APh 162 Week 1 Day 1
Objectives:

e Optical resolution

e Light path of the microscope
e Kohlerillumination

e Lens aberrations

The microscope has been central to the practice of biophysics or physical biology. Beyond needing

lenses of some sort to document phenomena, we use microscopes to look at stuff that is smaller than

what we can resolve with our own eyes. Thus, an understanding of resolution is critical to choosing what

sort of microscope we would like to use. Additionally, in this lab we will get used to using the

microscopes. Though the number of exercises is small, it will still take a bit of time as you learn how to

set up microscopes (Micromanager), acquire data, etc.

In the required sections below, there are questions which you are expected to answer. If there are

questions as to how to do certain things, or what the answer should be, please consult the TAs. We have

been as specific as possible, but there may still be confusion.
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Figure 1

of the microscopes in the lab.

Lab 1 — Getting to know your microscope (all required)

Brightfield microscopy. Undoubtedly, in the coming weeks,
there will be times where the microscope seems to be not
“working.” A good way to diagnose an overly dark image, or a
non-uniformly illuminated sample, or trouble-shooting in
general, is to think about what’s going on in the lightpath. The
diagram on the left displays the brightfield illumination
pathway of the microscope.

What is constant between all the brightfield techniques we will
be dealing with is the use of Koehler illumination. Koehler
illumination means that the sample is illuminated uniformly, so
any structure or hot spots in the lamp filament will be
minimized; as well, in Koehler, the full numerical aperture of
the condenser lens is utilized, which boosts the resolution of
the microscope (see below).

1. Identify the brightfield pathway of one of the
microscopes with your TA.

2. Align the microscope in Koehler.

3. Become familiar with Micromanager, which runs most



4. Edge-based resolution test: get one of the targets that has small bars on it. These targets have
edges that have sub-wavelength sharpness. Estimate how sharp the edges are using a 10-90%
criterion. Since the edges are sub-diffraction, you won’t be able to see a perfect corner.
Measure the degree of imperfection of the edge. How wide is it? To get the width, you will need
to figure out how to a) mount the slide onto a microscope, b) how to take an image of the slide,
c) locate the image on the hard disk, d) import the image into Matlab, e) figure out how many
pixels corresponds to the edge, and f) how to convert pixels to a meaningful dimension, such as
“micron” or “nanometer”. How does this value match what you expect from the response of the
microscope? In your website, post an image of your resolution test. List all the parameters
necessary for your measurement (objective NA, magnification, pixel size, etc.). Use A = 550 nm.
Post also a line scan of the edge that you used. Your precision must have an error bar.

5. Depth of field: Find a sample that has some depth to it. Hairs on a horse fly are convenient. Now
stop down the condenser aperture. What happens to the image? One of the 60x objectives also
has a variable numerical aperture. What happens to the image if you reduce the NA of this lens,
keeping the condenser aperture size constant? Take a picture before and after you stop down
the condenser. Post a picture of each, listing the objective and condenser used, and the NA of
each. In some cases (see exercise 6) you may need to estimate the condenser NA.

6. Koehler illumination resolution: Below there is a formula for the expected resolution of a
brightfield microscope, knowing the numerical aperture of the objective and condenser. Using
550 nm as the wavelength of light, does the formula work? That is, open the condenser aperture
all the way and find a diatom with a pattern that is barely resolvable. Take a picture and
measure the distance between the pattern lines. Now stop down the condenser all the way and
increase the bulb intensity (you might also need to increase the integration time of the camera)
to get a decent image. Is the pattern resolvable? Estimate the numerical aperture of the
condenser that you have just stopped down (there’s helpful formulas below).

7. Become familiar with the fluorescence light path.

8. Point-spread function (see also Lab 3): We can characterize the optical response of a microscope
by its “point-spread function”. Basically, the PSF tells us how the microscope images a point
object —i.e., if we had a diffraction-limited object, then imaged that object through the
microscope, the result would be the PSF. The PSF is a 3 dimensional object. Get some
diffraction-limited fluorescent beads and take a z-stack of the beads. Reconstruct the PSF in 3D
(a y-z or x-z plant will suffice). Why is there out-of-focus light? What are the limits of resolution
in X, y, and z? Post your image of the PSF. Include measurements on the width of the PSF and
the length (in z) of the PSF in real units. In this case, the wavelength of light is the wavelength of
the fluorescence. If you don’t know this, consult a TA.

Lab 2 - Fourier Optics

In this set up, we have “blown up” a conventional microscope to reveal its innards. With this, we will be
able to visualize the 2D Fourier transform of some objects, and to understand what a microscope is
doing. By blocking or passing some of the Fourier components, you will be able to modify the
characteristics of the resulting image. Below is a simplified diagram of the instrument:
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A laser beam, collimated by the condenser lens, illuminates (red arrows) a transparency placed at the
object plane, one focal length distance from the objective (f,). Light is diffracted (green arrows) off the
object which has the electric field distribution Ey(X,y) and is collected by the objective. An image of the
object is formed by the tube lens, which interferes the light at its focus (f4). The same principle holds for
imaging the Fourier transform of the object: the Fourier transform (with electric field distribution
Err(X,y)) appears behind the objective at the Fourier plane, or back focal plane.
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X and Y are the spatial coordinates of the Fourier plane. We subsequently image the Fourier transform
(blue arrows) on the Fourier plane (camera 2).

Objects in real space (x) are transformed according to X/fA, where fis the focal length of the objective
(200 mm), and A the wavelength of light (660 nm). The dimensions of the Fourier transform are hence
m™. We will illustrate with a few samples.

Note that we are actually observing the intensity of light at the Fourier plane, that is, the magnitude of
the Fourier transform, and not the actual transform itself. We are actually measuring the power
spectrum of the object, or, how much optical power is within each spatial frequency of the object:
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1. Identify the components of the “microscope” with your TA. How does the spatial filter work,
given your knowledge about diffraction?

2. (not required) What is the magnification of the system (optical and digital)? Knowing this,
calibrate the camera on the television screen(s). What do you suppose the smallest object you
can see is? How does this compare with d, (see below)?

3. Use a grating pattern in the object plane. Do the Fourier space coordinates match the spatial
frequency seen at the image plane? (That is, if you have a pattern that is 3 cycles/mm, where is



the corresponding peak in Fourier space?) Use both a high frequency and a low frequency
grating. Please describe the measured results in your report. What is the central spot? Why is it
always there?

4. (notrequired) Use a grating pattern with symmetry in more than one direction. Does the power
spectrum make sense? What happens if you rotate the object? What about a grating with
variable line density?

5. (not required) Use the various patterns; see if you can predict its Fourier transform!

(no need to write up this question) Place a mask in the path of the Fourier space to filter the
Fourier transform. What happens if you use a high frequency grating and block off the Fourier
components furthest from the center? How does this relate to resolution?

Now we know that an object with spatial extent d placed one focal length away from the objective has
as its transform components which are approximately 1/d in Fourier space. Thus as the object becomes
smaller, the Fourier component moves further and further from the origin. However, a lens is only of
finite diameter, and cannot therefore capture all Fourier components of a diffracted object.

The objective of a microscope, which serves to collect the light diffracted by an object, thus serves as a
low-pass filter. The maximum transmitted spatial frequency is fax ~ D/Afoy;, Where D is the diameter of
the objective lens. Thus the minimum size object that can be imaged is approximately dmin™ Afop/D.
What this means is that any object smaller than d,,;, will look like d.,;,. Using the Rayleigh criterion for
distinguishability, we define resolution as dmin/2.

Note that in photography, the f/# of a lens is nothing more than f,;/D. The equivalent quantity in
microscopy is the numerical aperture, which is defined as: NA = n sinO ~ n D/(2f.;), where n is the index
of refraction, and 6 is the half angle of the collected light. For a point radiating light in a microscope, it
will produce an image of finite diameter with the minimum resolution dmi, = 1.22 A/NA.y,;. The situation
is slightly more complex for brightfield images, since we must take into account the condenser
numerical aperture: dmin = 2.44 A/(NAopj + NAcondenser)-

Lab 3 — Aberrations (not required except for part 5)

Aberrations are the result of certain approximations used with designing lenses. Basically, it is physically
easier to grind glass as sections of a sphere. However, the result is that lenses only focus light near the
center of the lens to its focal point; at the margins of the lens, parallel rays will tend to over focus. This is
called “spherical aberration”. Please read through this. There is only 1 required exercise, #5 below.

BK-7, F/1 SPHERICAL SINGLET . .
These types of lenses are called “singlets” (left) since they have

a single surface that bends light. In order to “unbend” rays of
light near the margins of the lens, a negative lens is added to
the singlet, forming a
“doublet” (right). We
will explore spherical

aberrations, coma,




and chromatic aberrations.

The following lens pairs will help to explain why the Fourier transform in the “exploded” microscope

looks so shoddy. Since we have used two identical plano-convex lenses to image the Fourier plane, due
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to spherical aberration, the image does not form right,
giving us undesired flares.

1. Using the free-space optics setup, place a mask
in front of the objective lens to create a “line” beam.
Substitute the objective lens (which is a doublet) for a
singlet lens of the same focal length. Try and figure out
a method for measuring the focal length. Does the line
focus everywhere at the same time? Draw a diagram of
what’s happening. At the lens, place an iris. How much
should you “stop down” the lens until everything
focuses at the true focus? What is the f/#? Can you now
explain how pinhole cameras work? Hint: explain the
principle of “depth of focus”.

2. Now tilt the single lens. What happens to the
focus? This phenomenon is called “coma” (see left).

3. Do you expect the spherical aberration to result

from the orientation of the lens? Try flipping the singlet
around and see what happens. Which surface of the lens
should face the collimated light?

4. Replace the singlet with the original doublet. Check

the resultant spherical aberrations. What is the optical f/#?

5. (required) Chromatic aberrations. Go back to the diffraction-limited multi-colored beads. Image
their PSF using different filters. Is there an offset in the x-y plane? In z? Microscope objectives
are often optimized for green light and so red and blue will be at a slightly different plane.

Offsets in the x and y plane are generally due to slight angular deviations in the filters used, and

not the lenses. In your report, please post images of at least 2 colours of the beads. Measure

what the chromatic aberrations in x, y, and z are. Describe how you performed the

measurement.

Homework:

Write up the results of the exercises above, and use Matlab for the analysis of images. You and your

partner(s) in crime may turn in 1 write-up together (post it on the web, or email to us and we’ll post

it). Read online the principles of phase contrast microscopy.

Matlab homework: You may collaborate with each other, but write down with whom you

collaborated with. If you have troubles with Matlab, see the tutorial posted online, or ask your TA

for help. Turn in your code, naturally, online.



Figure out how to import images into Matlab.

Automatically identify the beads in your bead images. The “image processing toolbox” is useful
for this.

Find the centroids (calculate the center of mass) of your diffraction limited beads (sub-pixel
resolution). What plane in z do you use? What is the error on the position calculation? How
much is each colour off-set from each other (use the data obtained from the multiple-coloured
beads)?

In a paragraph, explain why magnification is a poor measure of image quality. Explain resolution
in your answer. If we wanted a microscopy objective with a working distance of 10 mm from the
sample with an NA of 1.0, how large is the lens?

For the extra-motivated (not required): fit the diffraction limited spots to a 2D Gaussian. What is
the position error? (see Thompson et al., Biophys J., 82:2775+, 2002)

Read up on cyanobacteria

http://www.genoscope.cns.fr/spip/Synechococcus-ubiquitous-marine.html




