplished by
have been suspended. For the particle suspension, a drop gdssing the photodetector output through a discriminator.
skim milk in water will do, but it is best to use particles, all The individual pulses coming out of the discriminator should
of which have the same diamei@nin the 0.01 micron to 50 be less than ks in width and ideally less than Ogs. Many
micron rang€. With the proper particle concentration, the photodetectors come with a built-in discriminator with a
sample will be pale blue when viewed in room light. A laser TTL output.
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Fig. 1. Experimental setup for studying the Brownian motion of particles in
water. The sample is labeleédl The lasell directs the incident beam ver- Fig. 3. Plot ofg(7) versusr measured in a soap film which was only a few
tically upward. The photodetector PD converts the scattered light into gum thick. The soap solution was a 1% dish washing detergent in water. The
pulse string which is fed to the correlator COR. seed particles were polystyrene spheres of diametgr Wote thatg(0)

=2.

To be sure that all the optics and electronics are arranged
correctly, it is useful to observe the chain of TTL pulses on
an oscilloscope before sending them to the correlator. If the K(7)=(I(t)I(t+ 7)) (2)
TTL pulse width is shorter than 0.,1s, use very short inter- L .
connecting cables or be sure that all outputs and inputs a®d its dimensionless counterpart
terminated in the characteristic impedance of the cable, g(7)=(I(t)I(t+7))/{I(1))2 3
which is 50() for RG58U cable. This is to avoid reflection of _ . .
pulses from the ends of the cable due to impedance missxPerimentally, the average designated by the brackets in
matching problems. Data collection will be tedious if the EQ- (3) is a time average over the data collection intefal
mean photon counting rat¢) is less than 1000 counts/s. 1 (T

Figure 2a) shows a chain of photodetector pulses pro- K(r)=—J [(t)I(t+ 7)dt, 4
duced by incoherent light falling on the photodetector. The TJo

pulses occur at rgndom times_, with their mean spacing being oo 1 typically ranges from seconds to many minutes,
inversely proportional t@l). Figure 2b) shows the detector it the choice dictated by the desired signal-to-noise ratio.
output from light that is scattered by diffusing particles in thetho  mean intensity is the time average(l)

sample. In both experiments the photon pulses have passe—d(llT)le(t)dt

through a discriminator, assuring that all the pulses have the 0 L . .

same height and width. In Fig(t the pulses are correlated _ " the experiments discussed here, the system is in thermal
equilibrium, or as in Sec. V, in a stationary state. In either

in time, that is, they are bunched together within a correla v . .
tion time r, which i determined by the diffusion coefficient €@S€(!(1))=(I(t+)), a fact that will be invoked repeat-

of the particles and the scattering angle. The photon cor€dly. Of course, K(7) is not independent of7 its

relator identifies this clustering effect by measuring the cor-~-dependence is what we are interested in measuring and
relation function calculating. Its characteristic decay time will be denoted as

7. Typically 7. is in the range of hundreds of microseconds
to milliseconds, depending on the particle size used.
1(0) @) The signal-to-noise rati&/N, will always improve if the
data collection timd is increased. Suppose that we are con-
‘ ‘ ‘ ' ‘ 1 ’ ‘ I ’ ’ tent with data for whichg(7) is measured within 1%. First
assume that the counting ratl is so large that the quality
of the measurements is not determined by the low counting
rate, but is limited by the numbed.=T/7., of “fluctua-
tions” collected in the timeT. According to Poisson
(b) statistics! S’N=1/\/N;, and hence, one percent accuracy is
achieved by setting/7,=10".
H H ‘ ‘ ’ H H ‘ Next consider the opposite limit where the scattered inten-
t sity (1) is very low. In this limit, the fluctuations ig(7) will
Fig. 2. (@) The output of the PD for immobile scatterers, as might be the_be governed by so-called shot n0|_se a_nd will Vary as the
case if the sample has been frozen or if the sample is a piece of milk glas§lverse square root of the measuring time In this low
or even a piece of paper. The arrival time of the photopulses is purelcounting rate limit, where Poisson statistics is again relevant,

random in this caseb) The PD output of moving particles which are Dop- T/ Te is no longer the controlling parameter; to make a mea-
pler shifting the frequency of the incident light. Note that the pulses tend to

- _ S T surement to 1% accuracy, choobd )= 10"
cluster in time. This clustering time or correlation timgis inversely pro- I
portional to the diffusivity of the randomly moving particles that scatter the F'QU_re 3 ShOYVS a m?asur@ﬂT) prquC?d bylsma” par-
light. ticles in Brownian motion. The solution in which they are

1(0)
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Fig. 4. Sketch of diffusing particle with an incident beam traveling from left I
to right. The particle is located at the origin of the coordinate system at time

All photodetectors generate output pulses even when there
is no light shining on them. This dark count rate can be a few
Hz to several kHz. Except at very smajlthese dark count
pulses occur roughly randomly in time and hence give a flat
background tog(7), reducing the relative contribution of
G(7), the quantity in which we are really interested. In room
light the photodetector will have the same effect. It is there-
fore necessary to employ a laser-generated counting rate that
is many times larger than the dark count rate and room light
count rate, in addition to satisfying the conditioh 7.>1.

The contribution to(l) from room light can be reduced by
placing an inexpensive interference fiftedirectly in front

of the photodetector and interposing a tube between it and
the sample. A cardboard tube works well. For the most
noise-free results, turn off the room lights when the cor-
relator is making measurements.

If a flowing fluid is seeded with small particles, we can
earn a lot about the flow by measurigg7). The fluid flow

t=0 and at timet its position isr(t). The photodetector is labeled PD. The problem is treated in Sec. V. It will be seen tlmtT) gives

directions of the incident and scattered beams are shown.

moving is a soap film only a fewum thick. For spherical

Brownian particles diffusing in the background solvent, it

can be showhthat the function

G(r)=g(n) -1 5
decays exponentially, with the decay rate given by
7, '=2D0? (6)

Here D is the diffusion coefficient of the particles aidis
the scattering wavevector whose magnitudis given by

B _477_ 6 7
g=lal=~sin3, 7

where @ is the scattering angle andis \,c/n.

In a timet a particle will diffuse a mean square distance
(r?) that is proportional toDt. The diffusion produces a

large fluctuation in the intensity in a timg such thatt’
=1/(Dg?). This characteristic tim# is of the orderr. Itis

these intensity fluctuations that a photon correlator measure
Helpful discussions of diffusion can be found in Refs. 4 and

5

The diffusion coefficienD depends on the particle diam-

eterd. For spherical particled) =kgT/377d,® whereT is
the temperaturekg is Boltzmann’s constant, ang is the

viscosity of the background fluid. From this relation, we

have p=0.01gcm!s ™ andD=4.4x10"° cn¥/s for a dif-

fusing particle 1um in diameter in water at room tempera-

ture. From a measurement gfr), we can obtainrgl and

information about velocity differences between pairs of
points in the flow. Laminar and turbulent flows can be stud-
ied in the laborator}#~** using the same apparatus as that
employed in the Brownian motion measurements.

In Sec. Il the intensity correlation function is calculated
for a single Brownian particle, with the assumption that the
photodetector is so small that the scattering wave vegisr
sharply defined. The calculation will be valid even when
many particles are present in the sample, as long as they are
sufficiently far apart that they do not interact. We will see
that whenB is no longer very smallG(7) is diminished by
a factorf(A) which takes into account the fact that photons
scattered from the most widely separated diffusing particles
in the sample will interfere with each other to give

G(r)=g(r)—1=f(A)e 209", ®)

The argumenA in f(A) is the area of the photodetector, an
important parameter in the subsequent calculatiof( &) in
Sec. IV.

The single-particle calculation @f( 7) is presented in Sec.
Ill. To find f(A) in Eq. (8), we must consider the motion of
many Brownian particles, because its attenuating effect
3rises from the interference of the electric fields scattered by
these particles. The calculation ©fA) appears in Sec. IV.

The basic theory developed in Secs. Il and Ill can be ap-
plied with little modification to the study of laminar and
turbulent flows, which is the subject of Sec. V. Some con-
cluding remarks are given in Sec. VI.

Il. CRITICAL PHENOMENA, LIGHT SCATTERING,
AND BROWNIAN MOTION

find the radius of the diffusing particles, even if they are too |_|ght Scattering is a very powerfu| tool for Studying criti-

small to be observed with a microscop€ee Fig. 4. Simi-

cal phenomena. Some of the central features of continuous

larly, a measurement @j(7) enables us to measure the ra- phase transitions are easily observed and can be presented in
dius of gyration of polymer molecules diffusing in solution a lecture demonstration or observed on a desktop.

and to determine the correlation length of fluctuations in den- Here we briefly review the subject of critical phenomena
sity or concentration in a fluid or mixture near its critical and describe an experiment for observing a striking manifes-
point.”® Measurements of(7) can be a powerful tool for tation of it, namely critical opalescence. You can observe
studying phenomena that have nothing to do with diffusionthis effect with a very small laser of the type used as a
for example, the determination of the width of a narrowpointer in lecture halls. In addition, you will need a small

spectral liné or the diameter of a distant double st&The

glass container to hold the sample, which might be a mixture

latter experiment gave bhirth to the technique of photon corof 2,6-lutidine and watefLW), available from a chemical

relation spectroscopy.
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~1 cm and a height of several centimeters. The vial shoul@lobally in one phase. These local fluctuations in density or

have a good screw top, because 2,6-|utibqrfms a very Composition produce local variations in the refractive index

unpleasant smell. The trick is to prepare the LW mixture sd- It is these local variations in that scatter the light, just as

that the lutidine concentration is close to the critical con- a small lens would. AS; is approached, these composition

centrationc., which is 28% by weight. In a binary mixture fluctuations grow in magnitude and in spatial extgrand

such as LW, the concentration variable plays the same roléan become even larger than the wavelength of light. The

as the density in a simple fluid such as water or,CO fluctuations of size¢ cause G(7)=g(7)—1 to vary as
Sample preparation should be carried out under a hood CE_Zqut, just as for Brownian particle§provided qé<1).

in a very well ventilated space. After the water and lutidineThe diffusivity D in G(7) is the same as that of a Brownian

have been placed in the container with its composition withinparticle, except that the radiaé2 of the diffusing particle is

a few percent ot and shaken up, it will be in one phase if replaced by.

the temperature is less than the critical temperatdie, The reader interested in learning more about critical phe-

=33.4°C. Place the cell in a beaker of water, which will nomena and the role of light scattering has many sources of

serve as a temperature bath. The bath is then heated by adtformation available, such as those collected in Refs. 8, 16,

ing hot tap water. When the sample is held for a few minutegind 17.

at a high temperature well aboVg, it will separate into two

well-defined phases, with the heavier water-rich phase on thg, |INTENSITY CORRELATION FUNCTION FOR

bottom. , , BROWNIAN PARTICLES
If you were successful in preparing a sample close to the

critical concentration, the volumes of the two phases will be We first deduce the limiting value af(7) for 7. In
almost equal. If not, insert a syringe into the cell and drawthjs limit the intensities at and t+ 7 are unrelated, so

out the excess phaser add a drop or two of the appropriate () = (1)W1 (t+ 7)) =1 (1))2=(I(t+7))? in steady or
minority component so that the two phases have equal vol-

o X i quilibrium states. Thereforg(7—«)=1 in Eq.(3).
Ume. After this single iteration, you have probably preparede In the opposite limitr< 7., the scattered intensities at the
the mixture adequately close 1q .

To observe critical opalescence, return the sample cell tgmest andt+ r are almost equal, so thg(r) —(1%)/(1)*,
the water bath and heat it slowly, shaking the sample ceIYVhICh is in general greater than unity. For the Brownian

now and then to bring the mixture to the same temperature égotiop problem, we will see thag(r—0)=2. If the gample .
that of the surrounding bath. Whanis increased through, contains large specks of dust that produce occasional bright

from below, droplets will form, and after several minutes,ﬂaSheS of light when floating through the laser beam, we are

the more dense water-rich phase will settle to the bottom ang® Ipnger dealing with the Gaussian statistics of Brownian
two sharply defined phases will be seen. The most instructivE'0tion. andg(0) can greatly exceed two. _ ,
observations are made when the system is still in one phase, W& are interested im(7) generated by non-interacting
so increase the bath temperature slowlyrass approached. Brownian partlclgs such as polystyrene latex spheres Qf di-

When the temperature becomes closeTto the sample ameterd=;um ina s.mall contglner of water. As a.startmg
will develop a brownish appearance because it is strongpCint consider a particular particle locatedrét) at timet
scattering the room light. The scattering may become sdéhat was ar(0) att=0. A laser beam traveling along tlye
large that the laser beam, which you should now be sendingXis illuminates the particle, which then scatters the incident
through the sample, may hardly go through it. This phenombeam. The photodetector, which is located a large distRnce
enon is called critical opalescence. Place a sheet of paper §m the origin, senses the scattered field, producing photo-
that you can view the transmitted beam. You should see thatulses at thefluctuating counting ratel (t). The intensity
the scattered light consists of speckles that flash on and off in(t) is proportional to the square of the incident electric field
a random fashion. E;, which is assumed to be of complex form:

How are we to understand this strong scattering phenom- _ ik r(tg) + ot
enon when the system is in one phase but closE;foNear Ei=&ee T % ©)
the critical point, small regions of water rich and lutidine rich wherew is an optical frequency of the order of ¥Y®Hz and
phases momentarily form and then diffuse away. This same, s the instant when the scattered wave leaves the particle.
phenomenon occurs far from the critical point, but the size Olyge k; has the direction of the incident beam and its mag-
:Eg rfe%%mi'ig]#ghairgaggr;gagj?cilv)\/’at\;gte r:géztomggéhﬁﬂ%itude.isko= 2m/\. Because we are ultimately interested in
instruments will not be able to record them. Similarly aghe ratio of scattered intensities, nothing is lost by taking this

: .~ field to be expressed in dimensionless units. The scattered

glass of water near room temperature undergoes fluctuatio S1d E. is a spherical wave whose amplitude is proportional
in density, but these fluctuations are so small in spatial exte'q{ s IS @ SPNe ) ; P prop
o the incident field amplitude:

and in amplitude that they cannot be easily observed. More-

over, the fluctuation raté' is very fast far above or below E;(to)e kolR=r(to)] ot to)
T., because small-scale density variations diffuse away Es(R.t)= IR_r(to)] el (10
faster than large ones, making them unobservable by eye and o 0
even by very fast electronic equipment. The intensity is
Near the critical point, the free energies of the one-phase I(t)=ConstE(R,)EX (R, 1). (11)

states and the two-phase states are almost the same. As a

result, the system makes brief excursions or fluctuationghe constant of proportionality depends on many param-
from the one-phase state to the two phase state, that is, éters, includingg, and R. The factore'“! in Eq. (10) will
locally tries to phase separate, even though the system sometimes be suppressed because it will always be canceled
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out for any measurable quantity. The units of the electricmumber of independent random variablers, has a Gauss-
field will be chosen such thd(t)EZ (t)=1(t). In the next ian distribution, regardless of the functional form of the dis-
section, quantities liké& andQ (the analog o) will have  tribution of the individual terms. In three dimensiéhs
different un!ts, but.thel quanFities of interest, namelyr) P(r)=(47rDt)*3’2e*r2’4Dt. (14)
andf(A), will remain dimensionless. . - . ] ) B .
Equation(10) can be simplified by taking advantage of the This probability density function describes the position dis-
fact that|R| is much greater thajr(t)| in all cases of experi- tribution of a large assemblfor ensembleof particles ini-
mental interest. Then the exponent in Ef0) can be ex- tially located ar =0 att=0. The integral of over all space

panded to give the phase factor is unity att=0 and at all subsequent times. According to Eq.
(14), P is an infinitely sharp spike or delta function &t

Ad(t)=ko|R=r(to) =0. As time progresse$ broadens, but its maximum does
=koVRZ—2R -1 +r(tg)?=koR—koR-r(to)/R. not shift. This broadening d?(t) describes the diffusion of

an ink drop that is initially infinitely small and subsequently
We define the scattered light wave vectay=koR/R, s0  spreads out as a spherically symmetric cloud, fading at its
that, to a good approximatiody ¢ =koR—Ks-r(to). Defin-  edges. Of course, ink particles are Brownian particles them-
ing selves, rendered observable by their color.
We now turn our attention to a calculation of the electric

a=kski, (12 field correlation functiorg,(7), a complex quantity defined
we can write the total scattered field at tim@roduced by as
the Brownian particle as gu(P=(EX (OEt+ 7)1
efiq-r(t0)+iwt
Es(t)ocTr :<eiq-r(7)>eiwﬂr:f P(r)eiq-rdBreiwt’ (15)

where we have dropped theindependent factoe'®oR. In  ¢q that
addition, the denominator is approximated Ry because in .
allgxpedfrimentsR>r. The vectors appearing here are shown gl(T):(47TD7_)—3/2eiwrf e 1712Drg=igq-1 43,
in Fig. 4.

Because the flight time of the photoit; ty is very short DPraiwr
(much shorter than the time for a particle to diffuse an opti- =e e (16)
cal wavelength t, can be replaced by, so that the above  yritten out in full, K(7) in Eq. (2) is
equation, combined with Eq9), can be written

— o0

K(7)=(ES (DES(DES (t+ 1) Eg(t+17)). 17

efiq-r(t)Jria)t
R (13 The motion of a single particle will Doppler shift the fre-

quency of plane waves falling upon it, but a photodetector

The scattering of photons by the small particles is almostvill not record a fluctuation in the total scattered intensity

perfectly elastic, so that the magnitude of the incident andEg(t)EZ (t), since the time-dependent phase factorkft)

scattered photons is equdk =|ki|=2m/A=ko. If the  andE¥(t) cancel. To observe intensity fluctuations in a pho-

scattering angle i, then q=2kysin(#/2). This result is todetector, one must have at least two particles present, so

quickly obtained from a sketch of the two vectdrsandk; that their relative motion will generate a beating of the scat-

drawn so that their tails touch each other, with the argjle tered electric fields. It turns out, as one will see, that the only

between them. As expected, whéis zero andm, g is zero  terms contributing t@(t) are such pairwise terms.

and X, respectively. We are interested ig(7)={(I(t)I(t+ 7))/{I)?, when the

In this discussion, the vector nature of the electric field hasample consists of a very large numbérof particles ex-
been ignored, so polarization effects were not considereghosed to the incident plane wave. Writing out the numerator
Such effects are not important if the refractive index of theand denominator ofj(7) in full and dropping the subscript
scattering particle is close to that of the surrounding fliid. = s,”

If this condition is fulfilled, the scattered light will have the _

same polarization as that of the incident beam, because the g(7)=K(7)/Q?

scattering particles behave almost like point dipoles, their

dipole moment being induced by the incident electric f€ld. — 2 (Ei()E* (1)E (t+r)E*(t+r))/QZ (18)

The above derivation is for an ensemble of non-interacting i J k ! '
Brownian particles, a condition that is well fulfilled if the h
particle density is low enough that the beam traces a shar\ff ere
line through the fluid. In the limit of extreme multiple scat- - 0 »
tering, ks would no longer be well-defined, and the scattering ~ (Q(t))=(l (U)ZZ Eg(e!@ e 1@ r),
wave vectorq=k;—k; would have lost its meaning. !

In a macroscopic time interval, the distancer(t) tra- There areN* terms inK and inQ?, but in the ensemble
versed by a Brownian particle is a Gaussian random variablegveraging operation, most of them are zero because they cor-
its position in a liquid is the sum of many independent stepsespond to fluctuations at optical frequencies or because the
of atomic size. According to the central limit theoréna,  particles are, by assumption, uncorrelated in their motion.
random variable =X 6r; which is the sum of a very large (See the next section for more detail$he only surviving

Eq(t)ex
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terms are those for which=| andj=k. The absence of a
correlation between the particles enables one to factor func-

tions like(E;(t)Ef (t+ 7)Ej (t) Ei(t+ 7)) into the product of
pairwise correlation functions with=1 andj =k, so that this
product may be written(E;(t)E" (t+ 7) )(E} (1) Ej(t+ 7))

with i#j. Because all particles scatter identically, this term

has the same value agE;(t)E; (t+7))|?, even though it
represents a beating term between different partickesd|.

There will be N>~ N=N? such electric field correlation

function terms inK( 7).

Now consider those terms for which=j and k=1,
namely 3; (E;()Ef (1) Ej(t+ 7)Ef (t+7)). It is equal to
N?E3=(1)?, or equivalentlyN?|(E(t))|?, whereE is the
field scattered by a single particle.

Collecting these results and putting them in ELp) per-
mits one to write

9(7)=1+[((E()E* (t+ ) |H|(E(D)[?)]2. (19)
Or equivalently,
g(7)=1+|gs(7)]? (20)

The correlation function is written in the above way be-

=Y h/2

Fig. 5. Schematic diagram showing the scattering geometry and the coordi-
nate directions discussed in Sec. IV. The incident bkaniike all the other
wave vectors shown, lies in the plane of the paper. The scattering wave
vector(or the momentum transfefor the photon striking the photodetector
surface at the point{ =0y’) is Ak=ks—k;=qg+ dk. Hereq is the aver-

age value ofAk. In the detailed calculations presented here, the incident
beam is travelling in the-y direction, and the photodetector is a square of
areahx h or a circle of diameteh. A second coordinate systex, y’, z’

is at the geometrical center of the photodetector.

cause the result holds more generally than suggested by thisctor and on the same parameters for the photodetector sur-
derivation; Eq.(20) is valid for any N-particle system, as face with areaA. Consider the special geometrical arrange-

long as the the total scattered fiel;=>E; is a (two-

ment shown in Fig. 5. The wave numbler of the incident

dimensiongl Gaussian random variable. This importantlaser beam has been chosen to lie in the plane of the paper,
equation is called the Bloch—Siegert theorem. Its full deriva-and the photodetector receives light from a rang&ofal-

tion can be found in Ref. 21.
Because|E* (t)E(t+ 7))/(|E(t)|2)2=e~2P%", we have,

g(7)=1+e 2097, 1)

which is our central result.
Equation (21) gives the correctr dependence of5(7)
=g(7)—1, even wherB is large andf(A) in Eq. (8) is

ues. The mean value of the scattered wavevedtgr points
along thez axis in Fig. 5, so the average scattering vector
is given by g=(ks)—k;. Its direction and magnitude are
shown in Fig. 5.

The rectangular coordinate system is centered at a point
near the center of the sample. Another coordinate system
y’, Z' is also employed. The origin of this coordinate system

correspondingly small. On the other hand, it fails when apdis at the geometrical center of the photodetector; its face is
plied to flowing fluids, where the particles are no longerassumed to be square, with dimensibndf the photosensi-
moving independently. In that case, the factorization of theaive area is circular, its radius is also taken totbe

fourfold correlation function inK(7) is no longer permis-

The detector collects light from a range of scattered vec-

sible, and one must turn to the formalism presented in Se¢orsk,, and the photon momentum transfer is designated as

\%

"For a sample containing a spread of particle diameters, Ak=ks—ki=q+ k.

such as dilute milkg(7) will consist of a sum or integral of

exponentially decaying contributions of the
e~ 2Di(d)g’r

particles are not spherical in shape.
So far we have considered only the limBit1, so that the

photodetector is receiving light from a single scattering vec-
tor, ks. That restriction is lifted in the next section. In many
experiments, the finite area of the photodetector chang

only the amplitude of5(t), but for fluid flow, the shape of
this function can be appreciably change®ifs not less than
unity 1213

IV. THE EFFECT OF SPATIAL INCOHERENCE

The goal of this section is to calculate ttde)coherence
factor f(A) in Eq. (8). This function will depend on the

form

, With each term appropriately weighted by a con-
centration factor;(d). There exists a large body of literature
dealing with this weighting problem, as it is of great practical
importanceé?? Further complications arise if the Brownian

(22)
For thejth particle the scattered electric field is

Ej:EOefiAk-I’j(t)Jriwt' (23)

The subscript ‘s in the scattered field has now been
dropped. It will be assumed, as before, that all scattering
particles have the same diameter, so that the scattering am-
plitude Ey is common to all of them. Therefore it does not
appear ing(7), and we set it equal to unity.

The correlation functiorK(7) in Eq. (8) is the product of

e]‘gur electric field factors, each of which is now a sum over

all N particles in the sample. The scattered photons will go to
all points on the face of the photodetector, and for each
point, the momentum transférk will be different. We need
to sum over all such points or rather integrate over the pho-
tosensitive ared.

At time t, the producEi(t)EJ*(t) will contain terms such
as €@t (iO-ri®) where we have replacefik by its
equivalent,g+ dk. In writing this expression, it has been

precise shape and size of the source as seen by the photodeeognized that to a very good approximatoph 5k is inde-
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pendent of the particle positions(t), so this momentum BecauseN is typically very large, we can neglect tie
change is independent of particle position in the sample. terms for whichi=j=I1=m, there being onlyN of these
The notation is simplified by letting;;=r;(t) —r;(t). In  terms compared to the(N—1)=N? particle pairs that do
the short time intervak, particlesi andj change their rela- not satisfy this fourfold equality. Taking advantage of this
tive positions by a distancer;;(7), so at timet+r, the fact, we write
difference in positions of this particle pair is;(t)+ or;; . .
Integrating the scattered intensity over the area of the photo- K(7)=N2?AZ+ >, (elalnM=amlc, cxy  (31)
detector for botH (t) andI(t+7), we obtain | m=l
The first term on the right comes from setting j and |
g(r)zK(r)/Q2=<f I(t)dA’f I(t+ r)dA’> / Q? (24  =m. Particles undergoing Brownian motion are uncorre-
A A lated, so we can write

where K(T):N2A2+ N2<eiq-§r|m(T)C|mC|>t-m>
Q(t)zu I(t)dA’> :< f ei(q”k>-rij<t>dA’> =N?AZ+N*(CimCiiy) (€4 2mi(7). (32)
A A
Y We are justified in averaging the produ€t,C,=|Cml?
_ E Qi@+ 3K)- 1 () g A7 separately from the remaining phase factor term, because the
5 A ' change in separatiodr;;(7) in the intervalr has nothing to

(250 do with the initial(random separation;;(t) of the Brownian

articles. This major simplification is lost when the particles

re moving coherently, as discussed in Sec. V for fluid flow.
In the present notation, for arly

The summations and integrations are freely interchange§1
here.
Writing out K(7) in full, we have

<e:iq.5r|(r)>:e—Dq27' (33)
K= f eil(a+ 501 (D] g A" . . . .
& A and the _mdependence of the motion of the particles permits
us to write
% 2 @ i(A+ 8K)-[rim(1) + (81 ()] dA’> . (26) (!9 9mi(7)y = (ld- (D) (g=1d-oTm(7)) (34
m Ja
" Thus

Remember that each little area eleménaton the face of the yo o o\ 2D
photodetector has a differedk associated with it. This fact K(7)=N°A%+NX|Cry| e =29, (35
will be used when we come to evaluate this integral in twopjyiding by Q2=N2A? from Eq. (28) gives the result we
spatial cases: a square and a circular photodetector. seek for the case dfincorrelateyl Brownian motion of par-

Because the particles have random positions at all timegjcjes in the sample:
the ensemble average implied by the brackets, will give zero

contribution toQ unlessi=j and in that caser;;(t)=0. g(7)=1+f(A)e 207, (36)
ThusQ=NA and wheref (A)=(|Cyp|2)/AZ.
Q2=N?2A?, (27) The functionC,,, depends on the particle separatiops,

and for all applications of interest, we can treat this separa-
tion as a continuous variable. Théh,,, can be replaced by
C(r) wherer is theseparationof pairs of diffusing particles.
We must integrate over atllying in the sample volume. In
. . addition, there is an integration over the face y’ of the
K(T):i Zm (ela = om(Me=la- (=1 N=mB, C;;), photodetectofsee Fig. 5. ?:or algebraic simplicitz, we con-
e (29) sider the special case of the incident laser bé&arnaveling
_ _ along they axis and illuminating the Brownian particles over
where, for anyi and] the vertical distance €y<L. In the integration over the
_ illuminated sample volume, account must be taken of the
Cij=| eNidA’=C} (290 fact that there is a larger likelihood of finding a pair of par-
A ticles separated by a short distangecompared to the prob-
and ability of encountering particles of separation slightly
smaller tharL. Because the illuminated region is a thin ver-
Blm:f el K- (Nm(®+8rm(7) g A’ (30) tical line (see Fig. % the normalized probability density
A function w(y) has a particularly simple fornv(y)=(2/L)
For every particle pair, the relative change in the particleX(1—Y/L) for a light source of length..**** The reader is
positions or,(7) is small compared to their separation reminded thay is a component of the separation of a pair of
rm(t), so we can se€; =B, . Also, the randomness of the particles and not the coordinagan Fig. 5. In this cas€(r)
particle positions again allows us to simplify the expressionsis real and(C(r)C* (r))=[gw(y)C(y)? dy.
the only terms in Eq(28) that will not average to zero are  Before proceeding to the final integration that yieis),
those for whichi=j andl=m ori=I| andj=m. For these we simplify the exponendk-r in the expression fo€(r) in
terms ¢;—r;+r,—ry) in Eq.(28) is zero. Eqg. (26). Assuming that the detector is square, has an area

For K(7), we have no such simplification. Every term in Eq.
(26) not involving 8k can be taken out of the integral, so that
this equation can be written in full as
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hxh, and its face is normal to the direction (), the Again focus attention on a pair of particlésandm, mov-

scalar product in Eq(24) is dk-r=kyyy'/R. Then ing at velocitiesy|(t) andvy,(t). We can replacér;;(7), the
relative change in position of this particle pair in a timdy
h? sin(kohy)

= 2 I
Koy h* sinq kohy).
(37)

We use Eq(37) and the fact tha©?=N2h?, because the We ha\_/e used the fact thf’:lt in the. sho.rt tlmhergG(r) is

appreciable, the change in velocity differenég, is almost

constant. If the flow is turbulenY/,,, is a random variable as

measured in an experiment that spans many correlation times

in the measuring timd.

S _ _ With this change, the above results can be used, except for

It has been implicitly assumed in the above calculation thathe fact that the factorization in E€82) is no longer permis-

the incident laser beam has a square profile. In reality, las&dible. Therefore we have

beams usually have radially Gaussian intensity variation.

This fact does not alter the above denvguon as long as the K(r)=N2A2+_ 2 _ <eiq-vijfcijcﬁ _ (42)

beam length. seen by the photodetector is long compared to RED

the Gaussian beam radius. . S . *
Consider next the case where the aperture in front of th&!€"e thelre IS no chsttlflcat:;)nhfor averaging .tdhe f""dﬁ?fcii]c

photodetector is circular with diametar Again the incident ?elpar?rt]eg" Toun ersta;}n tft1 |s'pc:|hnt, consider g palrtrc]) par-

laser beam is a thin line of light traveling along thexis in Icles that aré near each other in the Source and another pair

Fig. 5. We switch to cylindrical coordinatessk,-r that is. widely'separated. There wi.II be a coherence faBtor
=k. " IR wh s th t of Sa ¢ assqmated_Wlth each of these pairs, because closely spaced
Kol yy /I, WhErery 1S the component of SoUrce coorainate , ticles will produce a broader speckle than those that are

rin the y direction. Takinga to be the diameter of the o just as a narrow slit produces a broader diffraction maxi-

h/2
C(r =hf elkoyy' Ry’ = tr
O=h] y V) r= ft [Vi(t") — v (t))]dt . (41)

square photodetector has sidgswe have

f(A)= JOL(Z/L)(l—y/L)sinc?(koyh/R)dy. (39

detector, we obtain mum than does a wide slit. Thus, the widely spaced pair will
ar (2r ) receive a smaller weight i& (7). It is therefore necessary to
C(r)=C(ry)=f J ellkoryr ' /RIcosé g dy, assure thaB=hL/R\<1 if the measurements are to have a
o Jo

reasonably direct interpretation. Reference 13 discusses a
calculation and a measurement of the effectG{r) whenB
r’dr’, (39 is not small, so that the photodetector collects light from
many speckles.
As before, the seeding density of the particles is assumed
to be sufficiently high that/;; can be replaced by/(r),
wherer is the distance between a particle pair. Becavigg

a2 koryr’
= 277,[0 JO[T

where J,(u) is a Bessel function of orden. Using
J5Jo(u’)u’ du’=ud;(u), we find

L is a random variable that generally will not be Gaussian, the
G(T):4fo (2L)(1—ry/L) probability distributionP must be left as an unknown func-
tion to be determined by the experiment. DN&i(r) be the
X[J1(koar /2R)/ (koar,/2R)]2dr e~ 2Dd?r component of the velocity differendé alongqg. We will see
y 0%ly y h .
) that the measure®(r) is closely related to the Fourier
=f(A)e 2P (400 transform ofP(V,). [If light is carried from the sample to

the photodetector by single-mode optical fibers, no integral
overA is required, and@(7) andP(V,) are cosine transform
)
pairs®®].

By repeating the same steps needed to ob@&(m) for
Brownian motion, we calculate that for a source in the form
of a thin line of lengthL and for a scattering angle of 90°,

Again, f(A) falls below unity whenB is no longer small,
because the photodetector is accepting light from many in
dependently fluctuating specklémtensity maxima which
tend to average out the intensity fluctuations.

1 [Vg=—» (L
V. FLUID FLOW G(T)zﬁf g J W(r)P(Vq.)
Vg(n=—=Jo
We now ignore the effect of Brownian motion and instead ) 5
calculateG(r) under conditions where the velocity is chang- X codqVq)[C(r)|* dVg(r)dr. (43)

ing from point to point and is a function of timte The above In Eq. (43) the exponential factor in Eq42) has been re-
derivation requires surprisingly little modification, even placed by the cosine, becausér) is real.

though the functional form o&(7) will be entirely different For a photodetector with a square face of anesh,
when the patrticles in the flow are not moving independently. .

The calculation will show that3(7) decays in a timer, G(T):J J' (2IL)(1—y/L)P(Vq,r)codqV,y(r)7)
governed by the velocity variation measured acrbsd et 0 Jvq a a

V(L) be the rms velocitdifferenceacross the source width . 2
X .

L. We will find that .= (qV/(L)) L if B<L. If, on the other [sinakohry/2R]7dV4(r) (44)

hand, the photodetector collects light from many speckles, For laminar flowsV, is not a random variable and no

the shape of5(7) will be altered. integration overdV, is necessary. For turbulent flows it has
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not been possible to deri\Aé(Vq 1r), even when the turbu- For example, older modgls of Malvern, Langley Ford, and Brookhaven
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ied, consider the seeded sample to be cylindrical in shapg c" York 1997, Sthed., Chap. 37.

. . . . “C. Kittel, Elementary Statistical Physi¢®Viley, New York, 1958.

and rotating about its axis on, Say a re(_:ord tumtable.‘ Le.t Its}‘-’F. Reif, Fundamentals of Statistical and Thermal Phy<iekGraw—Hill,
apgular frequency be, SO that 'Fhe a2|muthgl velocity i \ew York, 1965.
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