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Introduction
In 1952 Alan Turing published his seminal paper The Chemical
Basis of Morphogenesis outlining his theory for the development
of physical characteristics such as Tiger stripes and Leopard spots
from a reaction diffusion system during the organisms develop-
ment. This well known result is often referred to as Turing Pat-
terns. What is less well known is that Turing’s paper actually pre-
dicts six different results from a reaction system diffusion and that
Turing Patterns are what he refers to as case “d” or “stationary
waves of finite wave-length”. Our works relates to studying an-
other important conclusion, that of case “f” or the “oscillatory case
with extreme short wave-length”. This case predicts that a ring of
oscillatory cells with nearest neighbor coupling will settle into a
final state with neighboring cells π out of phase. Our experimental
system is the first system able to directly test Turing’s predictions
(that we are aware of).

Experimental Overview
The experimental system we use is a microscale emulsion of Belousov-
Zhabotinsky (BZ) oscillators. The BZ reaction is a complicated
nonlinear chemical reaction with several formulations and models.
The important characteristics for our work are that the reaction
has a periodic oxidation spike which releases a diffusive inhibitory
chemical upon spiking and that the reaction is photo inhibitable by
inclusion of a specific light sensitive catalyst. Below is a figure
demonstrating the behavior of two coupled BZ oscillators.

Figure 1: A schematic diagram demonstrating some of the key
characteristics of the BZ reaction. The top portion gives a physical
picture of two aqueous BZ reactions separated by an oil gap. When
the cyclic reaction oxidizes (blue) it releases an inhibitory chemi-
cal that is able to diffuse across the oil gap and inhibit the oxidation
of the neighboring drop. The middle portion demonstrates a time
trace of the oxidation states of the two reactions. When the two
reactions are coupled like this they automatically begin to oscillate
out of phase with each other due to the inhibitory coupling. The
bottom portion is a space-time plot of two BZ emulsion oscillators
that were started initially in phase. During the course of the exper-
iment the phases of the two oscillators drift until they settle out of
phase.

Emulsion Overview
An emulsion of BZ oscillators is created by separating the aque-
ous drops with oil gaps. The emulsions are created using a flow-
focusing microfluidic device that controls the flow of surfactant
doped oil and the BZ reactants such that they form a monodis-
persed aqueous-in-oil emulsion. The emulsion is introduced to
rectangular capillaries by capillary action with the ends sealed in
epoxy.

H2SO4
CH2(COOH)2
NaBr

NaBrO3
Fe(phen)3

2+

Ru(bpy)3
2+

Oil with
surfactants

Oil with
surfactants

BZ emulsion

200 um

Figure 2: A flow-focusing microfluidic device used for creating the
BZ emulsion. The BZ reactants are introduced from the left and
pinched off into droplets by oil coming from the top and bottom.
The emulsion then travels off the chip to the right for loading into
capillaries.

Experimental Apparatus
The BZ emulsion is viewed and perturbed using a Programmable
Illumination Microscope (PIM). The PIM consists of three arms
with independent functions. The first arm illuminates the sample
with Köhler Illumination and the second arm is a CCD microscope
focused onto the sample area. The third arm is a modified commer-
cial projector with modified projection optics that focus the image
onto the microscope sample. The PIM can selectively illuminate
individual BZ droplets within the emulsion and silence the oscil-
lations within that droplet. A silenced droplet acts as a boundary
of constant chemical conditions or inhibitor sink. Droplets that
are separated by silenced drops are effectively isolated from one
another.
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Figure 3: The Programmable Illumination Microscope with light
paths highlighted and insets showing the sample area and capil-
lary of emulsion being imaged. The bottom right inset is a mi-
crograph from the PIM showing one drop that is not being illumi-
nated/silenced in an array of others that are. The central droplet is
freely oscillating in isolation.

Theory and Modeling
The BZ micro-oscillators were modeled using locally coupled Ku-
ramoto oscillators placed on a lattice. The equations governing the
phase of the oscillators are:

φ̇i = ωi + K
∑
〈ij〉

sin(φi − φj) (1)

Here, the oscillator at site i is coupled locally to its nearest neigh-
bors {j}. The intrinsic frequency of the individual oscillators is
given by ωi. This frequency is chosen randomly from a Gaus-
sian distribution with zero mean and variance σ, and is a source of
quenched disorder in this system. We study the specific case of the
coupling strength, K > 0, in which every oscillator wants to be
completely anti-aligned (π out of phase) with its nearest neighbor.
We can then ask what role the geometry plays on the long time
phase configuration of a lattice of these oscillators.

Figure 4: Schematic representation of anti-aligned phase oscilla-
tors described by the Kuramoto model.

To determine the long time phase patterns for a ring of oscillators,
we perform a linear stability analysis on the set of ordinary dif-
ferential equations given by equation 1. For simplicity we set all
frequencies, ωi, equal to one another. This corresponds to the limit
of infinite coupling strength. With the constraint that the phase
differences between neighboring oscillators around the ring must
sum to 2π, we find the fixed point phase differences to be

∆φ =
2πm

N
(2)

where N is the number of oscillators in the ring, and m is any
integer. When K > 0, only values of ∆φ in the left half of the
unit circle are attracting and the most strongly attracting phase dif-
ference is that which is closest to π. Thus, for even numbered
rings the oscillators can always get into their desired anti-phase
configuration, but for odd numbers they must compromise. For
example, for a ring of three oscillators we predict a phase differ-
ence of ∆φ = ±2π/3, both of which are equally likely, and for five
oscillators we predict ∆φ = ±4π/5.
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Turing Rings
Turing rings are created by photo-inhibiting all of the drops except
for those in the desired rings. These inhibited droplets will act
as a boundary of constant chemical conditions and otherwise not
interact with the uninhibited drops. The freely oscillating drops
are then equivalent to a one dimensional ring of droplets.
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Figure 5: An emulsion experiment where a ring of droplets (la-
belled 1-6) are allowed to oscillate while all of the rest have been
optically silenced. The top right image is a space-time plot taken
horizontally across the center of the system demonstrated that the
six droplets of the ring are oscillating while the others are silent.
The bottom image is a space-time plot around the ring of oscilla-
tors. The green dashed line demonstrates that drops 1, 3, and 5 are
in phase while the purple dashed line demonstrates that drops 2,
4, and 6 are in phase. The orange dashed line demonstrates that
the two phase clusters including drops 2 and 5 are mutually out of
phase.

Turing’s paper predicts that a ring of N oscillators should prefer-
entially form two phases clusters of N/2 members each that are
mutually out of phase. However for rings where N is odd this
is not a viable solution. For these frustrated cases the system in-
stead assumes a gramoidal pattern with one droplet spiking at a
time following a (N − 1)π/N nearest neighbor phase difference.
Observationally these patterns resemble triangles, pentagrams, etc.
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Figure 6: Multiple emulsion experiments with Turing rings of 3,
4, 5, or 6 oscillators. In each case the upper image shows the
droplets that have been allowed to oscillate while the lower image
is a space-time plot of the oscillating drops. The two odd numbered
cases on the left both demonstrate the gramoidal pattern with the
dashed orange lines indicating the sequence of oscillations. The
two even numbered cases on the right both demonstrate two anti-
phase phase clusters with the dashed green and purple lines indi-
cating the two clusters.
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