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ABSTRACT

With a method first indicated by Ornstein the mean values of all the powers of the
velocity # and the displacement s of a free particle in Brownian motion are calculated.
It is shown that u—uoexp(—pt) and s—uo/B[1 —exp(—pBt)] where uo is the initial
velocity and g the friction coefficient divided by the mass of the particle, follow
the normal Gaussian distribution law. For s this gives the exact frequency distribu-
tion corresponding to the exact formula for s2 of Ornstein and Firth. Discussion
is given of the connection with the Fokker-Planck partial differential equation.
By the same method exact expressions are obtained for the square of the deviation
of a harmonically bound particle in Brownian motion as a function of the time and
the initial deviation. Here the periodic, aperiodic and overdamped cases have to be
treated separately. In the last case, when 8 is much larger than the frequency and for
values of £3>371, the formula takes the form of that previously given by Smoluchowski.

I. GENERAL ASSUMPTIONS AND SUMMARY

N THE theory of the Brownian motion the first concern has always been

the calculation of the mean square value of the displacement of the par-
ticle, because this could be immediately observed. As is well known, this
problem was first solved by Einstein! in the case of a free particle. He ob-
tained the famous formula:

st = 2Dt = —t (1)
/

where f is the friction coefficient, T the absolute temperature and ¢ the time.
The influence of the surrounding medium is characterized by f as well as
by T. For this Einstein used the formula of Stokes, because almost always
the particle is immersed in a liquid or gas at ordinary pressure. In that case
the mean free path of the molecules is small compared with the particle,
and we may consider the surrounding medium as continuous and may use
the results hydrodynamics gives for the friction coefficient for bodies of
simple form (sphere, ellipsoid etc.). This will depend on the viscosity coeffi-
cient of the medium and therefore be independent of the pressure.

But of course, when the surrounding medium is a rarefied gas (mean free
path of the molecules great in comparison with the particle), the friction

1 A. Einstein, Ann. d. Physik 17, 549 (1905). This and the further articles of Einstein
have been collected in a book called: “Investigations on the theory of the Brownian Move-
ment”. Edited by R. Fiirth, translated by A. D. Cowper. New York, Dutton. To this we shall
always refer.
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824 G. E. UHLENBECK AND L. S. ORNSTEIN

will change in character. Instead of a Stokes friction, we then get what we
may call a Doppler friction and this can also be calculated for simple forms
of the particle. Itisbased on the fact that a particle moving, say to the right,
will be hit by more molecules from the right than from the left. This fric-
tion coefficient will be proportional to the pressure. To cover all cases, we
will always leave the friction coefficient explicitly in the formulas.

The basis of formula (1), which since Einstein has been derived in various
other ways,? has been almost always the equation of motion:

du
m— = — fu + F(t) (2)
dat
where u is the velocity of the particle. Characteristically of this equation, the
influence of the surrounding medium is split into two parts:
(1) a systematic part -fu, which causes the friction
(2) a fluctuating part F(f). Concerning this we will naturally make the fol-
lowing assumptions:
A: The mean of F(¢), at given £, over an ensemble of particles (a large
number of similar, but independent particles), which have started at ¢=0,
with the same velocity %, is zero. We will denote this by :

Fi®" =o0. (3)

B: There will be correlation between the values of F(¢) at different times
t1 and ¢ only when |t1—t2[ is very small. More explicitly we shall suppose
that:

F)F(®)"* = ¢a(ts — 1) )
where ¢:(x) is a function with a very sharp maximum at x=0. More gen-
erally, when £, ¢, . . . . f,41 are all lying very near each other, we assume:

F)F () -~ Fltar) = éa(r, 01,02 - - - ) (5)
where 7 is the distance perpendicular to the line ¢ty =#= ... .=t,y in the
(n+1) dimensional (¢, fs . . . . t.41) space, and 6, 6y . ... 60,1 are (n—1)

angles to determine the position of 7 in the subspace perpendicular to this
line. The function ¢, has again a very sharp maximum for r=0. Further,
when /1, £, . . . . {x are lying near each other, and also ¢x41, fi42 . . . . £ but
far from the group 4, ¢ . . . . ¢, and so on, then:

F(t) - FUF(ixy) - - F@)F (i) - Fltm) - -
=F@) - F(t) " Fltagr) - - @) - Flign) - Fltm) * -+ (6)

The justification, or eventually the criticism, of these assumptions must
come from a more precise, kinetic, theory. We will not go into that.

2 Compare G. L. de Haas-Lorentz: Die Brownsche Bewegung (Braunschweig, Vieweg,
1913).
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§3. In the later development, especially when given outside forces like
gravitation were also considered, so that (2) had to be replaced by:

du
m:i; = — fu + F(t) + K(x) (2a)

the attention was fixed more on the determination of the frequency distri-
bution of quantities like the displacement or the velocity. Given the value
¢o of the quantity ¢ at =0, we wish to find the probability F(¢,, ¢, t)do
that after the time ¢ the value lies between ¢ and ¢ +d¢. Itisclear, that when
we know F(¢o, ¢,¢) all mean values are determined. For instance:

o = f ®*F ($o, ¢, 1)ds.

The frequency distribution is the most gemeral thing the theory can predict.
In the case of a free particle, the function F(x,, x, t), which will now depend
only on x —x¢=s, was already determined by Einstein. He found:

1 \1/2
F(xo,%,8) = (4—Dt> e~ (=20 % /4Dt )
s

of which (1) is an immediate consequence. He derived this, by finding
for F a partial differential equation, which in this case is the diffusion equa-
tion:

9z 9%

— =D 8
at ds? ®

and of which F(x,, x, t) is then the so-called fundamental solution. This is
that solution of (8) which for t=0 becomes &(x —x,), when 8(x) means the
function, defined by the properties:

8(x) =0 for 2F0

f+m 8(x)dx

—0

I
—

This is clear from the definition of F(x,, x, t) because for =0, there is cer-
tainty that x =x,. Further there are boundary conditions, which express the
behavior of the particle at the walls; in the case of a completely free par-
ticle they are simply F =0 for x=+ . The relation between the diffusion
coefficient D and the friction coefficient f, Einstein then derived very simply,
using the osmotic pressure idea.

This connection between the frequency distribution function and a par-
tial differential equation of the parabolic type like (8), has later been gener-
lized considerably by Smoluchowski, Fokker, Planck, Ornstein, Burger,
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Firth and others.®* The equation is generally called the Fokker-Planck
equation. Especially for a particle under influence of outside forces, Smo-
luchowski showed that the generalization of (8) was:

0z 1 0 0%
— — —(K3z) + D

= —- (9
at [ dx Jx?

For special forces (gravitation, elastic binding etc.) and by different boundary
conditions, Smoluchowski, Fiirth and others have determined the funda-
mental solution, and from this all sorts of mean values, which they have
compared with experiments.

§4. With the results (1), (7), (8) and (9) of Einstein and Smoluchowski
the problem seems completely solved. But there is one restriction, which
was first stressed by Einstein. All these results hold only when ¢ is large
compared to m/f. The generalization of (1) for all times was given by Orn-
stein? and Fiirth® independently of each other.

The result is:
2mkT( f
= —~—<~—t -1+ e”f”"‘> (10)

I \m

For values of ¢ large compared to m/f this becomes again Einstein’s formula
(1). For very short times on the other hand, we get:

$

as one would expect, because in the beginning the motion must be uniform.

The problem now arises to generalize the other results also. In part IIT
we will do this for the frequency distribution F(x,, x, t). The result is rather
complicated; for £>>m/f it goes over into (7), and (10) is an immediate con-
sequence of it. The method, we used, was the momentum method. From
the equation of motion (2), and using the assumptions (3) to (6), we could
calculate the mean value of all the powers of

mity
S =5 ——(1—¢stm)

3 M. v. Smoluchowski, Phys. Zeits. 17, 557 (1916). A. Fokkcr, Dissertation Leiden, 1913,
p. 000. M. Planck, Berl. Ber. p. 324, 1927, L. S. Ornstein, Versl. Acad. Amst. 26, 1005 (1917).
H. C. Burger, Versl. Acad. Amst; 25, 1482 (1917); L. S. Ornstein and H. C. Burger, Versl.
Acad. Amst. 27, 1146 (1919); 28, 183 (1919). R. Fiirth, Ann. d. Physik 53, 177 (1917). R.
Fiirth gives a survey in Riemann-Weber, Die Partiellen Differential-gleichungen der Math-
ematischen Physik (Edited by R. v. Mises and Ph. Frank, Braunschweig Vieweg 1928) Vol.
I1, p. 177. Comp. also the article of F. Zernike, Handbuch der Physik, Vol. ITI, p. 456 (Ber-
lin, Springer, 1928).

4 L. S. Ornstein, Versl. Acad. Amst. 26, 1005 (1917) (=Proc. Acad. Amst. 21, 96 (1919).

s R. Fiirth, Zeits. f. Physik 2, 244 (1920).
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and prove that S follows the normal Gaussian distribution law. We did not
succeed in generalizing the diffusion Eq. (8), and determining the distribu-
tion function by this method.

As a preparation we derive in part II the frequency distribution function
G(uo, u, t) for the velocity of a free particle in Brownian motion, first with
the momentum method, and then also with the Fokker-Planck equation.

This extension to short times becomes especially interesting in the case
of outside periodic forces. In part IV we shall treat the problem of the
Brownian motion of an elastically bound particle. By using the same method
as before, we could get exact expressions for the mean square of the displace-
ment as a function of the initial deviation and of the time. The periodic,
aperiodic and overdamped cases have to be treated separately. The way
in which the equipartition value is reached for t— is different in the three
cases. In the last case, for very strong damping and £>m/f the formula goes
over into the result of Smoluchowski, which is a consequence of the frequency
distribution function following from (9).

II. THE FREQUENCY DISTRIBUTION OF THE VELOCITY

§5. The problem is to determine the probability that a free particle in
Brownian motion after the time ¢ has a velocity which lies between 7 and
1u-+du, when it started at t=0 with the velocity u,.

The first method to solve the problem is by calculating all the mean values
u* for given u#o. As has first been shown by Ornstein® for # and 72, this is
possible by integrating the equation of motion:

du |
" + Bu = .1(1)

when B=f/m and 4 =F/m. Of course, the assumptions (3) to (6) hold for
the fluctuating acceleration A (t), as well as for the fluctuating force F(t).
Integrating we get:

t
U = uge Pt + c”f“f A4 (8)dt. (11)
0

Taking the mean over an ensemble of particles, which have started at t=0
with the same velocity u,, and using (3) we get:

w = ueefL, (12)

The mean velocity goes down exponentially due to the friction. Squaring
(11) and taking the mean, gives:

t t
ut’ = nole Wt 4 (’*"‘”f f e“’“*”’:’lTE):l—(;;)dEdn.
0 0

¢ L. S. Ornstein, Proc. Acad. Amst. 21, 96 (1919).
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By taking £+7=v, §—n=w as new variables and by using (4), we can write
for the integral:

1 2t +% 1
-——e‘”‘f ef*dy p1(w)dw = —(1 — %
> . . 1(w) 5 B( )
because ¢;(w) is such a rapidly decreasing function, that we may integrate
from — o« to + . The value of the constant
4o
T = o1(w)dw

-0

we find with the help of the theorem of the equipartition of energy. For
t—o0, we must have:

. —u, T1 kT
lim#? =—=—
(o 28 m
so that:
28kT
T=— (13)
m
Substituting, we get:
oy kT kT
W’ = — 4 u?® — ——)e“”‘ (14)
m m

which shows, how the equipartition value is reached. So we can go on. Using
the assumptions (3) to (6) for A(¢) and the fact that we must get the equi-
partition values for t—, we will prove in Note I, that for « —ueexp(—@f)
the normal Gaussian distribution law holds. For the velocity itself we get,
therefore, the distribution law:

m 1/2 u— uge Pt)?
Gl 1) = (5 ) e { o el )
2rkT(1 — %) 2kT 1—eB

which shows how the Maxwell distribution is reached, when at ¢t=0 all the
particles started with the same velocity u,.

§6. The second method for deriving (15) is, as we have already said, by
constructing the Fokker-Planck partial differential equation for the problem,
of which G(u %, t) is then the fundamental solution. We will first derive the
equation in general and then later specialize to our case.” Consider the dis-
tribution function F(¢o, ¢, {). When ¢ increases by Af, ¢ will increase by a
A¢, which will be different for every particle. Let the probability for an
increase between the limits A¢ and Ap+d(A¢) be Y (Ad,p,t)d(Ad). Writing
¢’ =¢+A¢ we have then:

Fgo 0480 = [Flgn, o — 29, 09(00,¢' — 26, 0d(88) (16

7 Comp. F. Zernike, Handbuch der Physik, Vol. 111, p. 457.
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when we may suppose that the probability of an increase A¢ is independent

of the fact that for t=0, ¢ =¢o. We now develop the integrand after powers
of A¢:

F(d)o, ¢, - A¢: t)¢(A¢, ¢’ - A¢; t) = F(¢01 ¢,; t)'l’(Ad’) ¢’) t)
Ag?
— MO+ FY) + Y + 2 FY)

The resulting integrals all have simple meanings, for instance:

Jviao . 0aee) = 1 [aonian) = 55 [asvraas = S5
and so on. Developing the left hand side in powers of At, putting:
Ag Ag?
lim — = fi(¢',8); lim — = fo(¢, ¢ 17
Jim L, 0 Jm 2 f2(¢',8) (a7
and supposing that:
Adk
lim 22 =0 for k> 2 (18)
At—q At
we get, when we write again ¢ for ¢’:
oF 1 0%F a oF 1 92 af
——=--f2—+(—fE - fl)——+(— —f'f’———‘)F. (19)
at 277892 ' \o¢ N 2 a6t 3

We must of course in each special case determine the functions fi(¢,t) and
f2(¢,t) and verify the supposition (18). We always can do that, when we
know the equation of motion.

Let us return now to the velocity distribution. From the equation of
motion we have:

A
w —u=Au = — Bult +f A(§)de
¢
Using (3), we get therefore:
Au = — Bult = — Bu'At
neglecting higher powers of A¢. From this:

lim _A_u = fi(w) = — Bu.
At—y Al
In the same way, we find using (4) as before:
Au? = 7148
so that:
i1

m

fo(w) = 1, =

]

const.



830 G. E. UHLENBECK AND L. S. ORNSTEIN

All the higher powers of Au become proportional to powers of At higher than
the first, so that (18) is satisfied. We get therefore:8
= (1 S
ot on 2 ou?
The systematic way of finding the fundamental solution of this equation
is by solving the equation:
dz

J
— = B—(uz) + —
ot B(’)u( ) 2 ou?

when for =0, z=f(u). This is an ordinary boundary value problem, which
can easily be solved by the method of particular solutions. By summing
the infinite series which we get, one can write the solution:

+oc
2, t) = f Sf(ue)G(uout)dug

—%

and G is then clearly the fundamental solution. For the details, see Note I1.
The result is again formula (15). One can derive the same result much more
briefly when one is so clever as to substitute in (20):

G = (p)'/2 exp{ —(u—uox)da}

where ¢ and x are functions of ¢ only.? This is suggested a little by the result
one ought to expect. Substituting, one sees that (18) is fulfilled, when x
and ¢ are solutions of the ordinary differential equations:

dx
d
1 d¢

— = 2¢ — 4¢%.
5 i ¢ ¢

— Bx

These can be immediately integrated, and the integration constants can be
determined from the fact that for =0 we must get 8(u—u,) and for =
the Maxwell distribution law.

III. THE FREQUENCY DISTRIBUTION OF THE DISPLACEMENT

§7. The problem is to determine the probability that a free particle in
Brownian motion which, at {=0 starts from x=x, with the velocity u,
after the time ¢ lies between x and x+dx. It is clear that this probability
will depend only on s =x—xy, and on ¢.

8 This equation has been derived already by Rayleigh (Phil. Mag. 32, 424 (1891) = Scient.
Papers III, p. 473) and he gives also the fundamental solution (15). Later it has again been
treated by v. Smoluchowski (Krakauer Ber. 1913, p. 418). Because Rayleigh’s proof is a
little artificial, and the treatment of v. Smoluchowski is not easily accessible, we thought it
not superfluous to give the proof again.

9 Comp. Lord Rayleigh, reference 8.
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We will use again the momentum method, and calculate all the mean
values s*. This goes in an analogous way as with the velocity. By integra-
ting (11) again we find:

¥ = %0+ f;—o(l — e +f e“"’dnfv At (§)dE (21)
4] 0

or integrating partially:

g

1 ‘ 1 [t
=,_;-=—1——Bt——fﬂtf 8¢4 d+—f.-1 dt.
s=1x — a9 5( ehY) 56 06 (&)de 5 J. (&)dg

Taking the mean, gives:

g o

§° = E(l D) (22)

which can be interpreted as the distance travelled in the time { with the mean
velocity @ =uoexp(—pt). By squaring, averaging, and calculating the double
integrals in the same way as before, we get:

—u, T )

! —Bt)2 i_ dpo—Bt — p,—28t
s? 62t+62(1—eﬂ) +253( 34 4eF e3Bt) (23)

where the constant 7, is known from the corresponding calculation of 2.
This result (23) was first derived by Ornstein; for very long times ¢ it goes
over in:

e TL 2kT
= — = —t
B* mB
the result of Einstein. For very short times { on the other hand, we get:
50 =yt
?uu = M02l2

The motion is then uniform with the velocity u,. Taking a second average
over 1y, remembering that u2 =k7T/m, we get:

§5=0
- 2kT
s2=——(Bt — 14 ¥
mf3?
which is the result quoted above (formula 10). The calculation of the higher
powers goes similarly. In the result we get constants 7,5, 75 - - - which have

been determined in part II in the corresponding calculation of #*" from the
equipartition law. We can show in this way that for:

({1
S=s5s——(1 —¢eh)
B
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again the normal Gaussian distribution law holds. For the details of the
proof, see Note III. We get therefore:

mBZ 1/2
F(xﬂ) X, t) = ( )
2rkT(28t — 3 + 4¢Pt — %)

[mﬂZ {x — 2 — uo(1 — eP)/B}2
ey ](24)
2kT 28t — 3 + 4e Bt — ¢t

For large ¢ this becomes of course the distribution law (7), already derived
by Einstein. For {—0 it becomes §(x —x,) as it should.

§8. When we want to derive (24) in the same way as G(u,, %, £) from a
partial differential equation we run into the following difficulty. According
to the general Eq. (19), we have to calculate Ax and Ax?. Now it follows from
the equation of motion, when the prime denotes the value of the quantities
at the time ¢t+A¢, that:

t+ At
w —u=— B — x) +f A(§)ds

so that:
—B(x = 1) = —BAx = o — u = upe (P2t — 1)
or:
AX = ugePIAL. (25)
When one now calculates in the same way Ax?, then one finds that Ax? be-
comes proportional to A#?, so that the function f; in (19) would become zero,
and the differential equation would become:

oF oF
= — wuoePt—o

At at
which does not become the diffusion equation for £2>8-1. On the other hand,

when we suppose t>>B7! and At so large that we may apply the formula of
Einstein for Ax?, we have:

Ax =0

— 2
Ax? = 2DA¢ (26)

and this substituted in (19), gives immediately:
oF IF

—_— = D— .
dt dx?

It seems impossible to derive from (19) the rigorous differential equation
for F(x¢,x,t), which for £>p~! would become the diffusion equation, and of
which (24) would be the fundamental solution. The reason for this, it seems
to us, is that in the derivation of (19) we suppose that the change Ax in the
time Af is independent of the fact that at the time {=0 the particle is at
x =x0 and has the velocity u,.
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IV. THE BROWNIAN MoOTION OF A HARMONICALLY BOUND PARTICLE

§9. We will first derive, following Ornstein!® the equation (9) first pro-
posed by Smoluchowski from macroscopic considerations. We have to de-
termine again Ax and Ax2. Now, when there are external forces the equation
of motion is:

du 1
— + Bu = A(t) + —K(x).
dt m
Integrating as in §8, we get:
t+At 1
Wou=— 8@ =+ [ A@d+—Kat
¢ m
from which follows, when we may neglect the influence of the initial velocity:
— 1
BAx = —K(x)At 27
m
so that:
(1) = —K(x) = ~K(x
filx) = - x) = 7 x).

When again At is not too small, we may put:

— 2kRT
Ax? = ——At = 2DA¢ (28)
mp
and substituting in the general equation (19), we get:
oF 1 9 (KF) + DE)QF
a  f ox dx?

which is (9).
Let us apply this to the case of a harmonically bound particle, for which:
1
—K(x) = — wlx
m

where w is the frequency in 27w sec. We get then:

oF w? 6( F) + DaﬂF
— IR e— — x o .
at B dx dx?

This is completely similar to the equation (20) for G(u%o, %, t). We find there-
fore for the fundamental solution

w? w2 (x — xee=@IB)
F(xo,x,t)==( — ) exp {-— . — }
21BD(1 — e~ "IB)Y) 28D 1 — e~

10 1. S. Ornstein, Proc. Acad. Amst. 21, 96 (1919).
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which gives:

T = xge‘(“’:/"”

—a, kT s kT )

= — X — — e (2e7IB)E
Mw® mw?

This shows how the equipartition value is reached. For w? very small we
get approximately:

. 26T
X = a4 ——t
mp

which are the results for a free particle. We may not expect though, that the
equations are generally valid. According to the derivation, there are clearly
two limitations:
a. Because we have used (27) and (28) which correspond to (26) in §8, we
must expect (30) to hold only for times >>3~!
b. Because we have in (28) used the result for a free particle, we must expect
(30) to hold only when 3 is large, the motion therefore being strongly over-
damped. This is also the reason why apparently there is no distinction be
tween the periodic, aperiodic and overdamped cases in the result for a?™.

§10. To get exact results, we have to use the same method as before.
We have first to integrate the equation of motion, and then take the average.
The periodic, aperiodic and overdamped case must now be treated separ-
ately. We will indicate the calculations only for the periodic case.

The equation of motion is:

TE 4 e = 40
— — + Wiy =
de? dt
when at t=0, x =x, and « =dx/dt =u, we get from this:
2w2xy + Bu
u = — s DBt sin wit + wge~ BVt cos wil
2(.01
1 rt f B .
+ — A (E)e“ﬂ““i)/?{ — —sinwi(t — &) + wy cos wi(t —§) }dé
w1 2 /
Bxo + 2ug ) 1 r .
x = —————e B/Dtginwii+ xoe*w”‘coswlt—{——f AE)e P02 gin w,(t—£)dE
2w, wiva
where:
2 2 B2
Wyt = Wt — — -
' 1

Supposing, in correspondence with (3):

A®"" =0
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this gives immediately, for instance:

Trote = Me‘“”?” sin wyt + xee~ @Dt cos wyt. (31)
20)1

The mean value here has to be understood as follows. We have a canonical
ensemble of harmonic oscillators, from which at ¢ =0 we pick a sub-ensemble
(A) of oscillators, which have a deviation and velocity xy, %o, resp. and which
we follow in their motion. At the time ¢ we take an average over the x of the
different members of this sub-ensemble (4), and the result is then given
by (31). If we would follow a sub-ensemble (B), of which the members at
t=0 had the deviation x, but arbitrary velocity, we would get at the time ¢
a mean deviation, which will follow from (31) by taking the average over
1. Since in a canonical ensemble of oscillators the deviation is not correlated
with the velocity, we may put:

fhgTe = 0
sy kT (32)
u? = —
m
Uisng this, we get:
=T —8/° B .
X = x0eBDY —— sin wit + cos wit ). (33)
2(4)1

Let us now consider #? and x2. Using again the assumption analogous to
g ag p g

(4):

ANAE) ™" = ¢ty — 1)

where ¢(x) is an even function with a sharp maximum at x =0, and calcula-
ting the double integrals exactly as before, we get:

— Tqu Bx() + 2“0 . T1
0 = ( ——e=BIDt sin it + x0e~ B/t cos wit )* + 1—e")
2(.01 w126
T2 .
—_ (B — Be Pt cos 2wt + 2wie Pt sin 2wit)
8ww,?
where we have put:
+=0
T = o(w) cos wywdw
+%
Ty = ¢o(w)dw

The condition, that for =% we must get the equipartition value, gives us
one relation between 7, and 7.. One would expect that from:
—sTgl, kT

lim 2? = —
> m
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we would get a second relation, but the calculation of 427" shows that this
is the same as the first. The fact that ¢(w) has such a sharp maximum sug-
gests, that in the integral for 7, we may replace cosw; w by unity, which would
make 7, =7,. We can prove this more exactly by calculating xz™"!* and
determining the limit for t—, which must be zero, because for {— sub
ensemble (A) must again become a canonical ensemble. We get in this
way:

28kT

m

Ty = Tg =

This solves the problem completely. Averaging again over u,, using (32)
we get:

=z kT kT g . 2
¥ = — + | x® — —*2)6—”‘ cos wit + P sin wlt) (34)

MW Wi

which shows how the equipartition value is reached. So we can calculate
all sorts of mean values. The further result is perhaps interesting, that:

—., 1 (kT ) B
xu = —— — %2 )e Pt sin wif| cos wit + 5—— sin wyf

w 1w 2\ w1

which shows how the correlation between x and %, beginning with being
zero, oscillates and goes to zero again for t—o. Of course, averaging over

X0, We get =0 as it must be.
§11. In the aperiodic case we get:

—— B
2 = x0<1 + ?>e—(a/2)z (33a)
=., kT k Bey
2= — 4 (xe2 — — |14+ —)e*. (34a)
mw? mew? 2

The equipartition value is now reached monotonously. The calculation
goes similarly, except that instead of the integral 71, we have to introduce an
integral:

+wo
= f wip(w)dw.

——ZyU,

The calculation of 3™ proves then that this is zero, which could be ex-

pected.
In the overdamped case we get:

3= xoe*‘?’/”‘(cosh W't + —f—/ sinh w’t) (33b)

2w

=z, kT kT B . ’

x? " = — 4| x> — — )¢ #Y cosh o't + — sinh "t (34b)

mw? 2’
+o

1 Here we use: J* ¢(w)sinww dw=0, which follows from the fact that ¢(w) is an even

—c0

function.
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where:

0= —— 0= —w’

The equipartition value is again reached monotonously. It is easy to show
further, that when >>2w and £>(~! these last equations go over into the
results (30) of v. Smoluchowski, as we would expect according to the remarks
at the end of §9.

§12. The problem of the rotatorial Brownian motion of a small mirror
suspended on a fine wire, has been treated recently by S. Goudsmit and one
of us,”? by a method analogous to the well-known treatment of the shot
effect by Schottky.®® If the displacement, registered during a time, long com-
pared to the characteristic period of the mirror, is developed in a Fourier
series, an expression was derived for the square of the amplitude of each
Fourier component. It was found that this depended, besides on the tem-
perature, on the pressure and molecular weight of the surrounding gas.
This explains in principle, why the curves registered by Gerlach! at dif-
ferent pressures, though all giving the same mean square deviation, are
quite different in appearance. The calculations were made under the condi-
tion that the surrounding gas is much rarified, and though they can easily
be generalized, the exact comparison with the experimental data of Gerlach
is very difficult.

The results (33) and (34) (when we replace m by the moment of inertia)
are in this respect much better. They could be tested easily, and they hold
for all pressures of the surrounding gas. They show that, though the mean
square deviation depends only on the temperature, the correlation between
successive values of the deviation depends in a more interesting way on the
surrounding medium. Its influence is expressed by the friction coefficient 3.

NortEs

I. To prove that for U=u—usexp(—pBt) the normal Gaussian distribution
law holds, we have to show that:

7Pt =0

o | (4)
U =1-3.5---(2n — 1)(U?

We have from §5:
U=0

Rl
I

2L = o).
2B
From (11) we get further:
t t t
T3 = ¢t f f f B Gttt &) A (£) A (£2) A (Es)dErdEadEs.
0 [ 0

12 G. E. Uhlenbeck and S. Goudsmit, Phys. Rev. 34, 145 (1929).
13' W, Schottky, Ann. d. Physik 57, 541 (1918).
14 W, Gerlach, Naturwiss. 15, 15 (1927).
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According to the assumptions made about A(£) the integrand will be dif-
ferent from zero only in the neighborhood of the line & =§=2§. Taking
cylindrical coordinates with this line as z-axis, and using (5), we find:

[73

@3

(1 — 738

where 7, denotes the constant:

To = f fhdn(r, 0)rdrdd.
0 0

The value of 7, follows again from the equipartition law. For t—% , U3 must
go to zero, so that 7,=0.
Going to the fourth power we find:

t t t ot

Ui = oo [ [ [ [ oo AEARIAGI A dedendeadt.
0 0 0 0

When £ and &, are lying near each other and also &; and & (but far from
&1, &), we will have according to (6):

AE)AE)A(ENA(Es) = A(EDA(E) - A(Es)A(ES)

so that this integration region will contribute:

T 2
evJBtZ}:(e28£ —_ 1)2

We will get this 3 times because we can divide 4 (&) A(&) A (&) A(&s) into
two pairs in 3 ways. There remains the region in the neighborhood of the
line &, =& =§,=§&. For this we get, introducing cylindrical coordinates and
using (5):

3 45!( 48t 1)
2

where:

T3 = f f ¢3(7’, 8, Gg)drdw
0

For t—w we get therefore:

but according to the Maxwell distribution law, we have:

_ _ R S
lim U= lim #F = 3( lim #)? = —
18°

t—o {—o t—o
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so that 73=0 and we get:
U = 3(UY).

To write down the general proof for (4) is tedious, because one has more
and more integration regions to consider. However, since (4) holds for
t—0, one can convince oneself of the fact that only those regions where the
& are lying in pairs near each other give a real contribution. All the other
regions give contributions proportional to constants 74(k>1) which by the
equipartition law prove to be zero. This gives A; immediately and since the
number of ways in which we can divide 2» objects into » pairs is 1.3.5 - - -
(2n—1) we get A, also.

II. When we substitute in (20):

x =Bt
23 1/2
-o(2)
T1
we get:
dz dz 0%
—=z+y—+
dx av  9y?

and we have to solve this when for x=0, z=f(y) and for y=+ o, =0,
By separating we find as a particular solution:

Ane D, (y)e vl

where D, denotes Weber’s function of the nth order®
We have then to determine 4,:

o

() = 2 ADu(y)e vl

0
which gives:

1 oo

d, = ——— | D, e d
o) D

and we get for the solution:

+x E4
f d’?f(ﬂ)ff("z—”:)“ Z
—x% 0

We have now to sum the infinite series. As Professor H. A. Kramers showed
to us, this can be done in the following way. Put, suppressing the arguments
yand n:

DD .

i

n.

a(x, y) = (B)

(2m)1/2

< D.D,
M(x) = Y en*
i) n.

15 Comp. Whittaker-Watson, Modern Analysis, p. 347.
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then:

D
T Z n+1 n+1 (n+1)z'

Using the recurrence formula:
Dyii(3) = 2D4(2) — nDn1(2)
we get:
aM aM &\ ¥DniiDyn + 9D3Dpyy — DD,

= yne*M — e — — e (n¥d)z,
dx 0 n!

Calling the last sum N and using again the recurrence relation, we find:

. ¥DpDoyy1 + 9DnyiDy
N = (49— DM — Z Y AN i e~ (n+3)z

0 11'

Again using the recurrence relation, we find for the last sum
L = (2ype? — e 4*)M — e 2*N.

Substituting back, we get for M the differential equation:

__1_-2xsz=M{ —z . (a2 2 1)e22 —3z __ ,—d4z
(1 = e yne=s — (¥ 4 n* — 1)e* 4 yne et}

This we can immediately integrate, which gives:

C(y,n) { V¥ +n?— Zyne“} ‘

— eXx A
(1 — 3—2:)1/2

2(1—e2%)

M=

The integration constant C(y,n) can be determined from the fact that:
lim M = Do(y)Do(n) = C(y, n)e- W12

%
which gives:
Cly,n) = eWw™mis,

Substituting in the solution (B) gives ﬁnal}y:

__1 e = me)
0 9) = o I nf(n)( — exp | e e_h)}

which shows that the fundamental solution (f(7) is then §(y — o)) is given by:

o { (y— yoe*‘)ﬂ}
2r(l — e P L T o1 = o)

G(}’O, Y, x) =

Introducing again ¢ and #, we get (15).

III. To prove that for S=s—uo/B(1 —e#!) the Gaussian distribution law
holds, we have to show again:
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S = 0
§=1.3.5- .- (2n — 1)(5H)" (©)
We have from §7:
S5=0

. T1 )
S'Z=2—Ba(25t——3+4e Bt — g=21)

The calculation of the 3-fold integrals in S? is analogous to the calculation
of U%in Note I. We find that the result is proportional to 7, and from Note
I we know that 7,=0, so that:

5% =0.

In the 4-fold integrals occurring in S we have to consider only the regions
where £, &, &, & are lying in pairs near each other, because the other re-
gions will give results proportional to 7; which is zero, as is proved in Note I.
The calculation gives:

S7 = 3(85%)2
as could be expected. The factor 3 comes again from the fact that we can

divide &1, &, &, & into two pairs in three ways. In the same way as in Note
I then, one convinces oneself further of the truth of the general relations (C).



