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The goal of this experiment was to create Monte Carlo simulations of the 1D and 2D Ising model.
To accomplish this the Metropolis algorithm was implemented in MATLAB. The dependence of
magnetization on temperature with and without an external field was calculated, as well as the
dependence of the energy, specific heat, and magnetic susceptibility on temperature. The results of
the 2D simulation were compared to the Onsager solution.

I. INTRODUCTION

As technology has improved in the 20th and 21st cen-
turies, simulations have become widely used to make pre-
dictions about complex systems in a breadth of different
fields, ranging from sports and games to science and engi-
neering. For physical scientists, some knowledge of sim-
ulations and computing has become essential. Not only
can simulations help elucidate processes that are diffi-
cult to run experiments on in the lab, but they can save
precious experiment time and money. The focus of this
project was creating simulations of the Ising model.

A. Properties of Magnetic Materials

This experiment dealt with two types of magnetic ma-
terials; ferromagnets and paramagnets. From quantum
mechanics we know that electrons have there own in-
trinsic angular momentum, or spin. Each electron has a
magnetic dipole moment (~µ):

~µ = γ~S (1)

. Where γ is the gyromagnetic ratio and ~S is the spin an-
gular momentum of the electron [1]. The magnetic prop-
erties these materials exhibit are due to the magnetic
moments of electrons. When these materials are placed

in a magnetic field ( ~B), the magnetic field exerts a torque

on each of these magnetic dipoles, ~µ× ~B, which lines up
the dipoles parallel to the field. Each pair of electrons in
an atom have opposing spins, so when all the electrons in
each atom are paired, the effect of the torque is nullified.
But a material with atoms that have odd numbers of
electrons, or unpaired electrons, is placed in an external
magnetic field the magnetic moments of these unpaired
electrons are rotated so they align parallel with the field
[1, 2]. This alignment is not perfect due to thermal ef-
fects. Materials in which the magnetic moments align in
the presence of magnetic fields but randomize when that
field is taken away are known as paramagnetic.
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FIG. 1: Illustration of alignment of paramagnetic
material in a magnetic field [3].

In ferromagnetic materials such as iron (hence the
name ferro-magnetism), it is favorable due to quantum
mechanical effects for the magnetic dipoles to point in
the same directions as their neighbors. These materials
form what are called magnetic domains in which all of the
spins in a certain region of the material aligned. These
materials have a large number of domains that are ori-
ented in different directions, so on average the magnetic
moments of each of these domains cancel out and the
net magnetization of the material is zero. At low enough
temperatures, magnetic domains can be aligned by an
external magnetic field (see figure 3). The external field
exerts a torque on each dipole, but since the magnetic
dipoles tend to align with their neighbors, they resist.
At the domain boundaries there are neighboring spins
that are lined up in different directions, and the torque
will start to re-orient the spins that are not aligned with
the magnetic field so that domains parallel to the field
will grow. With a strong enough field, the dipoles in the
entire chunk of material will be oriented in the direction
of the field [2]. In ferromagnetic materials this process is
not reversible, and the material has a non-zero magneti-
zation even when the field is removed [4].

For ferromagnetic substances there exists a tempera-
ture known as the critical temperature or Curie point (Tc)
at which the material is no longer ferromagnetic (see fig-
ure 2). At low temperatures, the interactions between
the spins cause them to align. Above the Curie tem-
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FIG. 2: Example of what the phase transition of a
ferromagnetic material at the Curie point looks like.
Vertical axis is magnetization (M/Ms), horizontal is

temperature (T/Tc) [5].

perature, the material undergoes a phase transition and
becomes paramagnetic, with all the magnetic moments
orienting randomly due to thermal effects.

B. The Ising Model

The simplest system that exhibits a phase transition is
the Ising model. Though in this report the Ising model
will be used to model the phase transition of ferromag-
netic materials, this model is broadly applicable. Many
papers are published each year applying the Ising model
to problems in social behavior, neural networks, and
other topics. The model was first proposed by Wilhem
Lenz, who gave the problem to his pupil Ernst Ising.
Ising solved the model exactly in one dimension, but was
disappointed to see that there was no phase transition.
About 20 years later, Lars Onsager solved the Ising model
exactly in two dimensions in the absence of an external
magnetic field. The two dimensional model has a phase
transition [4].

In the Ising model, the total energy of the system for
a lattice with N spins is given as:

E = −J
N∑

i,j=nn(i)

sisj −H
N∑
i=1

si (2)

The first term represents the spin-spin interaction be-
tween a spin and its nearest neighbors. In the Ising model
each spin (si) is either up or down. In this report, the
exchange constant (J) is greater than zero and the ex-
ternal magnetic field is in the up direction. The second
term in eq. 2 represents the energy of a magnetic dipole
in a magnetic field, where µ has been incorporated into
H. H will be referred to as the magnetic field [4].

C. Phase Transitions

In the last section it was mentioned that there is no
phase transition in the one dimensional Ising model.
Why is this? Imagine a simple one dimensional sys-
tem of seven spins without an external magnetic field.
The ground state of the system is when all the spins are
aligned and the energy is E = −7J . Now imagine flipping
some of those spins, creating two domains separated by a
domain wall (see figure 4). In this new configuration the
energy of the system is E = −5J . So the energy cost of
creating one domain wall is 2J . In a one dimensional grid
of length N , there are N − 1 different sites this domain
wall can be placed, so the change in entropy associated
with creating one domain wall is ∆S = −kT ln(N − 1).
Therefore the free energy cost of creating one domain
wall is:

∆F = 2J − kT ln(N − 1) (3)

In one dimension, when the temperature is greater than
zero and as N →∞ the creation of a domain wall always
lowers the free energy of the system. Since it is favorable
to create domain walls when T > 0, more and more do-
mains are created until the system is completely random.
Therefore in one dimension, the system is paramagnetic
at all temperatures and there is no phase transition [4].

In two dimensions, for an L× L grid the energy cost
of creating a domain wall is 2JL (see figure 5). In an
L× L grid the domain wall can be placed at L different
columns, and the entropy is on the order of lnL. The
free energy cost of creating one domain wall in two di-
mensions is approximately:

∆F ≈ 2JL− kT lnL (4)

In this scenario ∆F > 0 as L → ∞. This means it is
not favorable to create domain walls in two dimensions,
and the spins will remain aligned due to the interactions
between spins. As mentioned previously, above the criti-
cal temperature thermal effects dominate, leading to the
system becoming disordered. There is therefore a phase
transition in two dimensions.

D. The Metropolis Algorithm

The expectation value of an observable A is given by
the equation:

〈A〉 =

∑
iAie

−βEi∑
i e
−βEi

(5)

Where Ai is the value of the observable for an individual
state (i) [7]. Using equation 5 to calculate observables
is not the most computationally efficient method. For
example, if one had a simple 10× 10 grid of spins, there
would be 2100 states to sum over. Another method is to
use the Metropolis algorithm which is a type of Monte
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FIG. 3: Alignment of domains when a ferromagnetic material is exposed to an external magnetic field. On the left is
an example of unaligned domains. As the magnetic field, H, is turned on, domains aligned in the direction of the

field grow. The spins will remain aligned even after the magnetic field is removed [6].

FIG. 4: The creation of a domain wall in one
dimension. Domain wall is indicated in red [4].

FIG. 5: The creation of a domain wall in two
dimensions. (a) shows the system with all spins aligned,
(b) shows the system after the creation of one domain

wall. Domain wall is indicated by dashed line [4].

Carlo simulation. Monte Carlo simulations are a class of
algorithms that utilize repeated random sampling to find
results [8].

The Metropolis algorithm works as follows. First, a
lattice or grid of spins is created. Next, a spin in the grid
is chosen at random and the change in energy (∆E) due
to flipping the spin is calculated based on its interactions
with its nearest neighbors (the two nearest neighbors in
1D, four nearest in 2D) and the magnetic field (see equa-
tion 2). If ∆E < 0 the spin is always flipped. If ∆E > 0
then the spin is flipped with a probability (p) determined
by the Boltzmann factor, p = e−β∆E . Following this, a
very large number of other random spins are sampled,
then the system is sampled even more to account for the
time it takes the system to equilibrate [4].

To get 〈E〉 and 〈E2〉 of the system the energies of each
spin were added up and divided by the total number of

spins. To obtain the average magnetization ,〈M〉, we set
µ = 1 and simply summed all the spins (which had values
of si = ±1) then divided by the total number of spins.
Using these quantities, the specific heat (Cv) and mag-
netic susceptibility (χ) in a constant magnetic field can
be obtained in terms of the variance of the energy and
magnetization [4, 7, 9, 10]:

Cv =
∂〈E〉
∂T

= − β
T

∂〈E〉
∂β

=
β

T

∂2 lnZ

∂β2

=
β

T

∂

∂β

(
1

Z

∂Z

∂β

)

=
β

T

(
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2
)

Cv =
β

T
(〈E2〉 − 〈E〉2) (6)

Similarly for magnetic susceptibility:

χ =
∂〈M〉
∂H

= β(〈M2〉 − 〈M〉2) (7)

II. EXPERIMENTAL

A. Basics of Code

The code that we used to carry out these simulations
in two-dimensions is shown in the supplemental materials
section. The programming language that was chosen for
this experiment was MATLAB. Natural units of J/k = 1
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FIG. 6: Examples of boundary conditions. (a) “Free
ends”. The spins on either end are missing one

neighbor. (b) “Periodic” or “torroidal” boundary
conditions. Now the one dimensional array in (a) has

been set up so the spin on the left end of (a) is
neighbors with the spin on the right end [4].

were used. Two types of boundary conditions were con-
sidered for this project. The first was free ends, in which
the spins on the edges of the lattice are missing a neigh-
bor (see figure 6). The second was periodic or torroidal
boundary conditions, in which spins on one edge of the
lattice are not only neighbors with the spins directly next
to them, but also with the spins that make up the other
edge of the lattice. For this experiment, periodic bound-
ary conditions were chosen. Simulations were run in both
one dimension and two dimensions. In the experiments,
two different initial conditions were used. The first was
starting the simulations where all the spins were aligned
randomly. The second, was where all the spins were ini-
tially aligned, as if a magnetic field had been used to
align all the spins before the start of the experiment.

In the code, MATLAB would randomly chose a point
in the lattice and determine the change in energy of flip-
ping a spin as ∆E = −2E since s = ±1. As described
in section I D, if ∆E < 0, the spin was always flipped. If
∆E > 0, MATLAB would compare the probability deter-
mined by the boltzmann factor (p) to a random number
between 0 and 1. If the random number was less than
p the spin was flipped. Generally, the grid would be
randomly sampled 50 × grid size times, after which the
magnetization was measured and the grid would be sam-
pled another 50 × grid size times and the magnetization
was measured again. If the difference between the two
magnetization values was less than 5%, the system was
considered equilibrated. If not, the system was sampled
until the variations in magnetization were under 5%.

III. RESULTS

A. One Dimensional Ising Model

The results for the one dimensional Ising model with
H = 0 are shown in figures 7-10. In all of the trials
shown, the initial state of the system at each tempera-

ture was the aligned state (all spins were aligned in same
direction). For the plot of the average energy against
temperature in figure 7, the basic trend was as expected.
As the temperature increased, the energy of the system
slowly began to increase. This was because as the tem-
perature was increased, thermal effects become more and
more important and the system wants to go to the most
entropically favorable state. So even though though the
energy due to the spin-spin interactions is increasing, it
is still more favorable to the system to go to the most
disordered state.

Looking at the plot of the average magnetization
against temperature (see figure 8) the results are basi-
cally what one would expect, with a few exceptions. At
temperatures from around T = 1− 10 the magnetization
of the system is very close to zero. This makes sense be-
cause the 1D Ising model is not supposed to have a phase
transition, and the material is supposed to be param-
agnetic (see argument in section I C). At temperatures
lower than T ≈ 1 though, the magnetization is M ≈ 1, so
there appears to be a phase transition somewhere around
here. Since it is well known from Ernst Ising’s solution
that there should be no phase transition in the 1D Ising
model, what is causing this?

It turns out that at very low temperatures the
Metropolis algorithm fails to give a very physical rep-
resentation of the system. The way the Metropolis al-
gorithm determines whether or not to flip a spin when
∆E > 0 is by comparing a random number to the Boltz-
mann factor. But as T → 0 and we have:

lim
T→0

p = lim
T→0

e−∆E/kT = 0 (8)

So at temperatures close to zero, the Metropolis algo-
rithm will only flip spins so they align, but will never
flip them out of alignment. This is why for very low
temperatures the magnetization is always 〈M〉 = 1 and
also for extremely low temperatures the energy is always
E = −1, which is the energy of the system when all the
spins are aligned (see figure 7). The same problem ap-
pears when the Metropolis algorithm is used to calculate
the magnetization and energy against temperature in the
2D case, but it is less apparent because all the spins are
supposed to remain aligned at low temperatures in the
2D case.

In figure 11 the magnetization vs temperature was
compared when H = 0 and H = 1. The results were
as expected. With H = 0, for most of the temperatures
(excluding very low temperatures, as explained) the mag-
netization is close to 0, since more and more domain walls
are being created until the system is completely random.
With H = 1, the spins remain aligned for a larger range
of temperatures. This is because alignment with the ex-
ternal magnetic field lowers the energy of the spins, and
thermal effects do not make the system completely ran-
dom until the temperature is really increased.
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FIG. 7: Energy vs temperature for 1D Ising model with
H = 0. The grid length was 200 spins, and H = 0. At
each temperature the system started with all the spins

aligned.

FIG. 8: Magnetization vs temperature for 1D Ising
model with H = 0. The grid length was 200 spins, and
H = 0. At each temperature the system started with all

the spins aligned.

B. Two Dimensional Ising Model

The results for the two dimensional Ising model with
H = 0 are shown in figures 12-15. The Onsager solution
gives the critical temperature (Tc) as [4]:

KTc
J

=
2

ln(1 +
√

2)
≈ 2.269 (9)

FIG. 9: Specific heat vs temperature for 1D Ising model
with H = 0. The grid length was 200 spins, and H = 0.

At each temperature the system started with all the
spins aligned.

FIG. 10: Magnetic Susceptibility vs temperature for 1D
Ising model with H = 0. The grid length was 200 spins,

and H = 0. At each temperature the system started
with all the spins aligned.

In our results there is a phase transition from ferromag-
netic to paramagnetic somewhere around this tempera-
ture. In figure 12, the plot of energy vs temperature, we
see that the energy due to the spin-spin interactions is at
a minimum since all the spins are aligned, but somewhere
around T = 2−3 there is a sharp rise in energy as the ma-
terial switches from ferromagnetic to paramagnetic and
the spins are oriented randomly, raising the energy due to
the spin-spin interactions. In the plot of magnetization
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FIG. 11: Magnetization vs temperature for 1D Ising
model with H = 0 and H = 1. The grid length was 200
spins. At each temperature the system started with all

the spins aligned.

against temperature (fig. 13) a phase transition is also
observed. At temperatures below T = 2−3 the spins are
aligned and M ≈ 1. For temperatures above T = 2 − 3
the spins are randomly oriented and M ≈ 0. The plots
of specific heat and magnetic susceptibility against tem-
perature (figures 14 and 15 respectively) show divergent
behavior at the critical temperature as expected. The
Onsager solution for magnetization is given as [11]:

M =


(

1−
[
sinh log

(
1 +
√

2
)
Tc

T

]−4
)1/8

T < Tc

0 T > Tc

To compare our results to the Onsager solution, the re-
sults for magnetization from our simulation were plotted
along with the above equation in figure 16.

In figure 17 the magnetization vs temperature was
compared when H = 0 and 1. With H = 1, instead
of seeing a sharp transition at the critical temperature as
compared to H = 0, the magnetization instead gradually
decrease to 〈M〉 = 0. This is because like in the one di-
mensional case, the energy of each spin is lowered when
they align with the external magnetic field, so the order
of the system is increased and there is not a sharp tran-
sition from an aligned state to the random orientation of
spins. As the temperature is increased to T = 8 − 10,
thermal effects dominate, and the net magnetization is
close to zero.

To further examine the effects of applying an external
magnetic field to the system, a trial was run where the
temperature of the system was fixed at T = 3.5 while
the magnetic field was increased from H = 0 to 10 (fig-
ure 18). Without any external magnetic field, the spins
are all randomly oriented at T = 3.5 (see figure 13) be-

FIG. 12: Energy vs temperature for 2D Ising model
with H = 0. The grid size was 50× 50, and H = 0. At
each temperature the system started with all the spins

aligned.

cause T > Tc and thermal effects have randomized the
system. In figure 18, as the magnitude of the external
magnetic field is increased, the system goes from a state
where the spins are oriented randomly to a state where
the system is completely aligned with the magnetic field.
This is because with a strong enough external magnetic
field, the aligning torque exerted by the magnetic field
(discussed in section I A) is so strong that it overcomes
thermal effects and lines up the majority of the magnetic
dipoles in the direction of the magnetic field.

C. Equilibration of System

As mentioned in section II, the code had a mechanism
built in that would keep on sampling until the system
was considered equilibrated at the temperature, or when
the magnetization was changing less than 5%. It was im-
portant to sample the system sufficiently, because as the
system was sampled more and more, each individual spin
was more likely to be in its most probable microstate.
As more and more spins went to their most probable mi-
crostate, the overall system went to its most probable
macrostate or the state the system will be in once its
equilibrated. As the system approaches this state, the
fluctuations in the expectation values of thermodynamic
quantities begins to decrease, and the decrease in these
fluctuations was used as an indicator that the system
had reached equilibrium. An example of how the code
checked if the fluctuations had decreased is shown in fig-
ure 19.
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FIG. 13: Magnetization vs temperature for 2D Ising
model with H = 0. The grid size was 50× 50, and

H = 0. At each temperature the system started with all
the spins aligned.

FIG. 14: Specific heat vs temperature for 2D Ising
model with H = 0. The grid size was 50× 50, and

H = 0. At each temperature the system started with all
the spins aligned.

D. System Size

One of the other constraints of these simulations was
the system size, or the number of spins that were in the
system. In a real system there are 6.022 × 1023 atoms
per mol of material, each of these atoms having electrons
with magnetic moments. Unfortunately we simply do
not have the computational power to make estimates on
a system of that scale. When using random sampling to

FIG. 15: Magnetic Susceptibility vs temperature for 2D
Ising model with H = 0. The grid size was 50× 50, and
H = 0. At each temperature the system started with all

the spins aligned.

FIG. 16: Magnetization vs temperature for 2D Ising
model with H = 0. The Onsager solution is plotted in

green, the results of our simulation in blue. For our
simulation, the grid size was 50× 50, and H = 0. At

each temperature the system started with all the spins
aligned.

determine the values of different thermodynamic quan-
tities, the smaller the system size, the more the system
will be susceptible to random noise. As the system size
is increased, the random noise affects the system less and
less, and only large changes (not noise) will really have
an effect on the system. To try to determine the effects
of changing our system size, a trial was run in which the
magnetization and energy were measured at T = 6 for
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FIG. 17: Magnetization vs temperature for 2D Ising
model with H = 0 and 1. The grid size was 50× 50. At
each temperature the system started with all the spins

aligned.

FIG. 18: Magnetization vs magnetic field for two
dimensional Ising model with T = 3.5.The grid size was

50× 50, and H = 0. The system started will all the
spins aligned.

systems of different sizes (see figures 20 and 21). In both
figures the fluctuations in the measured values of observ-
ables appear to decrease some as the size of the grid is
increased. Since the values of energy and magnetization
are still varying some once the size of the grid that was
used in this experiment is reached, it means that at this
size the results are still subject to some randomness.

FIG. 19: Equilibration of a 50× 50 grid of spins. The
code checked if the system was equilibrated every

125,000 samples by determining if the magnetization of
the system had changed by less than 5%. It can be seen

that after the 40th check the systems fluctuations are
getting smaller and then are finally less than 5%.

FIG. 20: Energy at T = 6 calculated for systems of
different sizes. The sizes ranged from 5× 5 to 50× 50.

The system was started with all spins aligned.

IV. IMPROVEMENTS

There were many improvements that could have been
made to this experiment. The first lesson that was
quickly learned was to run simulations on a small sys-
tem to attempt to debug the code before running simu-
lations on very large grids. At the suggestion of Professor
Fraden, some of our trials were visualized in MATLAB.
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FIG. 21: Magnetization at T = 6 calculated for systems
of different sizes. The sizes ranged from 5× 5 to

50× 50. The system was started with all spins aligned.

This was extremely useful in trying to see if the code was
creating a good model of the system. Realizing these
things sooner could have cut down on the time that was
spent trying to understand if the metropolis algorithm
was being implemented correctly in the code.

If total simulation time was not a concern another two
aspects of the experiment that could have been optimized
are the way that the code checks if the system has equi-
librated and the size of the system. Instead of checking
the system’s magnetization every 125,000 samples (for a
50 × 50 grid) and comparing the magnetization at the
current checkpoint to the previous one and seeing if the
difference was less than 5%, the deviations in the mag-
netization between multiple checkpoints could have been
compared. This would have allowed us to see if the fluc-
tuations were really decreasing, or it was simply random
chance that the magnetization between two checkpoints
changed very little. Increasing the size of the system that

the simulation was run on would have led to better agree-
ment with the Onsager solution, as explained in section
III D. Both of these improvements would have meant an
increase in simulation time for each run.

To improve the time it took to simulate the system, a
different programming language could have been chosen
for the project. A group of graduate students achieved
much faster run times using Perl.

V. CONCLUSION

In this experiment Monte Carlo simulations were cre-
ated of the 1D and 2D Ising model. To do this the
Metropolis algorithm was implemented in MATLAB.
The dependence of the energy, magnetization, specific
heat, and magnetic susceptibility of the system on tem-
perature were calculated for the 1D and 2D Ising model.
The results of the simulation for magnetization against
temperature with and without an external magnetic field
were compared. Some simple tests were done to try to
understand the effects of increasing the amount of sam-
pling and the system size in Monte Carlo simulations.
The experiment was a success in that we learned some of
the basics of how to run simulations and achieved results
that were comparable to the Onsager solution.

VI. CODE

Please see the attached file, 2DIsingModel.m, for a
sample code that was used in this project.
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