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Field-induced transient periodic structures in nematic liquid crystals :
the splay Frederiks transition
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Résumé. 2014 Une belle texture en bandes apparaît souvent comme réponse initiale d’un cristal liquide nématique
uniformément aligné à l’application soudaine d’un champ magnétique d’orientation différente. La structure de
l’instabilité dépend de l’élasticité et de la viscosité anisotrope du cristal liquide, de l’amplitude du champ et, de
façon importante, des conditions aux limites imposées par la cellule contenant l’échantillon. Nous avons étudié la
géométrie dans laquelle le champ magnétique est perpendiculaire aux parois parallèles de la cellule contenant un
cristal liquide nématique planaire composé d’une suspension de particules de virus de la mosaïque du tabac. Dans
cette géométrie, des domaines en bandes parallèles s’etablissent dans deux directions. Leur longueur d’onde et
l’angle qu’ils forment avec l’orientation initiale du directeur dépendent du champ magnétique. La distorsion initiale
apparaît sous forme de carreaux délimités par deux séries de lignes parallèles. Nous avons analysé cette structure
par une analyse de stabilité hydrodynamique linéaire développée de deux façons. Nous présentons tout d’abord
une analyse générale des équations du mouvement et nous déterminons l’angle et la longueur d’onde employant des
valeurs raisonnables pour les paramètres de la matière et supposant des parois libres. Ensuite une simple théorie
basée sur des arguments d’énergie est présentée dans la limite de très longues molécules. Elle reproduit les aspects
essentiels des échantillons de virus de la mosaïque du tabac. Finalement une investigation des effets de parois rigides
dans un cas simplifié montre qu’ils n’affectent pas les conclusions tirées pour le cas des parois libres.

Abstract. 2014 A beautiful striped texture is often observed as the initial response of a uniformly aligned nematic liquid
crystal to a suddenly applied reorienting field The structure of the instability depends on the elastic and viscous
anisotropy of the liquid crystal, the field strength, and in an important way on the boundary conditions imposed
by the sample cell. We have studied the geometry in which a magnetic field is applied normal to a parallel-plate cell
containing a planar-aligned liquid crystal composed of suspended tobacco mosaic virus particles. In this geometry,
parallel striped domains develop in two directions with a field-dependent wavelength and angle relative to the
initial director. The initial distortion appears as a cross-hatched pattern of intersecting sets of parallel lines. We have
analysed the pattern by a linear hydrodynamic stability analysis in two ways : First, a general analysis of the
equations of motion is presented which describes the angle and wavelength with reasonable values for the material
parameters and assuming free boundary conditions. Second, a simple theory based on energetics for the limit of
very long molecules is given, which reproduces the essential features of the tobacco mosaic virus samples. Finally
the effects of rigid boundaries are investigated for a simplified case and are found not to alter the conclusions drawn
for free boundaries.
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1. Introduction.

It is surprising that field-induced transient hydro-
dynamic instabilities in nematic liquid crystals have
gone relatively unnoticed in spite of the fact that the
Frederiks transition is one of the most important
experimental tools for measuring liquid crystal mate-
rial parameters. In the usual Frederiks transition, a
field is applied to a uniformly aligned sample in such
a way that the director tends to realign perpendicular

(*) Permanent address : Sandia National Laboratories,
Albuquerque, NM 87185, U.S.A.

to its original direction; the final angle of the director
is that at which the field torque is balanced locally
by the elastic restoring torque transmitted through
the liquid crystal from the anchored boundaries.
Although the final alignment state is uniform in the
plane of the sample, the path to that state often involves
a spatially periodic, transient instability in which

adjacent domains of the sample rotate in opposite
senses. It is this initial response that gives rise to the
striped textures that have been largely overlooked.
Here we present the results of our experimental and
theoretical studies of field-induced stripes in the

splay-bend Frederiks transition geometry. In a pre-
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vious paper we examined the twist-bend geometry
[1, 2].
The fast response of ordinary thermotropic nematics

may have prevented the occurrence or observation
of the transient stripes. When they do occur, they
anneal away rather quickly in these materials; it is
with slower lyotropic systems that the beautiful

patterns become obvious. Indeed, the growing interest
in lyotropics has led to a number of recently reported
observations [1-4] although the earliest reports were
in MBBA [5, 6].
The coupling between flow and reorientation leading

to these effects was described by Guyon, et al. [5] who
also studied the splay-bend case. In this geometry
the director, initially parallel to the walls of a thin
cell (planar alignment), is suddenly forced to rotate
toward the normal to the walls (homeotropic align-
ment) by an external field. Using fairly high fields
relative to the critical field of the normal Frederiks
transition, they found a system of regular stripes
perpendicular to the initial director whose wavelength
was field-dependent. This implies that the fluid flows
and the director remain in a single plane, and so the
analysis of the problem is somewhat simplified.
We have repeated these experiments with thinner,

more manageable samples in relatively low magnetic
fields using a lyotropic liquid crystal composed of
tobacco mosaic virus (TMV) particles suspended in
water, and we have found that the stripes are not
always perpendicular to the initial director. Instead
they can form at an acute angle on either side of the
director. We have made similar observations on thin

samples of MBBA. The implication is that the problem
is not strictly two-dimensional : to explain the angled
stripes, one must keep track of the flow and director
fields in three dimensions.

In this paper we present such an analysis, based on
the idea that the initial distortion is dominated by the
fastest growing periodic modes. Following Guyon,
these modes are found by solving for the maximum
rate of growth as a function of wave vector k from the
three-dimensional equations of nematodynamics.
Alternatively, the same dynamical information can be
obtained from the balance between conservative and

dissipative energy changes. Certain components of
k must be fixed to satisfy rigid boundary conditions,
which is accomplished by combining modes with
the same growth rate; for rigid boundaries, however,
it appears from our analysis to be sufficient to discuss
only the free-boundaries mode.
That a maximum in the growth rate exists at finite

wave vector can be understood by the fact that the
energy dissipation rate in a periodic distortion is
characterized by an effective viscosity which is wave
vector-dependent in general because director rotation
and fluid velocity gradients are coupled in nematics
and because the viscous properties are anisotropic.
Shorter wavelength distortions tend to be of smaller
effective viscosity owing to the cooperation between

director and velocity in spite of the fact that there are
greater velocity gradients. At longer wavelengths
the presence of boundaries becomes important tending
to make the effective viscosity greater. Meanwhile
a lower elastic energy favours modes of longer wave-
lengths, so unless it dominates, leading to a non-
periodic response with k = 0, a compromise is found
at some intermediate k. Hence, by incorporating
components of rotation that do not directly lower
the driving field energy, a smaller effective viscosity
or a smaller elastic restoring force can be found by the
system in order to maximize response rate. This is why
the planar-to-homeotropic transition involves three-
dimensional flows in general and why the stripes are
oblique.

In section 2, the linearized equations of motion are
derived from Euler-Lagrange mechanics and solved
by Fourier transforms. The problem of satisfying
boundary conditions exactly is discussed using the
two-dimensional limit (no obliqueness in the stripes)
of the planar-to-homeotropic case as an illustration.
Certain features of the full three-dimensional equa-
tions, which are solved numerically for free boundary
conditions, are shown graphically. In addition, the
infinite chain limit is treated by appealing directly
to energy conservation. The measurements with TMV
are described in section 3 with a comparison to the
dynamical theory in section 4. The results show the
general trends in the mechanical anisotropy predicted
for hard-rod liquid crystals.

2. Linearized equations.

In the following development, the nematic liquid
crystal is assumed initially to be uniformly aligned
parallel to glass plates spaced by a distance d, and a
magnetic field is applied normal to the plates. Letting
the z axis be along the field and the x axis along the
initial director n as in figure 1, the Lagrangian density
for small displacements and ignoring inertial terms

Fig. 1. - Reorientational instability in nematic liquid crys-
tals. The sample is constrained between two plates spaced by
a thickness d. A magnetic field is suddenly applied normal
to the cell along the z direction giving rise to a transient
periodic structure that appears under crossed polarizers
as oblique stripes in the x-y plane. The director lines are
helicoidal, rotating in opposite sense on either side of the
midplane. The flow lies in some plane across the stripes and
is characteristic of convection cells.
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where n is the director, u is the displacement vector, p is the pressure, H is the magnetic yield, Ox is the diamagnetic
susceptibility anisotropy and K1, K2 and K3 are the splay, twist and bend elastic constants, respectively. Spatial
derivatives are indicated by subscripts following a comma. The last term in equation (1) corresponds to work
done by fluid displacements against a pressure gradient; its inclusion serves to reproduce the traditional equa-
tions of nematodynamics.

Rayleigh’s dissipation function for a nematic has been derived recently by Vertogen [8], which for the present
geometry is

where v = 6 and the five basic viscosities are taken to be the Miesowicz shear viscosities, Na’ Nb and flc’ along
with VI (elongational flow) and y, (molecular rotation without flow). The coupling viscosities, q4, a2 and a3,
are related to these by

By a suitable generalization of Vertogen’s work, the Euler-Lagrange equations of motion are [9]

Here qi is a generalized coordinate of which there are five : the three components of u and the two transverse
components of n. Taking qi = ui yields the linear momentum equations

The torque equations are similarly found by taking qi = nt,

Finally, fluid incompressibility requires

Using the fact that V x (Op) = 0, the pressure can be eliminated, and after a Fourier transform, the velocity
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vx can be eliminated readily using equation (6), leaving four equations in four unknown amplitudes,

where

Here s is the rate of growth of the mode whose time dependence is assumed to be exp(st). Further elimination
of field amplitudes is possible but not particularly fruitful for numerical analysis.

3.1 CHARACTERISTIC EQUATION. - A necessary con-

dition for a solution to exist is that the determinant of
the coefficients in equations (7-10) must vanish. The
resulting characteristic equation or dispersion relation
is quadratic in the growth rate s and of the sixth power
in each of kx, ky and k2.

The unstable modes must have a real and positive
growth rate, and since they are observed to be spatially
periodic in the x and y directions they must have real
wave vector components kx and ky.

Considered as a function of z then, the charac-
teristic equation is a sixth-order polynomial with six
independent roots; therefore there are six independent
modes for a given rate of growth that satisfy the equa-
tions of motion.

2.2 BOUNDARY CONDITIONS AND SYMMETRY. - It is
difficult to satisfy rigid boundary conditions exactly
for the three-dimensional velocity and director fields.

The complexity of the problem tends to obscure the
essential physics that is responsible for the striped
patterns; therefore, only the free-boundaries case

will be treated in detail. This approach will be justified
in subsequent discussions comparing exact rigid-
boundary results to free-boundary results.

Physically, the boundaries impose constraints on
the allowed wave vectors normal to the cell. For the

experiments we performed rigid boundaries were

used,

but free boundaries are more tractable,

The solutions can be constructed to have definite

symmetry in the z direction, even or odd, with respect
to the midplane of the sample. (Symmetry in the x-y
plane is irrelevant to the growth rate by translational
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invariance.) From equations (4) and (5) we see that
V,, vy, ny and p must have one type of symmetry
(say odd) while Vz and nZ must have the other type
(even),

One can easily verify that this solution satisfies the
free boundary conditions, equation (12b), with

kz = n/d. The corresponding solution with odd z-

symmetry for nZ must have kZ = 2 n/d and can be
shown to be slower; it is therefore always preempted
by the even solution.
A few clarifying comments about the rigid-boun-

daries solution are in order. Since the characteristic

equation is a sixth-order polynomial in k2, the solu-
tions to each field variable are composed of a sum of
six independent modes corresponding to the six roots
for k2, some of which may be complex roots. By
golving the boundary value problem exactly, we can
determine an « effective sample thickness » d * = 03C0/kz
for each real root. The rate of growth can then be
determined from the characteristic equation using

any of the roots for k.. The maximum rate must be
found by searching the kx-ky plane.

It is this concept of an effective sample thickness
that makes it easier to understand why the rigid and
free boundaries give similar results. As we will show
in the next section, which deals with a simplified case,
the solution for rigid boundaries is a superposition
of a simple mode resembling the free-boundaries
solution (i.e. with kz = n/d or d* = d) and other
modes having complex wave vectors. In order to

study the directions and wavelengths of the stripes,
it is sufficient to consider only this simple mode since
all the modes satisfy the same dispersion relation
and it doesn’t matter which one we choose to maxi-
mize the rate : each of them will produce the same
wave vectors, kx and ky. Insofar as the simple mode
resembles the free-boundaries solution with an effective
thickness d * nearly equal to the actual thickness d,
we are justified in exploring the behaviour of the rigid-
boundaries distortion as a function of applied magnetic
field by numerically solving the free-boundaries pro-
blem, equations (11). These results are discussed in
section 4.

2.3 TWo-DIMENSIONAL CASE. - As an illustration
of the exact general procedure, the two-dimensional
case, which Guyon et al. [5] analysed for free boun-
daries, will be analysed here for rigid boundaries.
Setting vy, ny and ky to zero, the characteristic equa-
tion becomes a cubic for ki,

where N = 2 fla - fib - flc + Y1 - 2 VI and j = 7i s - AxHj + K3 kx. Hence there are three roots q2j
to kz, one of which must be real. The solution for which nZ has even symmetry is

From the torque equation and the incompressibility
condition, equations (5b) and (6), the amplitudes Bj
and C j can be found in terms of the amplitudes A j
of the three independent modes.

where

With these substitutions, the boundary conditions
yield three equations in the three remaining ampli-

tudes whose coefficients must have a vanishing
determinant. After some dlgebra, this condition beco-
mes

where Pj = qj d/2 can be complex. Thus, equation (16)
and the three characteristic equations (one for each
root) form a set of four nonlinear equations in four
unknowns, qi, q2, q3 and the rate s, for a given wave
vector k.,. The fastest growing mode must be found by
searching through values for kx.
The lowest order even solution involves an effective

thickness d * = d whereas the lowest order odd
solution has d* -1 d. With this information, it
can be shown from equation (14) that the odd solution
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is always slower than the even one although both give
stripes. The wavelength of the even solution should
be the one that is observed.
For fields just above the Frederiks transition field,

a spatially uniform realignment, similar to one pre-
viously studied [10], is possible and actually is faster
than the striped mode. It must be treated separately
as follows.

Assuming no variation in either the x or y directions,
we have immediately vz = 0 and the equations of
motion

The fastest growing solution is the one for which nz
is even in z with the form

The distinctive feature of this solution is the presence
of a kZ = 0 mode (represented by a linear shear)
whose rate of growth must be made equal to that of
the periodic kz # 0 mode. It is also characterized by
the peculiar fact that director rotations toward the
magnetic field direction do not induce a fluid velocity
in that direction.
To satisfy boundary conditions, the wave vector for

the even solution must now satisfy

where h = (nI2) (Hz/He)’ He = n(Kl/ð.x)I/2/d, P =
qd/2 and q = a3/( Nb 7i) while the rate, for both even
and odd solutions, is

SinceN is less than one, equation (21) has a solution
in the range n/2  P  03C0. It can be shown that the
lowest order odd-symmetry solution has P = 03C0 so the
even solution is always faster for this spatially uniform
mode as it is for striped realignments discussed above.
The rate for the uniform solution is plotted with the

rate for the periodic solution in figure 2a. For fields
below (HIH, )2 -- 9.2 the uniform solution is faster in
MBBA. On the basis of this theory, which is only good
for the small distortion limit, no stripes would be
observed unless this field were exceeded Beyond the
linear regime however there may be spatially periodic
solutions for small fields.
The rigid-boundaries results for kx are compared

with those of free boundaries in figure 2b. Apart from
an upward shift in the critical field at which periodic
structure emerges and slight shifts of wavelengths in the
stripes, the exact solution for rigid boundaries is

Fig. 2. - Analysis of two-dimensional case. (a) Rate of
growth with rigid boundaries where so = (n/d)2 KI/yI.
Two regimes are present : for low fields above the Frederiks
transition « a » the sample reorients by a spatially uniform
mode without stripes whereas for high fields above « b »
the striped instability is faster. Also, the even mode (even
symmetry for nz) is faster than the odd mode. Parameters for
MBBA were used :

1. = 0.416 poise, ?7b = 0.248 poise, tl,, .= 1.035 poise,
y, = 0.763 poise, VI = 0.518 poise [17].

(b) Comparison of periodicity of stripes along i for rigid
and free boundaries. That the stripes have similar wave-
lengths reflects the fact that the effective thickness is nearly d
for rigid boundaries and even symmetry. (c) Effective
thickness for even and odd modes with rigid boundaries.
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essentially the same as for free boundaries. The reason
for this is that for rigid boundaries the effective
thickness differs little from 4 its value for free boun-
daries, as shown in figure 2c. Mathematically one can
see why the effective thickness remains constant by
studying figure 3 showing the profile of the velocity
parallel to the walls. Three independent modes combine
in this solution, a free-boundaries-like mode, which
has large transverse velocities at the walls, and two
others, which decay exponentially from the walls and
exactly cancel the first at the boundaries. The influence
of the decaying modes is small in the bulk of the

sample making the over-all behaviour much like the
free-boundaries solution. They give rise to a large
shear gradient confined to a boundary layer that is
thinner the higher the driving field This shear corres-
ponds to a low viscosity process, being governed by
Nb. At other places near the walls where the much larger
elongational flow viscosity v, is dominant, the

decaying modes have less influence since the free-
boundaries solution already satisfies rigid boundary
conditions there and so the extra modes are not
needed.

In the three-dimensional problem involving oblique
stripes, a similar situation is expected : exponentially
decaying modes fix up the free-boundaries solution
in areas of the walls where the relatively small shear
viscosities, l1a’ and nb, dominate. The extra shear
flows remain a surface effect so that the over-all
behaviour is that of the free-boundaries case.
We must emphasize that the reanalysis in this

section of Guyon’s model [5] for rigid boundaries has
little to do with reality when the system responds
with oblique stripes. When the stripes are not oblique
(and this does occur [5]), or when there is uniform
rotation with no stripes, these solutions are exact
for the initial instability in the linearized limit.

2.4 LONG-CHAIN LIMIT. - An interesting case to

consider is that of infinitely long and thin liquid crystal
molecules. The macroscopic properties of long-chain
systems have been studied theoretically [11] beginning
with Onsager’s work [12]. The splay elastic constant
and several viscosities are expected to diverge : those

Fig. 3. - Velocity field v., for exact rigid-boundaries solu-
tion of two-dimensional case with even symmetry for nz at
low field (a) and high field (b). The general solution (solid
lines) is composed of three independent modes, one which
is nearly identical to the free-boundaries solution (dotted
line) and two others which decay exponentially from the
boundaries. At higher driving fields (b), the first mode remains
relatively unchanged and the other modes decay more
rapidly giving rise to a greater shear gradient.

for pure rotation about molecular centres yl, for

elongational flow vl, and for shear across the chains Nc.
Thus vx,x = 0, V - n = 0 and only twist-bend modes
are allowed
The Rayleigh dissipation function cannot contain

infinite viscosities so it must be rewritten in order that

large quantities cancel. Equations (5a) and (5b) for the
torque can be written as

where fy and T z are the conservative torques from
elasticity and the magnetic field. Replacing the director
components in equation (2) by these expressions and
dropping the elongational flow yields

In the long-chain limit we set yi = fie ----&#x3E; oo leaving
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Furthermore, from equations (23a) and (23b) the

coupling between director rotation and flow is absolute

Fluid flow along the director is possible as long as
there are no gradients along X. Since we seek a solution
that is spatially periodic in both the x and y directions
we must eliminate vx altogether in R. This also eli-
minates the pressure. (Allowing the vx,y and vx,2 terms
to stay leads to a pure-twist structure.) Therefore,
paying attention to (free) boundary conditions and
fluid incompressibility, the expected solution is

with kz = n/d One can verify that V - n = 0 as well.
The growth rate characteristic equation can be

found directly from energy conservation. This leads
to an analytic expression that can be readily explored
in certain limits. The magnetic potential energy of the
initially undistorted nematic sample decreases as the
reorientational instability proceeds. This energy is
either stored in elastic distortions or dissipated by
viscous processes, a balance expressed as

since R is just one-half the dissipation energy density.
The brackets indicate an integration over the sample
volume as the energy balance is not point-by-point.

After some algebra, the effective viscosity emerges

and the rate of change of potential energy is

Finally, assuming a time dependence exp(st), the rate
of growth is

where f3 = (kx/kz)2 and a = (ky/kz)2.
This equation for the rate can be tailored for TMV

liquid crystals by using the experimental fact that a
remains nearly constant for higher fields and that
is roughly linear in H2. We have found by numerical

investigations of equation (29) that fib must be small
to account for the rapid jump a makes from zero to two
just above the threshold field and that K2 must be
small to make b linear in H2. With these adjustments,
one finds by maximizing s with respect to a and f3
the pleasing results

independent of material parameters and

Thus fl should depend linearly on H’ with a slope
inversely proportional to K3. The data from TMV
samples exhibit both of the major features of this limit
as will be described in more detail in the next section.

3. Experiments with TMV and MBBA.

Liquid crystals made of suspended tobacco mosaic
virus have played an important part in liquid crystal
physics, most notably the experiments which prompt-
ed Onsager to formulate his theory in 1942 for the
nematic-isotropic phase transition in a rigid-rod
fluid [12]. Since then TMV has remained for the
most part in the structural biologist’s laboratories.
This neglect by liquid crystal physicists is probably
due to the difficulty in handling these materials,
especially in preparing well oriented, monodisperse
samples for quantitative measurements. Our efforts
in this area have succeeded to the point that we can
now be confident that our TMV liquid crystals are
indeed nematic (not gels or colloidal crystals), with well
behaved elastic and viscous properties [2]. We have
found these unusual nematics to be surprisingly
attractive to work with. Perhaps the full potential of
TMV as a model rigid-rod liquid crystal system will
eventually be realized
The virus particles were extracted from tobacco

plants using the procedure described by Kreibig and
Wetter [ 13], then suspended in water (borate buffered
to pH 8.5 at an ionic strength of 50 mM) at a concen-
tration of 148 mg/ml. Under these conditions the virus
molecules are negatively charged, so their rigid-rod
dimensions (180 Å in diameter and 3 000 A long)
are effectively increased by a cloud of counterions.

Parallel plate cells were fabricated from 0.5 in. dia.
quartz windows, which had been coated with several
hundred Angstroms of silicon monoxide obliquely
evaporated at 680 from the normal. The suspension
was captured between the plates by a teflon washer of a
given thickness and the whole assembly was held
together with an aluminium clamp, making sure that
the evaporation directions of the coatings were parallel.
The TMV particles aligned parallel to the glass and
perpendicular to the evaporation direction. Under the
polarized microscope, well aligned samples exhibited
characteristic streak-like fluctuations perpendicular
to the director.
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Four samples were prepared with thicknesses of 90,
201, 297 and 366 gm. After annealing in a large magne-
tic field for a few minutes, a sample was exposed to a
known field normal to the cell for 20 seconds to several
minutes in order to create a striped pattern as in

figure 4. The pattern was then photographed through
a microscope. Measurements of the angle and perpen-
dicular spacing between stripes were taken directly
from the negatives, converted to the wave vectors kx
and ky parallel and perpendicular to the director,
respectively, then plotted in figure 5. Comparisons with
the theoretical curves in figure 5 will be described in
section 4. Several of the measurements were checked

by comparing to measurements taken from optical
Fourier transforms as seen in figure 4.

Fig. 4. - Time development sequence of transient periodic
structures in tobacco mosaic virus nematic liquid crystal.
The sample was initially aligned in the plane of the sample
along n and the magnetic field was applied normal to the
sample as shown in figure 1. Under crossed polarizers the
distortion is first seen as a cross-hatching of light and dark
patches which eventually connect to form oblique stripes.
Time of exposure to the field : (a) 20 s, (b) 40 s. (c) Well
developed structure. The distance between stripes is 50 pm.
(d) Optical diffraction pattern of (c). This shows that the
spatial Fourier transform of the stripes consists of well

developed periodicities kx and ky along with less intense
period doubling peaks owing to a pairing-up in the annealing
process. (e) and (f) Oblique stripes and Fourier transform in
MBBA. Rapid annealing occurs in the first few seconds

resulting in less definition and more pairing-up.
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Finally, an effort was made to photograph the
instability in MBBA; the best result is seen with its
optical Fourier transform in figures 4e and 4f. Unfortu-
nately the fast relaxation time of this material prevented
capturing the initial distortion on film, although the
obliquely striped pattern in figure 4e is unmistakable
in spite of the extensive annealing that had already
taken place in the first second or so of the transition.
The pairing and subsequent annihilation of adjacent
defects was a common mode of annealing observed in
both TMV and MBBA samples. It is manifest in the
optical Fourier transforms as a period doubling spot
appearing between primary maxima in figures 4d
and 4f.

4. Discussion.

4.1 OBLIQUENESS OF STRIPES. - In order to explore
the predictions of the model for the oblique stripes,
the characteristic equation (Eq. (11)) was numerically
solved for the maximum rate of growth at a given
field by varying k., and ky while assuming an effective
thickness of d (therefore k. = 03C0/d) and using MBBA
viscosities and elastic constants. The first aspect of the
solution to notice is that oblique stripes appear for
fields H greater than about 1.5 H, and less than 5 Hc.

Fig. 5. - Measured wave vectors in TMV as function of
field, and theoretical curves from free boundaries model.
The wavelengths and angles of the stripes in four different
thickness samples were taken from photographs and
converted to kx and ky. The curves were generated from
equation (11) using viscosities and elastic constants similar
to those predicted for long, hard-rod liquid crystals.

Below this range there is a spatially uniform mode of
reorientation and above this range there are stripes
but they are not oblique : the system chooses the two-
dimensional mode which has been discussed in
section 2.3. We know that this latter instability is

essentially a bend mode, polarized in the x-z plane
(that is, only the z-component of the director varies
sinusoidally with x), with some splay involved owing
to the presence of boundary conditions. The important
point is that the obliqueness comes in continuously
as the field strength is decreased This suggests that
there is a continuous change in the bend mode from
higher fields with straight stripes to lower fields with
oblique stripes.
Under crossed polarizers, the distortion represented

by ny and nz in equation (13) would have the correct
characteristic cross-hatched pattern that is observed
in our samples; it is the superposition of two oblique
sets of « rolls » which we may analyse separately.
One roll is given by

and the other by ky -&#x3E; - ky. At a constant y and z,
we see from equation (32) that the director lies on the
surface of a cone with an elliptical base and that it
precesses around this in a helicoidal fashion with

increasing x. Why does the linearly polarized bend
mode, favoured at higher fields, become elliptically
polarized at lower fields ? By comparing the distortion
energies of these two cases it becomes evident that the
bend mode can avoid splay by becoming elliptically
polarized It is helpful to think of the rolls in equa-
tion (32) as a superposition of linearly polarized bend
modes that are both tilted (from lying in the x-plane)
and « staggered » or « sheared » (in the x-y plane)
although such modes no longer satisfy the equations
of motion individually. The splay energy of one roll is

The term Ekz is present because of boundary condi-
tions whereas Dky derives from tilting the « sheared »
bend modes. In equation (33) we see that the splay
energy can be reduced by tilting (increasing D) a
sheared bend mode characterized by ky. Thus we see
that the oblique, cross-hatched structure, made up of
sheared and tilted bend modes, allows the system to
avoid splay at some cQst in twist energy. In fact, for
systems that strongly avoid splay, we would expect to
have ky proportional to kz as in the long-chain limit
(Eq. (30)).
Arguments based only on the elastic energy are of

course incomplete since viscosities can have even

larger effects on the rate of growth and on the oblique
angle than can the elastic constants. The viscosity
anisotropy tends to be larger than the elastic aniso-
tropy in liquid crystals so the rates of growth for
different distortions can be quite dissimilar. In order
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to determine which viscosities are important, we
returned to the numerical solution to the free-boun-
daries model, equation (11), and changed the viscosities
to see what happens to the stripes. On kx none of the
viscosities have much effect, indicating that this

periodicity is mediated almost entirely by the bend
elastic restoring force (Fig. 6a). On the other hand, the
ky periodicity is greatly affected by changes in visco-
sities, notably nb and v 1 - Specifically, a smaller nb I
which is the viscosity for elongated molecules sliding
longitudinally past one another, tends to make ky
more constant with respect to field whereas a greater
elongational flow viscosity v, tends to increase ky
for all values of the field (Fig. 6b). 
Comparing the dissipation functions for a linearly

polarized bend-splay mode, which gives perpendicular
stripes, and the helicoidal, elliptically polarized modes,
which give oblique stripes, we find that perhaps the
most important difference is in the elongational flow
term. Similar to splay, elongational flow can be at
least partly avoided in the helicoidal structure since
the flow along x can « escape » toward y and i.
The pertinent term in the dissipation function is

The recipe for fast growth is to decrease the field

energy as quickly as possible, transferring the energy
to elastic distortions by the smallest viscosity routes
available. By becoming oblique, the stripes lower the
field energy more quickly than perpendicular stripes
since elongational flow can be traded for other flows.
When the driving field is high enough, the avoidance

of splay and elongational flow is not important
enough to favour the oblique stripes of the helicoidal
structure over the perpendicular stripes of the bend-
splay structure (Figs. 6a and 6b). The system takes
the most direct route toward aligning with the field,
which is the bend-splay mode. The elongational flow
and splay are confined to an increasingly thin boun-
dary layer at high fields so that the pure bend in the
bulk becomes the only important distortion. Moreover,
it is likely that the overall effective viscosity is no

longer lowered by trading elongational flow for
transverse flow since the Nc term in equation (2) must
grow as the field increases. This transition from

oblique to perpendicular has been observed in MBBA,
which is of relatively low molecular weight : figure 4e
shows oblique stripes observed at low reduced field
in our laboratory but reference [5] discusses measure-
ments taken from perpendicular stripes in thick sam-
ples and hence high reduced field. Our samples were
too thin to drive them into the perpendicular regime
since this requires very high fields leading to very fast
annealing of the transient structures. In high molecular
weight nematics such as TMV the oblique regime is
quite extended in field. We are not aware of any
observations of strictly perpendicular stripes in such
systems although it is possible that in thick samples
they would be seen.

Fig. 6. - Effects of changing material parameters on stripes
in three-dimensional model, equation (11). (a) Curve 1 shows
the values taken by kx as a function of field for MBBA
viscosities and elastic constants. Increasing the splay
elastic constant Ki by a factor of 10 (curve 2) has little effect
apart from shifting the critical field; similarly, K2 (twist)
has little or no effect on kx (not shown). Decreasing K3 (bend)
by a factor of 10, however, has a large effect (curve 3) as does
decreasing the shear viscosity YIb by a factor of 2 (curve 4),
whereas halving vj, the elongational flow viscosity, has
relatively little effect (curve 5). This shows that the periodicity
along the initial director is governed by bend modes, which
dominate the bulk of the sample, while splay and elonga-
tional flow being confined to thin layers near the surfaces
have less influence as the bend mode wavelength becomes
much smaller than the sample thickness. (b) The periodicity
ky normal to the director is especially sensitive to viscosities
and the twist elastic constant. Curve 1 shows ky for MBBA,
indicating that the stripes are oblique only for low fields
(HIH,)’ - 25; increasing K2 causes the stripes never to be
oblique (not shown). Decreasing nb by a factor of 10 (curve 2)
greatly extends the range of fields in which the stripes are
oblique, and makes ky relatively constant; simultaneously
increasing vi by a factor of 10 (curve 3) tends to increase ky
further. These trends reflect the expected behaviour of hard-
rod liquid crystals.

4.2 HARD ROD PARAMETERS. - We have analysed
the measurements of the in-plane wave vectors,
shown in figure 5, for the elasticity and viscosity
parameters in light of the models for long, hard-rod
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Table I. - Elasticity and viscosity ratios for theoretical hard rod and long-chain models compared with MBBA
and with TMV fitting parameters from this work. The standard order parameter is S and the chain length is L.

(a) Reference [14].
Q) Reference [ 15].
e) Reference [11].
(d) Reference [7].

and infinite-chain liquid crystals. There exist theore-
tical ideas for the relative magnitudes of elastic
constants [11, 14] and viscosities [11, 15] of such

nematics; a comparison of values is made in table I
along with measured values for MBBA and the fitting
parameters for the data in figure 5. The fitting pro-
cedure was not a least-squares type; instead we
searched for consistency between these data and some
similar data from twist-bend instability experiments
with the same TMV samples [2]. The numbers we
obtained for our TMV samples must be taken as
qualitative, but certain conclusions seem inescapable.
The results indicate a much higher anisotropy in

the elastic and viscous properties of our TMV nematic
samples than is found in a typical thermotropic
nematic such as MBBA. It is interesting to see that
the extreme limit of the infinite chain model (K,, Y1, vi
and all infinite) plus the assumption of vanishingly
small K2 and fib gave a good description of the high
field data on TMV. However, much less extreme sets
of parameters also fit the data very well, so the infinite
chain limit is not necessarily relevant. In fact,
K3 &#x3E; K1 &#x3E; K2 seems to be a reasonable ordering
of the elastic moduli, in agreement with hard rod
theory of the nematic phase. The relative magnitudes
of the viscosities needed to fit the data are also con-
sistent with hard rod theory. Further refinement of
theoretical models and more extensive data will be

necessary before more exact conclusions can be
reached.

5. Conclusions.

Magnetic reorientational instabilities appear to be

quite common and easy to observe in lyotropic
nematic liquid crystals. We would expect a similar
class of phenomena in cholesteric liquid crystals as
well. The analysis of these cases should follow the lines
of thought presented here for the somewhat nontrivial
splay-bend geometry. Our analysis has shown how
the obliqueness of the observed stripes is a consequence
of the high anisotropy found in rigid rod and polymer
based nematics, as opposed to the less anisotropic
materials, like MBBA. We’ve also seen that there is
useful information to extract from the configuration
and dimensions of the stripes that occur; whether such
measurements could be refined to a routine for

characterizing the mechanical properties of liquid
crystals remains to be seen. It is significant however
that a greater or lesser number of mechanical para-
meters come into play as the geometry is varied by
changing the direction of the applied field and as the
field strength or sample thickness is varied This

provides an opportunity to make a more complete
and less ambiguous set of measurements than we have
so far performed.
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