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1.1 Introduction

The reasons physicists give for studying colloids are varied. Our initial motivation
was that colloids can serve as model experimental systems to study simple fluids be-
cause with careful preparation, colloids approximate hard particles. Numerous studies
have investigated the phase behavior, structure, and macroscopic viscoelastic prop-
erties of suspensions of spherical colloids (Poon and Pusey 1995). Far less studied
have been colloids of anisotropic shape, in spite of their long recognized similarity to
liquid crystals. Counterintuitively, hard rod fluids are theoretically simpler systems
to understand than hard spheres (Forsyth et al. 1978). This surprising fact was first
recognized by Onsager who realized that the isotropic - nematic (I-N) transition in
the rodlike colloid Tobacco Mosaic Virus (TMV) occurred at such low concentrations
that only two-body interactions were necessary in order to quantitatively explain the
I-N phase transition (Onsager 1949). In fact, in the limit of long thin rods Onsager’s
theory becomes exact. This in contrast to the theory of phase transitions of hard
spheres, for which no exact results exist (in three dimensions).

For some years the Complex Fluids Group at Brandeis has studied the liquid
crystalline behavior of suspensions of TMV (Fraden et al. 1985; Hurd et al. 1985;
Wen and Meyer 1987; Oldenbourg et al. 1988; Fraden et al. 1989; Meyer 1990; Fraden
et al. 1993; Wang et al. 1994; Fraden 1995; Adams and Fraden 1998) and filamentous
phage fd (Tang and Fraden 1993; Tang and Fraden 1995; Fraden 1995; Tang and
Fraden 1996; Dogic and Fraden 1997; Adams et al. 1998; Dogic et al. 2000; Dogic
and Fraden 2001; Grelet and Fraden 2003; Dogic 2003; Purdy et al. 2003; Purdy and
Fraden 2004b; Purdy and Fraden 2004a; Purdy et al. 2004). TMV is a beautiful
colloidal rod (Kreibig and Wetter 1980; Wetter 1985). It is completely rigid and forms
isotropic, nematic, smectic and colloidal crystalline phases. However, TMV is difficult
to work with. One must cultivate tobacco plants, infect them with virus, harvest the
crop, extract the virus - which takes months - plus all this must be done with care

____________________________________________________________________________________
Phase Behavior of Rod-Like Viruses and Virus–Sphere Mixtures,  Z. Dogic and S. Fraden, 
Chapter 1, in Soft Matter, Volume 2: Complex Colloidal Suspensions (eds G. Gompper and M. Schick), 
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2006).
ISBN: 978-3-527-31369-3, DOI: 10.1002/9783527617067.ch1.



2 1 Phase behavior of rod-like viruses and virus/sphere mixtures

to preserve the monodispersity of the virus. Physics graduate students rebel at the
thought of producing enough virus for a PhD thesis. Without an abundant source of
TMV, studies of its phase behavior are impractical.

So our laboratory switched from TMV to the semi-flexible bacteriophage fd, which
also forms several liquid crystalline phases: isotropic, cholesteric and smectic, but not
a colloidal crystals. Because fd infects bacteria, growing fd is relatively quick and
easy. Furthermore, genetic engineering of fd is well established and we have produced
mutants of varying length and charge.

This chapter describes the phase behavior of fd suspensions. First, we present
our results on fd alone. The results obtained up to 1995 are summarized in another
review article (Fraden 1995). While theory and experiment are in agreement for the
isotropic - cholesteric phase transition for suspensions with high salt concentrations
used to screen long-range electrostatic repulsion, theoretical explanations of all other
phases fail. We see a quantitative discrepancy between theory and experiment for
the nematic phase at low ionic strength, and multiple quantitative and qualitative
breakdowns of the theory of the smectic phase. And we have not even a clue of
why a cholesteric phase is observed in fd, but a nematic in a closely related species,
pf1, which has a nearly identical atomic structure (Grelet and Fraden 2003). Second,
we present results on mixtures of the viral rods with spherical colloids or spherical
polymers. Some of the phase behavior, such as depletion induced phase separation,
was as anticipated. But an astounding array of unexpected results was also observed.
A laundry list includes microphase separation of rods and spheres into columnar, cubic,
and lamellar structure; isolated colloidal membranes consisting of a sheet of rods and
stabilized via protrusion forces; and a quasi two dimensional smectic phase that exists
on the isotropic - nematic interface that plays a key role in phase separation kinetics.
While originally we were motivated to study virus suspensions because they are model
systems of simple fluids, now we are motivated by a spirit of exploration driven by the
expectation that more unexpected results will follow the ones described below.

1.2 Entropy driven ordering within the second
virial approximation

In the first part of the paper we briefly review the theoretical work describing liquid
crystalline phase transitions in colloidal rods. This part of the review is not meant to
be exhaustive. For more detailed theoretical accounts the reader is referred to recent
review articles and the original article by Onsager (Stephen and Straley 1974; Odijk
1986; Vroege and Lekkerkerker 1992; Onsager 1949).

The majority of studies of the ordering transitions in hard particle fluids belongs
to a class of theories called Density Functional Theories (DFT) (Hansen and McDon-
ald 1986). The simplest version of DFT takes into account the interactions between
particles at the level of second virial approximation. The free energy of a hard particle
fluid is then,

F
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dr2ρ(r1)ρ(r2)β(r1, r2) (1.1)
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where β(r1, r2) is a Meyer-Meyer overlap function, ρ(r) denotes the density of particles
and r1 and r2 are vectors denoting the position and/or orientation of two particular
particles. Its value equals -1 if there is any overlap between two hard-particles located
at r1 and r2; otherwise its value is equal to zero. This expression has been used for a
variety of cases to study entropy induced ordering in hard particle fluids. Onsager was
first to show that Eq. 1.1 is essentially exact for isotropic spherocylinders when L/Dsc

→ ∞, where L is the length and Dsc is the diameter of the spherocylinder (Onsager
1949). As the aspect ratio of spherocylinders is increased the third and higher virial
coefficient become negligible.

The second virial theory also predicts a stable smectic phase in a solution of per-
fectly aligned spherocylinders as well as for spherocylinders with both positional and
orientational degrees of freedom (Hosino et al. 1979; Mulder 1987; van Roij et al.
1995; van der Schoot 1996). However, to quantitatively describe the suspensions at
densities of the nematic-smectic phase transition it is necessary to include higher virial
coefficients in the free energy expression. For perfectly aligned spherocylinders inclu-
sion of the third and fourth virial coefficient into the free energy results in theoretical
predictions for the N-S transitions which are in quantitative agreement with simu-
lation results. The calculations that consider ordering transitions using only second
virial coefficients are uncontrolled approximations, unless it can be shown that higher
virial coefficients are negligible, as is the case of the Onsager treatment of I-N phase
transition.

In any hard-particle fluid, due to the simplicity of interaction potential, the energy
of any allowed configuration is simply proportional to nkT with n being the number
density of particles. Due to this simple fact the minimum of free energy of a hard
particle fluid F = E − ST = T (α − S) (α is a constant) is equivalent to the maxi-
mum of entropy. Furthermore the resulting phase diagram is temperature independent
(athermal) because both α and S are independent of temperature. Ordering transi-
tions in hard-particle fluids are still possible because the expression for entropy, or
equivalently free energy, splits into two parts. The first integral in Eq. 1.1 is the ideal
part of free energy and always attains a minimum value for the uniform probability
distribution ρ(r) = constant. Therefore this contribution to the total free energy al-
ways suppresses an ordering transition. The second integral in Eq. 1.1 represents the
second virial approximation for the interaction free energy, which is proportional to
the excluded volume and under certain circumstances is lower for an ordered state.
Therefore the interaction part of free energy drives the system towards ordering. The
actual location of the ordering transition is determined from the competition between
the ideal and interaction contribution to the total free energy. In this section we
briefly review the theoretical description of phase transitions that can be described
using Eq. 1.1 of pure hard rods.

1.2.1 Isotropic-Nematic phase transition within the second
virial approximation

The density functional of the sort shown in Eq. 1.1 was first used in a seminal paper
by Onsager in 1949 (Onsager 1949). He was seeking to explain the formation of the
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nematic phase in solutions of rod-like Tobacco Mossaic Virus (TMV), inorganic needles
of vanadium pentoxide, and discs of bentonite. These transitions were found to occur
at very low volume fraction (Bawden et al. 1936; Zocher 1925).

In the Onsager theory the system is assumed to be spatially uniform and therefore
it is assumed ρ(r,Ω) = (N/V )f(Ω) where Ω is a solid angle describing the orientation
of the spherocylinder, N is the number of rods, and V is the volume of the system.
Since f(Ω) indicates the probability that a rod is pointing at a solid angle Ω. It should
be normalized as follows :

∫

f(Ω)dΩ = 1. (1.2)

Using this information it is possible to recast Eq. 1.1 into Onsager free energy func-
tional for a solution of rod-like molecules :

F = log
N

V
+

∫

f(Ω) log(4πf(Ω))dΩ−
1

2

N

V

∫ ∫

β(Ω,Ω′)f(Ω)f(Ω′)dΩdΩ′(1.3)

The β(Ω,Ω′) function is the volume excluded to the spherocylinder with orientation Ω′

due to the presence another spherocylinder with orientation Ω. For two spherocylinders
is given by

β(Ω,Ω′) = β(γ) = −2L2Dsc sin(γ) − 2πD2
scL −

4

3
πD3

sc. (1.4)

where γ is the relative angle between two spherocylinders. For spherocylinders with a
large aspect ratio the first term in the Eq. 1.4 dominates and it can be shown that the
contribution of the other terms is of the same order as the contribution of the third
virial coefficient. Therefore it is often assumed that β(γ) = −2L2Dsc sin(γ). By using
this approximation and variational calculus to minimize Eq. 1.3 with the respect to
the distribution function f(Ω) one obtains the following integral equation :

log[4πf(θ)] = λ −
8ρ

π

∫

sin(θ)f(θ)dθ, (1.5)

where ρ = π
4 L2Dsc

N
V

and λ is a constant determined through normalization of con-
straint in Eq. 1.2. This integral equation cannot be solved analytically. However, it
has been solved using two different numerical procedures which yield almost identical
results (Herzfeld et al. 1984; Lekkerkerker et al. 1984). Once the probability distribu-
tion function is known, it is easy to calculate the nematic order parameter (S2) using
the following relation:

S2 = 2π

∫ π

0

(

3

2
cos(θ) −

1

2

)

f(θ) sin(θ)dθ. (1.6)

In this equation we assume that the orientational distribution function is uniaxial and
therefore f(Ω) = f(θ) where θ is the angle between the orientation of a specific rod
and the nematic director. The value of the nematic order parameter varies between 0
and 1, with S2 = 0 describing a perfectly isotropic solution and S2 = 1 describing a
perfectly aligned nematic phase. Although the numerical solution of Eq. 1.5 yields the
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most accurate results, it is also possible to proceed from Eq. 1.3 by assuming a form
of the orientational distribution function such as:

f(α, cos(θ)) =
αcosh(α cos(θ))

4πsinh(α)
. (1.7)

Using this ansatz, first introduced by Onsager, and evaluating the integrals for the case
of hard rods Onsager obtained an expression for the free energy which is a function of
dimensionless concentration ρ and orientation parameter α:

F (α, ρ) = ρ log(ρ) + σ(α)ρ + ξ(α)ρ2

σ(α) = log

(

α cosh(α)

4π sinh(α)

)

− 1 +
arctan(eα) − arctan(e−α)

sinh(α)

ξ(α) =
2I2(α)

sinh2(α)
. (1.8)

The advantage of assuming the probability distribution (Eq. 1.7) is the analytical
expression for the free energy (Eq.1.8). The most convenient variable to formulate the
Onsager theory is the dimensionless concentration

ρ = Biso
2

N

V
=

π

4
L2Dsc

N

V
=

L

Dsc
φ (1.9)

where φ is the volume fraction of the rods and Biso
2 = (π/4)L2Dsc is the second virial

coefficient for a suspension of hard rods in an isotropic solution. By performing a sta-
bility analysis of the Onsager equation, Kayser and Ravenche found that the isotropic
phase becomes unstable towards orientational fluctuations when ρ = 4 (Kayser and
Raveche 1978). It follows that within the Onsager theory the volume fraction of the
hard rods at the I-N transition scales as φ = 4Dsc

L
. Therefore, for long thin rods the

volume fraction of the I-N transition is small and the virial theory, which is an expan-
sion of the free energy in density becomes accurate at the level of the second virial
coefficient. Numerical calculations of the second and third virial coefficients indicate
that the Onsager theory is quantitatively correct for rods with L/Dsc > 100 (Frenkel
1988).

However, the second order transition predicted by the stability analysis is pre-
empted by a first order phase transition. Minimizing the Onsager free energy with
respect to the orientational distribution function numerically and subsequently solv-
ing the co-existence equations yields the following concentration of the co-existing
isotropic and nematic phases,

ρiso = 3.289, ρnem = 4.192, S2 = 0.7922. (1.10)

These results were obtained by Herzfeld et. al., Lekkerkerker et. al., and Chen (Herzfeld
et al. 1984; Lekkerkerker et al. 1984; Chen 1993). The Onsager trial function (Eq. 1.7)
yields the following co-existence concentrations :

ρiso = 3.339, ρnem = 4.487, S2 = 0.848. (1.11)

By comparing accurate numerical result from Eq. 1.5 with the Onsager approximation
(Eq. 1.8) we observe a difference in both the coexistence concentrations at the I-N
phase transition and the nematic order parameter (S2) of the nematic phase.



6 1 Phase behavior of rod-like viruses and virus/sphere mixtures

1.2.2 Extension of Onsager theory to charged rods

The Onsager theory outlined in the previous section can be extended to the exper-
imentally important case of charge stabilized rods. The first treatment of the I-N
phase transition of charged rods can be found in the original paper by Onsager and
was elaborated by Stroobants and coworkers (Onsager 1949; Stroobants et al. 1986).
Besides the hard core repulsive interaction, charged rods have a long range repulsive
interaction of the following form:

Uel(x)

kT
=

A′e−κ(x−Dsc)

sin(γ)
(1.12)

where x is the closest distance between two charged rods, A′ is the proportionality
constant obtained by solving the Poisson-Boltzman equation, κ−1 is the Debye screen-
ing length and γ is the angle between two rods. In the case of charged rods there
are contributions to the second virial coefficient from both the hard core excluded
volume interaction and the long range electrostatic repulsion interaction. These two
contributions can be calculated separately. Integrating the interaction potential over
a uniform orientational distribution function which describes the isotropic phase we
obtain the following expression for the second virial coefficient of charged rods:

Biso
2 =

1

4
πL2Deff =

1

4
πDL2 +

1

4
πκ−1L2(ln A′ + CE + ln 2 −

1

2
) (1.13)

where Deff = (ln A′ + CE + ln 2 − 1/2)/κ. It follows that the thermodynamics of
charged rods in the isotropic suspension will be equivalent to the thermodynamics of
thicker hard rods with the effective diameter (Deff). However, if the interaction poten-
tial is integrated over an anisotropic distribution function then the relationship given
by Eq. 1.13 is no longer exact. The reason for this is that the electrostatic energy is
lower for perpendicular rods then for parallel rods. Therefore the charge effectively
destabilizes the nematic phase by shifting the I-N transition to higher concentrations
and reducing the order parameter of the nematic phase coexisting with the isotropic
phase. However, most biopolymers (including fd virus) are highly charged in which
case it turns out that the electrostatic “twisting” effect is insignificant compared to the
excluded volume interactions (Tang and Fraden 1995; Stroobants et al. 1986). There-
fore from now on we approximate Deff in the nematic phase by Deff of the isotropic
phase. This is reasonable for co-existing phases, but we expect this approximation to
get progressively worse with increasing concentration.

1.2.3 Extension of Onsager theory to semi-flexible rods

Semi-flexible rods are characterized by their persistence length, which is the length
along the contour of the chain after which the local tangents become uncorrelated. The
effect of semi-flexibility on the isotropic-nematic phase transition has been first consid-
ered by Khokhlov and Semenov (Khokhlov and Semenov 1982). For semi-flexible rods,
besides orientational and translational entropy it is also necessary to take into account
the internal configurations of the semi-flexible chain. This modifies the orientational
entropy term in Eq. 1.1 while the excluded volume term between rod-like segments
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Figure 1.1: The effective diameter for a charged rod calculated from Eq. 1.13 for a range
of ionic strengths. The hard rod diameter Dbare = 66Å is that of the fd virus. Due to the
highly non-linear nature of the Poisson-Boltzman equation the value of Deff barely changes
as the surface charge varies from 1e−/Å to 10e−/Å. Experiments indicate that the surface
charge is about 2e−/Å at pH=8.0 (Zimmermann et al. 1986). (Taken from Ref. (Tang and
Fraden 1996))

is still treated as in the Onsager theory for rigid rods. The resulting expression for
the free energy has been solved analyticaly in the limit of almost rigid rods (P�L)
and very flexible rods (L�P) (Khokhlov and Semenov 1981; Khokhlov and Semenov
1982). It is possible to empirically interpolate between these two solutions and ob-
tain a numerical approximation for the configurational entropy of rods with arbitrary
persistence length as was done by Hentscke, Odijk, and Yang et. al. (Hentschke 1990;
Odijk 1986; DuPre and Yang 1991). This interpolated expression can be combined
with the Onsager approximation for the orientational distribution to obtain analytical
results for the I-N phase transition of semi-flexible rods. These results are compared
to accurate numerical solutions of the Khokhlov-Semenov free energy due to Chen
(Fig. 1.2).

From Fig. 1.2a we conclude that increasing flexibility destabilizes the nematic
phase by displacing the I-N transition to higher volume fractions. Increasing the
flexibility also drastically reduces the concentration difference between the co-existing
isotropic and nematic phases (figure not shown) and the order parameter of the ne-
matic phase (Fig. 1.2b). The Onsager approximation (Eq. 1.7) for the ODF quali-
tatively agrees with the accurate numerical results due to Chen. It is important to
note that the agreement between these approximations for the location of the phase
transition (Fig. 1.2a) is much better then for the order parameter of the coexisting
nematic phases (Fig. 1.2b). This indicates that measuring the order parameter is a
more sensitive test of the a theory for I-N phase transition.

Chen compares his numerical solution to the analytical solution of Khokhlov and
Semenov who also use Onsager approximation for the ODF. This comparison in the
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Figure 1.2: Concentration (ρiso = (4/π)L2Dsc(N/V )) and the order parameter (S2) of
the nematic phase co-existing with the isotropic phase as a function of the flexibility of the
particle P = L/lp. The full lines are the exact numerical results within the second virial
approximation due to Chen (Chen 1993) while dashed lines are results obtained by using the
Onsager approximation for the orientational distribution function (Eq. 1.7). In both figures
the aspect ratio of the rod is fixed at 100 and the persistence length lp varies from infinity to
25.

paper by Chen seems much better then what is shown in Fig. 1.2. The reason for this
is that Khokhlov and Semenov, besides using Onsager approximation for the ODF,
also approximate the excluded volume ξ(α) by expanding it in powers of α. These two
approximations fortuitously cancel each other and the final result seemingly agrees
better with the numerical solution.

1.2.4 Extension of Onsager theory to rods with finite aspect
ratio using scaled particle theory

Scaled particle theory (SPT) of hard rods was developed by Cotter and coworkers (Cot-
ter and Wacker 1978; Cotter 1979). The main advantage of the scaled particle theory
is that it takes into account third and all higher virial coefficients in an approximate
way. Therefore this theory should be more adequate at describing the data at higher
concentration of rods or equivalently rods with lower L/Dsc ratios. We note that
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Figure 1.3: Full lines show the I-N coexistence concentrations as a function of the aspect
ratio (L/Dsc) as predicted by the scaled particle theory for rigid rods. The dashed line
represents the I-N co-existence as predicted by a theory that only includes second virial
coefficient. The circles are the results of the computer simulations (Bolhuis and Frenkel 1997).
The filled squares at low L/Dsc represent results from the same work but the coexistence
width was too narrow to be measured. The coexistence is plotted in terms of real volume
fraction φ = πD3

sc/6 + LD2
scπ/4 while the total aspect ratio including the hemispheres is

L/Dsc + 1.

the expression for the free energy reduces to the Onsager second virial approxima-
tion for very long rods. For spherical particles the SPT free energy reduces to the
Percus-Yevick free energy for hard spheres.

The scaled particle expression accounts for higher virial coefficients in an approx-
imate way. Comparing the SPT prediction for the I-N phase transition with the
solution obtained through the second virial approximation provides a way to establish
the range of L/Dsc ratios for which the second virial approximation is quantitatively
valid. The results are shown in Fig. 1.3. At L/Dsc = 45 the second virial approxi-
mation yields I-N co-existence concentrations that are 10% different from the scaled
particle result. We conclude that for rods with L/Dsc > 75 the second virial approx-
imation quantitatively describes the I-N transitions in hard-rods. Currently available
computer simulation results agree very well with the scaled particle theory (Bolhuis
and Frenkel 1997; Kramer and Herzfeld 1998).

1.2.5 Nematic-Smectic phase transition within the second
virial approximation

Here we review the interplay between the ideal and interaction contributions to the
free energy that are responsible for the formation of the smectic phase in parallel hard
rods. From the second virial approximation (Eq. 1.1) we can easily find the free energy
difference between a weakly ordered smectic and a uniform nematic state (Mulder
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a

b

Figure 1.4: A schematic illustration of the excluded volume interaction in a dense suspension
of aligned rods for the case of (a) rigid rods and (b) semi-flexible rods. (From Ref. (Tkachenko
1996)

1987):

δF = F layered − F uniform = F (n + a cos(kz)) − F (n) =

n + 8n2j0(k). (1.14)

The positive free energy difference δF (n, k) > 0 implies that at volume fraction n
and wavevector k the nematic phase has the lowest free energy and therefore is the
equilibrium phase. On the other hand, at values of nc and kc which satisfy the equation
δF (nc, kc) = 0 the system becomes unstable towards smectic fluctuations since they
do not cost any energy to create. We identify nc and kc as the critical volume fraction
and wavevector of the second order nematic-smectic phase transition. It is important
to note that the first term in Eq. 1.14 originates from ideal part of free energy in
Eq. 1.1, while the second term in Eq. 1.14 originates from the interaction part of
free energy in Eq. 1.1. We observe that the difference in the ideal part of the free
energy between the layered and uniform phase is always positive and given by δF ∝ n.
Therefore the ideal part of free energy always suppresses the ordering transition as
expected. On the other hand, the difference in the interaction part of free energy
between the uniform and layered phase is given by δF ∝ n2jo(k). Since this part
of free energy difference scales as n2, for high enough volume fraction of rods and
for specific values of wavevector k this term is negative and large enough to drive
the system towards the smectic phase. Considering the highly approximate nature of
the theory, the conditions nc = 0.575 and kc = 2π/1.398L obtained for the nematic-
smectic phase transition compare favorably to the results of the computer simulations
of parallel rods nc = 0.43 and kc = 2π/1.27L (Frenkel et al. 1988). Inclusion of third
virial coefficient brings the theoretical prediction for the N-S transition closer to what
is observed in simulations (Mulder 1987).

The above simple model suggests a physical picture of the excluded volume ef-
fects responsible for the formations of a smectic phase first introduced by Wen and
Meyer (Wen and Meyer 1987). A spatially uniform nematic phase results in a very
inefficient packing of rods as shown in Fig. 1.4a. In such a state the ideal part of free
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energy attains its minimum value while the interaction part does not. The reason for
this is that the nematic phase is under the constraint of uniform packing, and thus
the excluded volume between any two rods is eight times the volume of a single rod
since rods are allowed to approach each other from any direction. One way to decrease
excluded volume is to impose a smectic like periodic density modulation. Then the
probability of two rods approaching each other along their axial direction will decrease
while the probability of sideways approach will increase. For example, in an extreme
case where the probability distribution of centers of rods consists of very sharp delta-
like functions spaced at distances slightly longer than the rod length, rods are allowed
to approach each other only sideways and the overlap between the ends of the rods
is completely forbidden. Consequently, the excluded volume between two rods will be
half the value of the excluded volume for an uniform density distribution. Because
of this simple reason, the value of the interaction part of free energy decreases with
increasing order in Eq 1.14. The actual volume fraction of the ordering transition
and the resulting density distribution ρ(r) is therefore determined by the competition
between the ideal and interaction part of the free energy given in expression Eq. 1.1.
The treatment of the nematic smectic phase transition of the second virial approxima-
tion was also extended to the case of rods with orientational freedom (van Roij et al.
1995). In this case the calculation becomes much more involved.

It is easy to extend the above argument to consider the influence of flexibility on the
nematic-smectic phase transition (Tkachenko 1996; van der Schoot 1996). Experimen-
tally it is found that the flexibility acts to stabilize the nematic phase and destabilize
the smectic phase (Dogic and Fraden 1997). As was first noticed by Tkachenko, in
the case of perfectly aligned rigid rod nematics the only way to fill the space created
by an end of a rod is to place another rod above it as shown in Fig. 1.4a. In the case
of a nematic solution of semi-flexible rods it is possible for other molecules to occupy
space around the end of a particular molecule by deflecting around its end as shown
in Fig. 1.4b. This results in more efficient packing of semi-flexible rods in the nematic
state which in turn leads to the suppression of the nematic-smectic phase transition.
This picture of the effect of flexibility on the nematic-smectic phase transition has
been confirmed using computer simulations (Polson 1997).

1.2.6 Phase behavior of a binary mixture of hard particles

Recently the second virial approximation has also been extended to study ordering and
demixing transitions in binary mixtures of hard rods (Koda and Kimura 1994; Cui and
Cheng 1994; Sear and Jackson 1995; Sear and Mulder 1996; van Roij 1996; van Roij
and Mulder 1996; van Roij 1996; van Roij 1994; van Roij et al. 1998). In many of
these cases it is not obvious if terminating the free energy expansions at a second virial
level is sufficient to describe the phase diagram of binary mixture. For example, it was
recently shown that although Onsager theory quantitatively describes the I-N phase
transitions of rods, it fails to predict even qualitative features of a binary mixture
of rods with two different diameters (Purdy et al. 2004). In other cases, such as a
mixture of perfectly aligned spherocylinders and hard spheres the second virial theory
predicts the right qualitative features as has been verified by computer simulations for
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the lamellar phase, but fails to described the columnar phase (Adams et al. 1998).
Expressions of the stability matrix for a binary mixture of parallel spherocylinders and
spheres are given in the following references (Koda et al. 1996; Dogic et al. 2000).

1.3 Experimental phase diagram of a suspension of
fd virus

Theory and simulation indicate that with increasing concentration, rod-like particles
will form isotropic, nematic and smectic phases (Hosino et al. 1979; Frenkel et al.
1988; Bolhuis and Frenkel 1997; Mulder 1987; Wen and Meyer 1987). The columnar
phase turns out to be metastable with respect to the smectic phase for all aspect ra-
tios and rod concentrations (Bolhuis and Frenkel 1997). So far the only experimental
systems whose phase behavior agrees with theoretical predictions are colloidal sus-
pensions of viruses fd, pf1, TMV and inorganic β-FeOOH rods (Maeda and Maeda
2003). This is due to the fact that nature makes all viruses identical to each other.
This results in a colloidal suspension of very high monodispersity, much higher then
what can be achieved with current synthetic methods. Recently using a combination
of recombinant DNA technology and traditional chemical methods it was possible to
prepare monodisperse PBLG polymers. Although these polymers are not available in
large quantities they where reported to form a smectic phase (Yu et al. 1997). This is
a potentially powerful technique to create novel liquid crystals. While the present re-
view focuses on the fundamental aspects of the phase behavior of rods and rod/sphere
mixture, individual viruses and virus assemblies might become technologically useful
materials. In this respect, the recent work by the Belcher group seems promising (Lee
et al. 2002).

In this review article we focus on the phase behavior of rod-like bacteriophage fd
and its closely related M13. The phase behavior of another class of anisotropic colloids
composed of minerals has recently been review elsewhere (Gabriel and Davidson 2003).
The phase behavior of polymeric liquid crystals such as PBLG is reviewed in the
following reference (Sato and Teramoto 1994). Historically, the first observation of
the nematic liquid crystalline phase of fd was reported in the study by Lapointe and
Marvin (Lapointe and Marvin 1973). Shortly thereafter a smectic phase was also
reported in a little noticed paper (Booy and Fowler 1985).

We note that fd forms a cholesteric instead of a nematic phase. Cholesteric and
nematic phases are locally identical to each other. If often takes many days after sample
preparation for the fd solution to form a fully twisted cholesteric phase. This indicates
that the free energy difference between these two structures is very small. Therefore,
we expect that the Onsager theory equally well describes the isotropic-nematic and
isotropic-cholesteric phase transition. In this review we use nematic and cholesteric
terms interchangeably depending on the particular context. Often when confined to
small droplets, such as tactoids observed at the isotropic-cholesteric coexistence, the
cholesteric phase is unable to develop and the sample remains nematic.
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a
b

Figure 1.5: (a) Electron microscopy image of a bacteriophage fd. The contour length of the
virus corresponds to 0.9 µm. (b) Image of a dilute isotropic solution of fd confined to chamber
of approximately 1 µm thickness. The presence of fd with much larger contour length then
the wild type is easily seen. Fd was grown in recA+ strain (JM101) and labelled with Alexa
488 (Molecular Probes). The image was taken with a fluorescent microscope equipped with
a cooled CCD camera (CoolSnap HQ, Roper Scientific). The scale bar indicates 10 µm.

1.3.1 Properties and preparation of filamentous bacteriophage

The structure of the bacteriophage fd is very simple with a self-assembled hollow
cylindrical shell composed of roughly 2800 copies of a single coat protein pVIII. A
single circular strand of DNA is enclosed within this hollow shell. Length of the whole
virus is determined by the length of the DNA. The ends of the assembly are covered
with end capping proteins which are different from the major coat protein pVIII. In
addition, the two ends are different from one another which makes fd a polar colloid.
This characteristics can be used to selectively label each end (Lee et al. 2002).

The physical characteristics of the fd virus are the contour length of 880 nm, bare
diameter of 6.6 nm, aspect ratio L/Dsc ≈ 130. The semi-flexibility of the virus is char-
acterized by the persistence length lp = 2.2µm which has been reported to change with
temperature (Tang and Fraden 1996). The colloidal stability of the virus is preserved
due to the fact that it has a very high negative surface charge at pH=8.0 (Zimmer-
mann et al. 1986). For a more comprehensive list of most known physical constants
of fd the reader is refereed to the following review article (Fraden 1995).

There are well established methods for growing bacteriophage fd and closely related
M13 (Maniatis et al. 1989; Dogic and Fraden 2001). In brief, one first grows a large
quantity of E. Coli. host. Once the host strain reaches log phase it is infected with
viruses at a well defined multiplicity of infection (MOI) and the culture is grown for an
additional eight hours. The bacteria is separated from the culture by centrifugation at
low speed and the virus in the supernatant is concentrated by adding neutral polymer
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such as poly(ethylene glycol) (PEG Mw 8000) which acts as a depleting agent. In
principle it is possible to further purify the virus using a cumbersome CsCl gradient
centrifugation step. In practice, we found that a two step sequence of low-speed
and high-speed centrifugation produces fd virus of sufficient purity for most of our
experiments. Once grown fd should be kept in a low ionic strength buffer at 4◦. Under
these conditions the solution should be stable for at least one year although it is
difficult to prevent microbial growth over such a long time period even in the presence
of sodium azide. Therefore, before use of the virus we dialyze it against fresh buffer
and spin down aggregates and bacterial debris using a low speed centrifugation step.
The usual yields are about 15-20 mg per liter of infected E. Coli. culture.

There is a tendency for all viruses to form multimeric structure with a contour
length which is an integer multiple of the the length of wild type fd. We have found
that it is important to chose the appropriate E. Coli. host strain in order to reduce
the number of multimers. Although recA+ strains such as JM101 grow faster and pro-
duce higher yields of virus we found that these hosts have a tendency to form dimer
and multimer viruses. These can easily be identified once the viruses are labelled and
visualized using fluorescence microscopy. Viruses purified from recA+ host form smec-
tic phase at different concentrations when compared to viruses purified form recA−

strains such as Xl1-Blue. In addition, many other structures such as the lamellar phase
described in section 1.6, are not observed in a fd virus grown in recA+ strains. This
is presumably due to increased polydispersity of the virus.

It is difficult to asses the polydispersity of the virus. They have a pronounced
tendency to break or aggregate during preparation of grids for electron microscopy.
It is possible to run agarose gel electrophoresis on whole viruses which are stained
with Commassie Blue protein stain (Griess et al. 1990). However, sometimes longer
fd does not easily enter the gels. It is also possible to strip the viruses of its protein
and run DNA gel electrophoresis, which is subsequently stained with Ethidium Bro-
mide. Recently, we have prepared fd viruses labelled with fluorescent dye Alexa 488
(Molecular Probes) which appear very bright when viewed with fluorescence micro-
scope. These could be used to quantify the polydispersity of the virus. When labelled
at very high fraction with Alexa 488 (Molecular Probes) dye, we do not observe any
aggregation over a period of a year. In contrast, if the viruses are labelled with larger
and more hydrophobic dyes such as tetra-methyl-rhodamine (TAMRA) they aggregate
into bundles over a period of days. With the proper use of anti-bleaching solution it
is possible to continuously observe Alexa 488 labelled viruses for 5-10 minutes under
full illumination with a 100 W Mercury lamp. Fig. 1.5 shows a fluorescent microscopy
image of Alexa-488 labelled recA+ fd. It is easy to observe a number of fd’s with a
contour length much longer then that of fd wt.

All the available data points to the fact that the contour length of fd is deter-
mined by the size of its DNA. Therefore it is possible to alter the length of the fd
by simply adding additional DNA into fd’s genome using standard recombinant DNA
techniques. A few decades ago fd’s with different contour length were genetically en-
gineered and used to study the rotational diffusion of rod-like colloids with varying
aspect ratio (Maguire et al. 1980). However, this potentially powerful method was
not pursued any further. Using similar methods mutants up to 5 µm long have been
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a b

Figure 1.6: The bulk phase separation between isotropic and nematic phases observed in a
TMV suspension. The image on the left is taken with white light while the image on the right
is taken between crossed polarizers. Since the difference in density between the nematic and
isotropic phase can be up to 30% over a period of days the nematic phase sediments to the
bottom. The phase diagram for TMV suspension is shown in (Fraden et al. 1989). Identical
bulk phase separation is observed in fd suspension. By measuring the concentration of the
virus in coexisting phases it is possible to measure the phase diagram such as the one shown
in Fig. 1.7

described in the biological literature (Herrmann et al. 1980). We have tried to re-
produce this method, but have found that during a large scale preparation involving
many generations of bacteria division, foreign DNA is easily expelled. The resulting
culture quickly reverts back to wild type fd. We have had more success of creating
mutant fd using the phagemid methods, as described in detail in the following refer-
ence (Sambrook et al. 1989). The resulting fd are sufficiently monodisperse to form
a smectic phase shown in Fig. 1.16. For more details the reader is refereed to the
following reference (Dogic 2003).

1.3.2 Isotropic-cholesteric phase transition in fd suspensions

Due to the entropic nature of the fd suspension, the only variable that determines
the phase behavior is the density of the constituent rods. Therefore, with increasing
fd concentration an isotropic suspension of fd undergoes a first order phase transi-
tion to the nematic/cholesteric phase. It follows that the density of the cholesteric
phase is higher then that of the isotropic phase in a coexisting sample. The denser
cholesteric phase slowly sediments to the bottom of the sample container resulting in
a macroscopically phase separated sample (Fig. 1.6).

Recently we quantitatively compared the experimental results of the I-Ch transition
to the predictions of the Onsager theory (Tang and Fraden 1996; Purdy and Fraden
2004b). To accomplish this it is necessary to take into account both the charge and
flexibility of an fd virus. As explained in Sec. 1.2.2 it is possible to describe the
thermodynamic behavior of a dilute suspension of charged rods using the concept of
effective diameter. Deff for fd is plotted in Fig. 1.1 for three different surface charges.
Due to the non-linear nature of the Poisson-Boltzman equation, changing the surface
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Figure 1.7: The I-Ch co-existence concentrations measured in an aqueous suspension of fd
virus as a function of the ionic strength (Tang and Fraden 1995). The full line is the numerical
solution of Chen for the I-Ch co-existence, which treats excluded volume interactions at
the second virial level while the orientational distribution function is calculated numerically.
The dashed line is the scaled particle solution for the I-Ch co-existence in which all virial
coefficients are included in an approximate way and the orientational distribution function
has an approximate form given by Eq. 1.7. The scale on the right side indicates the effective
diameter for a given ionic strength. (From ref. (Tang and Fraden 1996))

charge by an order of magnitude has minimal effect on the resulting Deff. The flexibility
is included according to the prescription given by Khokhlov and Semenov and discussed
in more detail in Sec. 1.2.3.

Figure 1.7 shows that with increasing ionic strength the location of the I-Ch phase
transition shifts to higher concentrations. However, increasing ionic strength increases
L/Deff which in Onsager theory should decrease the volume fraction of the rods at the
I-N transition. The discrepancy can easily be understood if one looks at the condition
for instability of the isotropic phase: (4/π) L2Deff(N/V ) = 4. The concentration in
Fig. 1.7 is not proportional to the effective volume fraction, but to the number density
of the virus. If Deff is decreased with the length of the rod remaining constant, it
follows that the number density of the virus at the transition has to increase so that
condition for the nematic/cholesteric instability is still satisfied. The experimental
data points are compared to the numerical solution of Chen who approximates the
excluded volume interaction by the second virial coefficient and treats the ODF in an
accurate numerical way (Chen 1993). We have also plotted the result of a theory
in which higher virial coefficients have been taken into account within the scaled
particle theory while the orientational degrees of a semi-flexible polymer confined by
the nematic field is approximated using approximation descried in Sec. 1.2.3.

At the first sight the agreement between the theory due to Chen and the experiment
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Figure 1.8: Dimensionless concentration of the isotropic phase in coexistence with the
nematic phase as a function of M13 contour length at pH 8.2. The dimensionless concentration
beffci = (π/4)DeffL2Ni/V. For rigid rods the Onsager theory predicts that the location of the
I-N phase transition is independent of the theory.(dashed line). The solid lines SPT110 and
SPT10 are results of the scaled particle theory for ionic strength of 110 and 10 mM. SPT
theory agrees with experiment at high ionic strengths but fails for low ionic strength (Purdy
and Fraden 2004b).

as shown in Fig. 1.7 is quite good. However, there is reason to believe that this
agreement is fortuitous at low ionic strength. For example, at 1 mM ionic strength
Deff ≈ 60 nm which results in the aspect ratio L/Deff ≈ 15. Figure 1.3 clearly shows
that for these small aspect ratios third and higher virial coefficients cannot be ignored.
Indeed, the results of the scaled particle theory, which include these higher coefficients
predict that the I-N(Ch) transition is located at significantly lower concentration than
what is found by the experiments and Chen’s theory. The agreement between the
scaled particle theory, the experiments and the theory of Chen is much better at
high ionic strength where the effective aspect ratio is large (at 100 mM ionic strength
L/Deff ≈ 83) and therefore the excluded volume interactions are more accurately
approximated by the second virial coefficient.

We note that the results from the scaled particle theory shown in Fig. 1.7 should
also be treated with a degree of scepticism. To compare the scaled particle theory
with experiments on charged rods we use the effective diameter of the rod. However
the concept of Deff introduced in Eq. 1.13 is only rigorously justified for conditions for
which the second virial coefficient is quantitatively valid. There is a recent theoretical
attempt to extend the scaled particle theory to charged particles (Kramer and Herzfeld
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Figure 1.9: Experiments and theory showing the depndence of the order parameter of
coexisting nematic phase as a function of rod length for four different ionic strengths. Dashed
line represents the prediction of the Onsager theory, full lines is the theoretical calculation
by Chen while the dotted lines are the prediction of the scaled particle theory for 5 mM
(SPT5) and 110 mM (SPT110) ionic strength. Theoretical curves are calculated for rods
with persistence length of 2.2 µm while the contour length varies between 0.4 µm and 1.2
µm. (From ref (Purdy and Fraden 2004b))

1999; Kramer and Herzfeld 2000). Unfortunately, this theory does not interpolate to
Onsager theory for dilute rods, in contrast to the scaled particle theory for hard
rods. We also note that the twisting factor ignored in our treatment of Deff for fd
is strongest at low ionic strength (Stroobants et al. 1986). This effect displaces the
I-N(Ch) transition to higher densities.

The effect of the contour length of M13 virus on the I-Ch phase transitions has also
been measured (Purdy and Fraden 2004b). Mutant viruses of various contour length
have been prepared using molecular cloning as described in Sec. 1.3.1. Fig. 1.8 shows
the location of the I-Ch phase transition as a function of contour length in terms of
dimensionless concentration beffci. The Onsager theory predicts that the location of
the I-Ch will occur when beffci ≈ 4. In these units the location of the phase transition
is independent of the rod aspect ratio as indicated by the dashed line. Including
finite flexibility significantly shifts the location of the I-Ch phase transition to higher
concentration as is indicated by the full line. The I-Ch phase transition at high ionic
strength indicated by filled triangles agrees well with these predictions. However, as
the ionic strength decreases to 10 mM there is significant deviation between experiment
and theory.
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Another important parameter that characterizes the I-Ch phase transition is the
order parameter of the nematic/cholesteric phase at coexistence. Fig. 1.9 show the
behavior of the nematic order parameter as a function of both the contour length and
ionic strength. The order parameter can be extracted from birefringence measurements
once the birefringence per particle is measure using x-ray scattering as described in
Sec. 1.3.5 and the following reference (Purdy et al. 2003). Onsager theory predicts
that for rigid rods the order parameter of the coexisting nematic phase is approxi-
mately S2 = 0.8. For finite flexibility the order parameter significantly decreases as is
indicated by the full line (solution due to Chen) and dotted lines (solution with SPT).
At high ionic strength the measurements of the order parameter almost quantitatively
follow the theoretical predictions. However, at the lowest ionic strength of 5 mM the
order parameter is almost independent of the ratio of contour length to persistence
length and much higher then the theoretical predictions which account for flexibility.
Surprisingly, the low ionic strength data agree with the Onsager model for rigid rods.
The theory of electrostatic stiffening of charged polymer predicts that the persistence
length of fd is independent of ionic strength because the bare persistence length of fd
is very long (Purdy and Fraden 2004b).

From these data we conclude that the Onsager theory extended to account for
flexibility and charge quantitatively describes the I-Ch phase transition of fd wt in the
limit of high ionic strength. With decreasing ionic strength there is a systematic dis-
agreement between the experimental results and theoretical predictions. In this limit
the location of the isotropic-nematic phase transition is at higher rod concentration
then theoretical predictions and the nematic order parameter is also higher then what
is predicted. This is probably due to the approximate incorporation of the electrostatic
interaction into the theoretical free energy via Deff.

1.3.3 Polymer coated fd and its isotropic-cholesteric phase
transition

It is possible to eliminate electrostatic interactions between viruses by preparing ster-
ically stabilized fd suspensions. This is achieved by covalently coupling poly(ethylene
gylcol) PEG to amine groups that are present on the virus surface (Dogic and Fraden
2001). Water at room temperature is a good solvent for PEG and therefore PEG
coated surfaces interact through purely repulsive interactions (Kuhl et al. 1994). By
measuring the increase in the index of refraction of PEG coated virus suspensions
the number of attached polymer per virus can be determined. These measurements
indicate that the density of the deposited polymer is at a transition from isolated
“mushrooms” to a extended brush-like coverage (Grelet and Fraden 2003). It is im-
portant to mention that polymer stabilized rods still have a charged surface and the
effective interaction between two viruses will be a combination of electrostatic and
steric repulsion.

The polymer stabilized fd undergoes an isotropic to cholesteric phase transition.
Fig. 1.10 shows the concentration of the coexisting isotropic phase for a suspension of
bare fd and fd coated with PEG-5,000 and PEG-20,000. For fd-PEG-20,000 the loca-
tion of the I-Ch phase transition is completely independent of the ionic strength. This
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Figure 1.10: The concentration of the isotropic phase which coexists with the nematic phase
as a function of ionic strength. The data is shown for pure fd suspension (open squares), fd
coated with PEG-5000 (open circles) and fd coated with PEG-20000 (open triangles). The
labels on the right size indicate the effective diameter at which the location of the I-Ch
transition occurs. The dashed lines are a guide to the eye.The I-N transition of PEG-coated
virus come independent of ionic strength (indicated by arrows) when the effective diameter
of the virus is set by the polymer diameter and not by the range of electrostatic repulsion
(After Ref. (Dogic and Fraden 2001))

indicates that the steric repulsion has a longer range then the electrostatic repulsion
for the range of ionic strengths studied. However, for fd-PEG-5,000 it is possible to
observe a transition from the sterically stabilized region to the electrostatically sta-
bilized region by measuring the ionic strength dependence of the I-Ch transition. At
high ionic strength the transition is independent of the ionic strength indicating steric
repulsion. With decreasing ionic strength the concentration of the I-Ch transition
decreases and agrees with the I-Ch transition of bare virus. In this regime the virus
is electrostatically stabilized. From Fig. 1.10 we can deduce that the steric size of the
virus-polymer complex is Deff=45 nm which is approximately equal to Dbare+4Rg=35
nm. This indicates that the the density of the grafted PEG is slightly in the “extended”
brush regime. Although not the subject of this chapter we note that using polymer
stabilized viruses it is possible to study the phase behavior of a binary mixture of rods
with different diameters (Purdy et al. 2004).



1.3 Experimental phase diagram of a suspension of fd virus 21

Figure 1.11: An image of a cholesteric phase of fd taken with polarization microscope.
The location of polarizers and analyzer are indicated by arrows. The dark lines correspond
to regions where rods point perpendicular to the image while bright regions correspond to
regions where the rods lie in the plane. The best way to observe the cholesteric texture such
as the one shown here is to fill a cylindrical x-ray capillary and focus on its midplane. (After
ref. (Dogic and Fraden 2000))

1.3.4 Cholesteric phase of fd

The cholesteric phase is locally identical to the nematic phase. However, in a cholesteric
phase the nematic director twists into a helical structure. Fd forms a cholesteric phase
as evidenced by the typical cholesteric fingerprint texture shown in Fig. 1.11. The
distance that it take for the director to rotate by 2π is called the cholesteric pitch.
Experimentally it is easy to determine the value of the pitch by simply measuring
the distance between either two dark or bright lines in images such as Fig. 1.11. The
cholesteric pitch will also diffract light from which the magnitude of the pitch can be
determined (Oldenbourg 1981).

In thermotropic liquid crystals it is conventional wisdom that chiral molecules will
form a cholesteric phase while achiral molecules will form a nematic phase. How-
ever, this does not seem to be true for colloidal rods and the molecular origin of the
cholesteric phase remains poorly understood. Some chiral polymers such as fd, PBLG
and DNA form a well developed cholesteric phase (Leforestier and Livolant 1993;
Livolant 1991; Van Winkle et al. 1990; DuPre and Duke 1975; Dogic and Fraden
2000). However, other viruses such as TMV and pf1 form nematic structures under
the same conditions in which the cholesteric twisting is observed in fd suspension.
Surprisingly, the molecular structure of TMV and pf1 is also chiral and quite similat
to fd. The main challenge is to formulate a microscopic theory of chiral polymers and
explain why some chiral molecules such as fd form a cholesteric phase while other ones
like pf1 and TMV form a nematic phase.

Following the initial work of Onsager, Straley was the first to propose a microscopic
theory of the cholesteric phase base on excluded volume (Straley 1976). He considered
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a nematic solution of rod-like molecules which have additional chiral threads similar to
chiral screws. Similar to Onsager, in the Straley model the formation of the cholesteric
phase is driven by pure excluded volume effects. The excluded volume between two
screw-like rods is minimum not when they are parallel to each other, but when they
approach each other at a specific angle at which the chiral grooves can interpenetrate.
The initial work of Straley was extended to semi-flexible molecules (Odijk 1987; Pel-
covits 1996). More recent work indicates that mean field approaches used by Straley
fail to describe the cholesteric phase since rotations along the rods long axis effectively
average out the chiral structure of the molecules (Kamien and Lubensky 1997). These
latter authors further argue that it is the biaxial correlations that are responsible for
the formation of the cholesteric pitch. In addition to excluded volume interactions it
has been proposed that other type of chiral interactions, such as van der Waals can
induce the formation of the cholesteric phase (Issaenko et al. 1999).

As already mentioned, the origin of the cholesteric phase in fd solution is not
understood. Even when fd is coated with a thick layer of achiral PEG polymer, the
resulting polymer stabilized rods still form a cholesteric structure (Grelet and Fraden
2003). This would imply that it is not the microscopic chiral arrangement of coat
proteins that is responsible for the cholesteric structure; rather it has been suggested
that the virus twist into mesoscopic helical structure. However, up to now there is
no concrete experimental evidence that supports this hypothesis. Interestingly, the
relative angle between two neighboring molecules is very small in a cholesteric phase.
The typical size of the cholesteric pitch is roughly 20 µm while the spatial separation
between two rods in such a sample would be of the order of 20 nm. This would indicate
that there are about 1000 molecules along the cholesteric pitch which results in the
average angle between two rods that is at most a fraction of a degree. This is much
smaller then the average angle by which the rods locally fluctuate due to the width of
the orientation distribution function which typically ranges from 0.6¡S2¡0.9.

The cholesteric pitch has been measured as a function of the virus concentration and
ionic strength. At a high ionic strength of 100 mM the cholesteric pitch decreases with
increasing concentration according to the power law P ∝= c−ν where ν = 1.65 (Dogic
and Fraden 2000). As the fd concentration approaches the smectic phase the cholesteric
pitch deviates from the above power law and it slowly unwinds. This is presumably due
to pre-smectic fluctuations since similar behavior is observed in thermotropic liquid
crystals (Pindak et al. 1974). Upon decreasing the ionic strength to 4 mM the value
of the power exponent ν systematically decreases to 1.1. Interestingly the exponent ν
measured at high ionic strength agrees with the theoretical predictions of Odijk (Odijk
1987). This result also agrees with previous measurements on PBLG (DuPre and
Duke 1975). Measurements of the cholesteric pitch of DNA are inconsistent with each
other (Jizuka and Yang 1978; Senechal et al. 1980). In conclusion, much still remains
unanswered about the microscopic origin of the cholesteric pitch.

1.3.5 Nematic order parameter of fd suspensions

As discussed in the theory section (Fig. 1.2b) the effect of finite rod flexibility has
a dramatic effect on the order parameter of the nematic phase. For example, the
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Figure 1.12: Contour plots of X-ray diffraction of a magnetically aligned fd suspension at
concentrations of 93, 33 and 15.5 mg/ml respectively in 10 mM ionic strength buffer. In
column (a) scattering at small reciprocal angle up to 0.1 Å−1 due to interparticle interference
is shown. In column (b) the intraparticle scattering at higher angle reveal the fd form factor
and the low angle interparticle interference is blocked by the beamstop. The orientational
distribution function can be determined from the angular spread in both the intraparticle
and interparticle peaks. (After ref. (Purdy et al. 2003))

Khohklov-Semenov (KS) theory predicts that the finite flexibility of fd reduces the
nematic order parameter S2 of the coexisting nematic phase from the rigid rod limit
of 0.8 to 0.65. The fact that the I-Ch coexistence concentrations agree with the KS
theory provides an indirect test of the KS theory. However, a more stringent test of
this theory would be to measure the nematic order parameter.

It is possible to induce the cholesteric to nematic phase transition by placing the
sample in a sufficiently strong magnetic field (Meyer 1968; Meyer 1969). This fact was
used to prepare uniformly aligned monodomain nematics and subsequently measure
their nematic order parameter. The applied filed is strong enough to align the sample
but at the same time does not affect the orientational distribution function. The tra-
ditional techniques for determining the nematic order parameter are x-ray scattering
and quantitative measurements of the birefringence. To determine the absolute value
of the order parameter from the birefringence measurements it is necessary to know the
birefringence per particle, which has to independently determined. Both of these tech-
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Figure 1.13: Nematic order parameter of the fd phase obtained from x-ray scattering pattern
such as the ones shown in Fig. 1.12. Solid symbols are the order parameters values obtained
from interparticle scattering while open symbols are values obtained from intraparticle scat-
tering. Solid line shows the prediction of the scaled particle theory extended to semi-flexible
charged rods as described in the theory section. Dotted line is the prediction of the Onsager
theory for rigid charged rods. (After ref (Purdy et al. 2003))

niques were used to measure the nematic order parameter of an fd suspension (Purdy
et al. 2003).

X-ray scattering patterns from colloidal nematic liquid crystals are shown in Fig. 1.12.
The scattering at a small angle shows a typical butterfly pattern which is due to the
interference between neighboring rods (Ao and Meyer 1991; Kamien et al. 1992;
LeDoussal and Nelson 1991). This pattern is usually observed in polymer liquid crys-
tals without much internal structure such as PBLG. The intensity along an arc of
constant radius is usually assumed to be a function of the orientiational distribution
function. At low angles this is an assumption that needs to be tested. The reason
for this is that unlike spherical particles, the structure factor of a solution of rod-like
particles does not necessarily decouple from the anisotropic form factor and it is the
decoupling assumption that needs to be tested. Here we compare the order parame-
ter obtained at low angles with that obtained from high angle to test the decoupling
assumption.

In addition to interparticle scattering at low angle, a nematic fd solution shows a
clear scattering pattern at high angles due to the single particle form factor (Fig. 1.12).
At these high angles the structure function is one and interparticle interference does
not contribute to the scattering. Therefore in this region the precise shape of the
orientational distribution function can be rigorously determined from the scattering
pattern. This method has been previously used to determine S for nematic TMV
suspensions (Oldenbourg et al. 1988). But up to now the decoupling approximation
has not been tested by comparing the ODF obtained from low angle interparticle
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scattering and high angle intraparticle scattering.
Fig. 1.12 shows the scattering patterns due to both interparticle and intraparticle

interference taken on magnetically aligned nematic monodomains of fd. With increas-
ing rod concentration the width of the patterns decreases, which indicates that the
order parameter increases. The concentration dependence of the order parameter is
shown in Fig. 1.13. As can be seen from this figure the agreement between theory
and experiment is very good at high ionic strength. We note that at a lower ionic
strength of 10 mM there is a noticeable discrepancy between the theoretical curve and
experimental data (data not shown) consistent with discrepancies observed for the
isotropic-cholesteric coexistence (Purdy et al. 2003).

Equally important, we find that the order parameter obtained from interparticle
and intraparticle scattering are always almost identical. This supports the decou-
pling approximation and provides validation for measurements of the order parameter
from low angle interparticle scattering pattern. In addition it has been shown that
the birefringence scales in the same way as the order parameter obtained from x-ray
scattering. From this comparison the magnetic birefringence per single rod fd can be
determined to be ∆nsat/c = 3.8 ∗ 10−5ml/mg where c is the concentration of rods.
We believe that the measurements of the concentration dependence of the order pa-
rameter represents the most stringent test for the validity of the KS theory to date.
The breakdown of the theory at low ionic strength indicates the need to improve the
treatment of electrostatic repulsion for strongly interacting particles.

Direct visualization of fluorescently labelled polymers dissolved in a nematic fd
background is another novel method by which it is possible to measure the nematic
order parameter. Fig. 1.14 shows the images of four different labelled polymers dis-
solved in the invisible background of unlabeled fd nematics. The conformation of the
rods changes from coil-like to rod-like as the background fluids undergoes a isotropic-
nematic phase transition. Interestingly this is true for relatively rigid rods such as
neurofilaments, wormlike micelles and actin while relatively flexible DNA demixes
from the background fd suspension. Using these images it is possible to determine the
order parameter of the polymers dissolved in the background nematic. It is found that
the order parameter significantly increases with increasing the length of the dissolved
polymer . For more information the reader is referred to the following reference (Dogic
et al. 2004b).

It might be possible to determine the nematic order parameter of the nematic sus-
pension by directly labelling fd rods. Present experiments indicate that the exposure
times necessary to acquire sufficient signal are too long to accurately determine the
orientation of an individual fd virus. During the necessary exposure time individual
rods undergo significant rotational diffusion which blurs the signal. Using laser as a
illumination source it might be possible to reduce the exposure time to levels where
the order parameter measurements are possible.

1.3.6 Smectic phase of fd

At high concentration fd forms a smectic A phase in which rods have long range
orientational order and one dimensional positional order. The smectic phase in a



26 1 Phase behavior of rod-like viruses and virus/sphere mixtures

b

a

c

d

e

isotropic nematic

Figure 1.14: Images of the fluorescently labelled biopolymer in isotropic (left panel) and
nematic (right panel) background suspension composed of fd virus. (a-d) are respectively
images of actin (lp = 16µm), worm-like micelles (lp = 0.6µm), neurofilaments (lp = 0.2µm)
and DNA (lp = 0.05µm). (e) a sequence of images illustrating an escape of an actin filaments
from a hairpin defects. Scale bar is 5 µm. (After ref (Dogic et al. 2004b))

suspension of fd was first reported in the following reference (Booy and Fowler 1985).
The smectic phase is easily recognized by the bright iridescence it exhibits when it is
illuminated by white light as shown in Fig. 1.15. Due to the large contour length of
fd it is also possible to directly observe the smectic density modulation using video
enhanced optical microscopy (Fig. 1.15a). When 488 nm light is used to scatter light
from a smectic phase it is possible to observe up to 5 Bragg peaks. From the relative
intensity and the position of the peaks it is possible to deduce the detailed structure
of the smectic phase (Dogic and Fraden 1997).

Computer simulations predict the concentration of the nematic to smectic phase
transition is roughly a volume fraction of 0.5. Furthermore, it is found that the location
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a

b

Figure 1.15: a) A DIC image of fd virus with varying contour length. The high contrast
lines are smectic gaps. Light scattering indicates that the smectic spacing is 920 nm while
the half width of the gap is 90 nm. Scale bar is 10 µm. b) Light scattering of a white light
from a uniformly aligned one dimensional density modulations of the smectic phase of fd. By
changing the angle of the incident light, the Bragg condition d = λ sin θ/2n changes and the
sample appears with different colors.

a b c d

 7 µm 

Figure 1.16: Images of the smectic phase of four different mutants of fd virus. The contour
length varies from 0.4 µm to 1.2 µm. The mutant viruses are prepared according to standard
methods of molecular cloning as described in Sec. 1.3.1. (After ref. (Dogic and Fraden 2001))
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Figure 1.18: The ionic strength dependence of the nematic-smectic phase transition for
a suspension of fd and M13. The pH of the suspension is adjusted so that the line charge
density is 7−/nm for both rods. (After ref. (Purdy and Fraden 2004a))

of this phase transition is independent of the rod aspect ratio (Bolhuis and Frenkel
1997). The initial studies done over a limited ionic strength indicated that the location
of the nematic-smectic phase transition scales with D2

eff (Dogic and Fraden 1997).
As discussed in Sec. 1.3.2 the concept of Deff quantitatively describes the isotropic-
nematic phase transition at high ionic strength. Recently the nature of the Ch-S phase
transition in fd has been characterized in more detail (Purdy and Fraden 2004a). This
new study leads to the conclusion that the electrostatics of highly concentrated charged
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rods cannot be accounted for with a simple concept such as Deff.
Figure 1.17 shows the ionic strength and contour length dependence of the cholesteric-

smectic phase transition. The data clearly shows that varying the contour length of
the rods has no effect on the location of the nematic-smectic phase transition. This
is in agreement with theoretical and simulation predictions (Tkachenko 1996; Bolhuis
and Frenkel 1997). However, the data below 60 mM ionic strength does not scale with
D2

eff. Additionally, the effective volume fraction of the nematic-smectic phase transi-
tion at low ionic strength is much higher then the close packing of rods (φ = 0.92)
which leads to conclusion that Deff overestimates electrostatic interactions.

The location of the nematic-smectic phase transition for suspensions of bacterio-
phages fd and M13 is shown in Fig. 1.18. The main difference between these two
bacteriophages is the point mutation in the coat protein which converts a negatively
charged amino acid for case of fd to a neutral one for the case of M13. This results
in fd having higher charge than M13 by 30% for same conditions. The pH of the so-
lution in Fig. 1.18 was adjusted so that that surface charge of fd and M13 suspension
is equivalent. With increasing ionic strength the volume fraction φs of the nematic-
smectic phase transition increases until it saturates at ionic strengths higher than 100
mM. There are two surprising conclusions that follow from experiments described in
Fig. 1.18. First, the concentration of the nematic-smectic phase transition saturates at
ionic strengths higher then 100 mM. This leads to the conclusion that in the limit were
the Debye screening length becomes much smaller then the rod diameter, the phase
behavior of charged rods approaches that of hard rods. Surprisingly the nematic-
smectic phase transition saturates at 0.24 volume fraction which is much lower then
theoretical prediction of 0.75 for semi-flexible rods (Tkachenko 1996; van der Schoot
1996; Polson 1997). Second, although the linear charge density for fd and M13 are
equal the concentration of the N-S phase transition in the limit of high ionic strength
is not the same. This indicates that the electrostatic continuum model fails and that
it is necessary to take into account the molecular arrangements of the charges on the
virus.

Another colloidal system where the N-S phase transition has been carefully char-
acterized is the suspension of rigid TMV rods (Wen et al. 1989). There are significant
differences when the N-S phase transition in TMV is compared to the Ch-S of fd. The
ratio of layer spacing to rod contour length is 1.3 for the case of TMV as compared to
1.03 for the case of semi-flexible fd. Significant pre-transitional smectic fluctuations
are also observed in TMV suspensions while no nematic-smectic pre-transitional fluc-
tuations are observed in the case of semi-flexible fd. For more detailed comparison of
the nematic-smectic transition between these two systems the readers is referred to
the following reference (Dogic and Fraden 1997). We also note that in partially dried
samples of fd a smectic-C phase is observed (Welsh et al. 1996; Lee et al. 2003).

We conclude the section on the phase behavior of hard rods by noting that the
isotropic and nematic phase of fd suspension is well understood in the limit of high
ionic strength. In this limit the rod charge can be quantitatively taken into account
via the effective diameter. As the rod concentration increases to the smectic phase
or the ionic strength decreases, the behavior of fd suspensions cannot be described by
current theories. The experimental data indicates that there is a need to incorporate
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the electrostatic interaction at a more fundamental level in these cases. This remains
an area where further theoretical and experimental work is needed.

1.4 Bulk phase behavior of rod-sphere and
rod-polymer mixtures

With the basic understanding of the phase behavior of a pure suspension of hard
rods and hard spheres established, recent experiments have shifted toward exploring
the phase behavior of more complex mixtures. As an introduction we first briefly
summarize the behavior of samples where hard spheres are mixed with depleting agents
that are in an isotropic phase. These can be either a suspension of polymers, or small
diameter hard spheres or an isotropic solution of rod-like molecules. After summarizing
the behavior of these mixtures, we turn our attention to less explored systems where
it is necessary to take into account orientational and/or positional ordering of rods.

In the rest of this article we review the phase behavior of mixtures of rods with
spherical polymers such as Dextran, poly(N-isopropyl-acrylamide) (NIPA) and poly(ethylene
oxide) PEO and the behavior of rods with hard spheres such as charge stabilized
polystyrene (PS) colloids. Much of the phenomena described is general to both
rod/hard sphere mixtures and rod/polymer mixtures while there are also important
differences between these two cases. In general, we use “rod/sphere” mixture to refer
to a generic mixture of rods with either hard spheres or polymers while “rod/hard
sphere” or “rod/polymer” refers to that specific mixture.

1.4.1 Depletion interaction between hard spheres

An important concept for understanding colloid/polymer mixtures is the depletion
potential introduced by Asakura and Oosawa (AO) in the late 1950’s (Asakura and
Oosawa 1958). A few decades later the depletion interaction was rediscovered by
Vrij (Vrij 1976). In the non-additive AO model spherical colloids with diameter Dsp

interact with each other via the hard core excluded volume interaction, polymers
behave as an ideal gas with no interaction while colloids interact with polymer through
the excluded volume interaction. Consequently, there is a volume shell equval to the
polymer’s radius of gyration Rg, around each colloid from which the center of mass
of a polymer is excluded as illustrated in Fig. 1.19. As two colloids approach each
other there is an overlap of the excluded volume shells. The exclusion of the polymer
between the colloid leads to an imbalance of the osmotic pressure, which in turns leads
to an effective attractive force. The depletion force is proportional to VexclΠpolymer

where Vexcl is the excluded volume and Πpolymer is the osmotic pressure of the polymer
solution. The range of the depletion attraction is proportional to the polymer radius
of gyration (Rg) while the strength of the attraction is proportional to the polymer
concentration.

An alternative explanation of the AO depletion can be gained by considering the
total entropy of the sphere/polymer mixture. Bringing together two large colloids
decreases the entropy of mixing of the system. However, the reduction of excluded
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Figure 1.19: A schematic illustration of the depletion attraction in the sphere/polymer
mixture. Around each colloid of diameter Dsp there is a shell which is inaccessible to the
center of mass of a polymer. As the two colloids approach each other there is an overlap of
the excluded volume shells which leads to the effective attractive potential.

volumes around large colloids results in the increase of the accessible volume to the
more numerous smaller polymers, which in turn leads to an increase in the polymer
component of the total entropy of the system. Since the entropy gain of the dispersed
polymer is larger then the entropy loss of the clustered colloids the net result is an
effective attractive potential with entropic origin. Therefore the depletion interaction
is often paradoxically describedas “attraction through repulsion”.

The depletion interaction is a very general phenomena that is always relevant to
the phase behavior of mixtures. However, the quantitative AO theory breaks down
for a number of experimentally relevant parameters. First, with increasing polymer
size it is easy for the polymer and the colloid to interpenetrate each other, which leads
to a significant decrease in both the range and the strength of the depletion potential
(Tuinier et al. 2000). Second, the AO model assumes that the polymer behaves as
an ideal gas. While it is experimentally possible to achieve this condition by changing
the solvent quality, frequently it is necessary to take into account the excluded volume
interaction between polymers (Hanke et al. 1999; Tuinier et al. 2003). The extreme
limit of this case are two large colloids immersed in a suspension of colloids with much
smaller size (Mao et al. 1995). At a low density of small colloids the interaction poten-
tial between large colloids can be approximated using the AO interaction. However,
with increasing concentration of small colloids the effective intermolecular potential
between large colloids deviates significantly from the AO potential and exhibits sig-
nificant oscillatory behavior that is a consequence of the liquid-like structure of small
colloids. The oscillatory nature of the depletion potential in a binary mixture of hard
colloids was measured using a scanning laser tweezer (Crocker et al. 1999). Third, the
AO depletion is quantitatively valid when the polymer is in the dilute regime. In the
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semi-dilute region, the relevant length scale is determined by the polymer correlation
range. Since this length scale is smaller then Rg, the range of the depletion attraction
decreases with a crossover from a dilute to semi-dilute regime. Such depletion attrac-
tion was directly measured with optical tweezers using 1 µm silica spheres immersed
in a DNA solution which acts as a depleting agent (Verma et al. 2000). These experi-
ments illustrate that with a cross-over from the dilute to semi-dilute regime the range
of the depletion attraction rapidly decreases.

It is possible to induce a depletion attraction with other colloidal solutions be-
sides polymers or spheres. For example, the depletion caused by the dilute isotropic
suspension of rods has been studied in detail both theoretically and experimentally.
The depletion interaction between flat plates immersed in a solution of rods has been
calculated and using the Derjaguin approximation the result was generalized to the
interaction of spherical colloids(Mao et al. 1997). This depletion interaction was
consequently obtained using the exact solution to first order in rod concentration by
Marques and coworkers (Yaman et al. 1998). The exact calculation indicates that the
Derjaguin approximation works well when the length of the rods is much smaller then
the diameter of the spheres, but significantly overestimates the depletion potential
when the rod length approaches the sphere diameter.

The depletion force between two spheres induced by the presence of a semi-dilute
suspension of 0.9 µm long fd rods has recently been measured using a line tweezer (Lin
et al. 2001). At short distances there is a significant enhancement of the depletion
interaction when compared to the “exact” theory developed for spheres immersed in a
solution of rigid rods (Yaman et al. 1998). This is probably due to additional depletion
associated with the bending degree of freedom of semi-flexible rods (Lau et al. 2003).
Interestingly, by fitting the experimental data to their model the authors were able
extract the persistence length of fd from their data. This turns out to be 1.1 µm which
significantly differs from previous measurements (Song et al. 1991). The systematic
experimental study of how the depletion strength varies as a function of the ratio of
sphere diameter Dsp to rod length (L) is so far lacking.

1.4.2 Phase diagrams of hard spheres and polymers or
isotropic hard rods

Once the depletion potential between two isolated spherical colloids has been “engi-
neered” by choosing appropriate polymer size and concentration it is of fundamental
interest to understand how does the chosen potential affect the phase behavior of
spherical colloids. Theory, computer simulation and experiments have shown that the
parameter which most critically affects the phase behavior is the range of attractive
interaction (Gast and Russel 1983; Gast et al. 1983; Gast et al. 1986; Lekkerkerker
et al. 1992; Hagen and Frenkel 1994). For potentials with very short range attrac-
tion there is a direct equilibrium phase transition from a dilute colloidal gas (G) to
a concentrated colloidal crystal (C). There is an additional transition from the dilute
colloidal gas to a dense disordered colloidal liquid (L) as illustrated in Fig. 1.20a.
However, this transition is metastable with respect to the equilibrium gas-solid phase
transition. Only when the range of attraction increases is a stable gas-liquid phase
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Figure 1.20: The phase diagram of a colloid/polymer mixture is found to critically depend
on the range of attraction, which in turn is determined by the polymer size F:Fluid, L:
Liquid, G: Gas and C: crystal. a) For short range attraction only an equilibrium gas-solid
phase transition is observed. We note that a gas-liquid phase transition is present but is
metastable with the respect to the equilibrium gas-solid phase transition. b) For colloids
with long range attraction both gas-liquid, liquid-solid and direct gas-solid phase transitions
are observed. The topology of this phase diagram closely resembles that of molecular liquids
interacting with a van der Waals potential.

transition observed with associated critical and triple points. Experimentally it is
found that glassy states and/or gels often preempt the occurrence of the equilibrium
phase transitions. The non-equilibrium nature of these states is poorly understood and
is currently under intense study(Anderson and Lekkerkerker 2002). We note that for
spheres with very short ranged attractive potentials simulations predict the existence
of a first order phase transition between two solids with different densities (Bolhuis
and Frenkel 1994a). So far this transition has not been observed in experiments.

The initial studies of Gast and Russel of the sphere/polymer mixture used thermo-
dynamic perturbation theory to obtain the theoretical phase diagrams. Such theories
treat the sphere/polymer mixture as a single component system of spheres which have
hard core repulsive interactions to which the effect of attraction is considered as a
perturbation. The underlying assumption is that depletion attraction is pairwise ad-
ditive and that in a sample where two phases coexist the polymer concentration is
the same in both phases. Non-additivity for sphere/polymer mixtures was treated via
computer simulations and it was found that the depletion attraction is pairwise addi-
tive only if the ratio Rg/Dsp is sufficiently small (Meijer and Frenkel 1991; Meijer and
Frenkel 1994). A more complete theory that takes into account the possibility of par-
titioning of the polymer across the phase boundary and accounts for the non-additive
nature of the colloid/polymer mixture was subsequently developed by Lekkerkerker
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Figure 1.21: A crystalline cluster of polystyrene spheres Dsp = 2µmgrows on the walls
when fd rods are added. The concentration of fd rods is roughly 2 mg/ml. Fluctuations of
the crystalline cluster are clearly visible under the microscope. Scale bar indicates 10 µm.

and coworkers (Lekkerkerker et al. 1992).

Studies of colloid/polymer mixtures show that the topology of the phase diagram
depends critically on the range of attraction. This result is very general and is ex-
pected to hold for molecular liquids as well as for colloidal systems. The advantage
of colloids is that the shape, range and depth of the intermolecular potential can be
adjusted and experimentally measured. This makes colloids an ideal system to test the
statistical mechanical theories that predict the relationship between the macroscopic
phase behavior of fluids and the microscopic intermolecular potential.

The phase behavior of a binary mixture of hard spheres is very different from
that of the the hard-sphere polymer mixture. On the theoretical side initial work
by Lebowitz and Rowlinson showed that, within the Percus-Yevick approximation,
mixtures of hard spheres are miscible for all aspect ratio and concentrations (Lebowitz
and Rowlison 1964). For a long time this was considered to be the general case. Only
recently, a more accurate liquid-state theory indicated that the binary mixture of
spheres becomes unstable and demixes at high enough asymmetry (Biben and Hansen
1991). On the experimental side, the liquid-liquid demixing has not been observed. It
seems that this transition is preempted by the liquid-crystal phase transition where
the solid composed of large spheres coexists with a liquid rich in spheres with smaller
diameter (Dinsmore et al. 1995; Imhof and Dhont 1995). In this way the phase
behavior of binary hard spheres is reminiscent of the sphere/polymer mixture with
large asymmetry (Fig. 1.20a). At even higher volume fraction it is possible to obtain
well ordered binary alloys with complex crystalline structure (Bartlett et al. 1992).

As was discussed in previous section, isotropic rods are very effective depletion
agents especially when the length of the rod (L) is significantly smaller then the diam-
eter of the hard sphere Dsp. However, there are only limited studies about the phase
behavior of a mixture of isotropic rods and colloidal spheres. In the initial work by
Pecora and coworkers no demixing phase transition was observed in a mixture of rod-
like poly-benzyl-glutamate (PBLG) and polystyrene spheres (Tracy et al. 1993). Early
simulations predicted the phase diagram reminiscent of those found in spheres with
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short range attractions (Fig. 1.20a) when the ratio Dsp/L is smaller then 0.3 (Bol-
huis and Frenkel 1994b). For larger ratios both gas to liquid and liquid to crystal
phase transitions are stable (Fig. 1.20b). These predictions have also been confirmed
in theoretical work (Vliegenthart and Lekkerkerker 1999). Subsequently, the phase
separation between crystals of silica spheres and an isotropic solution of boehmite
(γ-AlOOH) rods coated with silica was observed (Koenderink et al. 1999). In these
experiments the ratio Dsp/L was kept constant at 0.3, exactly the parameter at which
the gas-liquid phase transition becomes stable with the respect to the gas-crystal phase
transition. Interestingly, no gas-liquid phase coexistence was reported. In these studies
the authors observe formation of crystals via a two step pathway (Vliegenthart et al.
1999). In a first step the mixture forms a liquid-like aggregate that subsequently crys-
talizes. This point is discussed in greater detail in section 1.9 on the kinetics of phase
transitions. With increasing concentration of the rods, the suspension becomes highly
viscous and the sample takes too long to equilibrate. In this case it is difficult to
determine the final equilibrium phase.

We have also observed demixing in a mixture of 0.9 µm long fd viruses and large
polystyrene spheres (Fig. 1.21). It is interesting that when rods at a fixed concentra-
tion (2 mg/ml) are mixed with small polystyrene spheresw (Dsp = 1 µm ) no phase
separation is observed. As the sphere size is increased (Dsp = 1.5 µm) surface crys-
tallization is observed, but not crystallization in the bulk. This is not surprising since
the overlap of excluded volume between a flat wall and a sphere is twice as large as
that between two spheres. Surface crystallization has previously been observed for a
binary mixture of hard sphere (Dinsmore et al. 1997). For spheres with Dsp = 2 µm
we observe phase separation in the bulk, but the heavy particles quickly sediment to
the bottom wall and spread out on the surface. The quantitative phase diagram for
the mixture of spheres and isotropic rods as a function of rod and sphere concentra-
tion and Dsp/L ratio is difficult to determine due to turbidity and sedimentation of
the large spheres. A theoretical calculation explains why the phase separation in a
sphere/rod mixture is so sensitive to the ratio of sphere diameter to rod length (Yaman
et al. 1998) . As the rod length approaches the sphere diameter the strength of the
depletion potential significantly decreases.

So far we have discussed the phase behavior of a mixture of spheres with depletants
such as isotropic rods or polymer solutions. In the rest of the paper we focus on a
number of surprising phenomena that are observed in rod/polymer or rod/sphere
mixtures at higher rod concentration. In this case it is necessary to take into account
either the orientational or positional ordering of rods, or sometimes both.

1.5 Influence of non-adsorbing polymer on the
isotropic-nematic phase transition

The Onsager theory describes the entropy driven isotropic-nematic phase transition
in a suspension of rods that have purely repulsive hard core interactions (Onsager
1949; Vroege and Lekkerkerker 1992). As a next step it is important to examine
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Figure 1.22: The three possible phase diagrams of a rod-polymer mixture as predicted by
Lekkerkerker and Strobants. For long range attraction, in addition to I-N phase transition a
stable isotropic-isotropic phase transition is predicted. Dashed lines are tie-lines between co-
existing phases. For very short range attraction the isotropic-isotropic coexistence disappears
but a nematic-nematic phase appears. With both isotropic-isotropic and nematic-nematic
coexistence there is a triple point and an associated critical point. Because of the binary
nature of the mixture the triple point spans an entire solid triangle in the phase diagram.

how the presence of attractive interactions alters the nature of the I-N phase transi-
tions. For low molecular weight liquid crystals this issue has been reviewed extensively
elsewhere (Gelbart and Barboy 1980). Experimentally, one feasible way to introduce
attractions into hard-rods is by adding non-adsorbing polymer. In a similar way that
the presence of polymers dramatically alters the phase behavior of hard spheres it is
reasonable to expect a significant influence of polymer on the phase behavior of hard
rods. In this section we focus on the bulk I-N phase transition in rod-polymer mix-
tures while in subsequent sections we consider the possibility of positionally ordered
smectic phases. While it is tempting to connect the phase behavior of rod/polymer
mixtures to that of a solution of rods with direct attractive interactions there are also
some important differences between these two systems. Most importantly, the deple-
tion interaction in the rod/polymer mixture is an effective potential. Therefore the
strength of the interaction depends on the local concentration of polymer which can
vary considerably in the sample especially if there are coexisting phases within the
same sample.

In general, liquid state theories that describe the behavior of rod-like particles
are not as developed as theories for spherical particles. While the Onsager theory
accurately describes the reference state of hard rod fluids, introducing attractive in-
teractions into such a theory is not as straightforward as for the case of hard spheres.
The Onsager theory is based on a density expansion and it is therefore valid only for
solutions of rods at low densities that have a fair degree of orientational disorder. Rods
with depletion-like attractive interactions attain the minimum of their intermolecular
potential when they are parallel to each other and their centers of mass are at a min-
imum separation (Fig.1.23). These are exactly configurations that need to be avoided
for the Onsager theory to converge at the level of the second virial coefficient (van der
Schoot and Odijk 1992). To overcome this difficulty Lekkerkerker and Strobants have
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a b

c

Figure 1.23: The attractive interaction induced by adding polymer to a suspension of rod-
like colloids. The strength of attraction is proportional to the overlap of the excluded volume
and it is strongest when the rods lie parallel to each other as illustrated in case (a) as opposed
to rods lying perpendicular to each other as is shown in case (b) or end-to-end as in case (c).

calculated the phase diagram of rod/polymer mixtures using the scaled particle free
energy expression of hard rods, which approximately takes into account higher virial
coefficients and reduces to the Onsager theory in the appropriate limit (Lekkerkerker
and Stroobants 1994; Bolhuis et al. 1997). Such an expression reproduces remark-
ably well the isotropic-nematic phase transitions for hard rods with finite size when
compared to results of computer simulations (Kramer and Herzfeld 1998).

The topology of the phase diagrams obtained using the Scaled Particle Theory
(SPT) has a striking similarity to the previously described phase diagrams of the hard
sphere/polymer mixture in Section 1.4.2. For rods with long range attractions an
isotropic-isotropic (I1 − I2) phase transition is observed. As a consequence there is a
critical point associated with isotropic-isotropic demixing and a triple point in which
two isotropic phases coexist with a nematic phase. Since the system contains two
components, the triple point spans an entire triangle in the phase diagram when plotted
in the rod polymer density-density plane. For a very short range attraction the system
exhibits nematic-nematic phase transitions. A simpler calculation that directly extends
the second virial Onsager free energy to include attractive interactions only predicts
the widening of the isotropic-nematic coexistence and fails to predict either isotropic-
isotropic or nematic-nematic coexistence (Warren 1994). In addition, Warren’s theory
abruptly breaks down and predicts coexistence between an infinitely dense nematic
phase and dilute isotropic rods as soon as the second virial coefficient becomes negative.
Because of this, Warren argues that the second virial theory extended to rod/polymers
mixture is only valid for very weak attractions, but it is not clear at which point this
approximation breaks down.

There have been a few experiments that have studied the phase diagram of rod/sphere
mixtures, most notably in the cellulose/Dextran and bhoemite/polystyrene mixtures (Edgar
and Gray 2002; Buitenhuis et al. 1995). In the latter work the authors observe a triple
point in which two isotropic phases coexists with a nematic phase. In addition to these
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Figure 1.24: Phase diagram of an fd virus and Dextran, Rg=176 Åat 100 mM ionic strength.
The measured points indicate the rod and polymer concentrations of the coexisting isotropic
and cholesteric phases. The full line indicates the phase boundary between the two-phase
isotropic-cholesteric phase coexistence and stable single phase isotropic and cholesteric phase.
Tie lines are indicated by thin full lines. (After ref. (Dogic et al. 2004a))

equilibrium phases, non-equilibrium gel-like phases are also reported at fairly low rod
concentration. In the former work on the cellulose/Dextran mixture, only biphasic
isotopic-nematic coexistence is observed, which widens with increasing polymer con-
centration.

Motivated by good agreement between the Onsager theory and experimental data
for the I-Ch coexistence of filamentous fd rods, we have recently measured the I-Ch
phase transition in the presence of non-adsorbing polymer. Using fluorescein labelled
Dextran it is possible to obtain macroscopically phase separated samples, measure
the full phase diagram and determine the tie lines between coexisting isotropic and
cholesteric phases(Dogic and Fraden 2001; Dogic et al. 2004a). An example of the
typical phase diagram measured is shown in Fig. 1.24. In agreement with previous
studies it is found that adding polymer widens the coexistence between the isotropic
and cholesteric phase. Using the fd/Dextran mixture it is also possible to observe
preferential partitioning of the polymer into isotropic phase, in qualitative agreement
with the theoretical predictions. Unfortunately, with this system we are not able to
access the parameters for which I1-I2-N and I-N1-N2 phase coexistence is predicted in
work by Lekkerkerker and Stroobants.

There are a number of reasons which make quantitative comparison between the
SPT theory and experiments difficult (Dogic et al. 2004a). First, the theoretical work
is valid for rods that interact through hard core repulsive interaction while the fd
viruses used in the experiments are charged stabilized. Because of the small diameter
of fd it is not possible to add enough salt to reduce the double layer repulsive interaction
to negligible levels and simultaneously preserve the colloidal stability of the system.
Therefore repulsive double layer interactions have to be incorporated into the theory.



1.5 Influence of non-adsorbing polymer on the isotropic-nematic phase transition 39

At the level of second virial coefficient it is possible to achieve this by replacing the
hard core diameter Dr with a larger effective diameter Deff which is dependent on the
ionic strength as described in section 1.2.2. This procedure is rigorously valid only for
rod concentrations low enough so that the Onsager second virial coefficient accurately
describes the system. When comparing our data to theory we have used Deff as a
hard core diameter in the SPT theory although in principle this is an approximation
that is not well controlled. We note that there was a recent attempt by Herzfeld and
coworkers to incorporate charge into scaled particle theory (Kramer and Herzfeld 1999;
Kramer and Herzfeld 2000).

Second, the SPT theory is valid for perfectly rigid rods while fd is a semi-flexible rod
with persistence length of 2.2 µm. This flexibility is enough to significantly affect the
nature of the isotropic-nematic phase transition as explained in section 1.2.3. The SPT
theory has been modified to include flexibility in the same way that Khohhlov-Semenov
extended Onsager theory to treat semi-flexible rods. The competition between attrac-
tive interaction and repulsive interaction can induce a bundling-unbundling transi-
tion (Kierfeld and Lipowsky 2003). Third, the Rg of the polymers used in our ex-
periments was equal or even larger than the diameter of the rods. As mentioned in
section 1.4.1 for these parameters the AO model of depletion attraction significantly
overestimates both the range and the strength of the interaction. The reason for this
is that the open polymer structure easily interpenetrates a slender rod. Since there is
no analytical expression for depletion potential in such a case, when comparing our
experimental results to the SPT theory we have used results obtained from simulation.

In spite of these caveats, in the limit of high ionic strength the agreement between
experiments and theory is quite good as shown in Figure 1.24. It remains to see if
this is fortuitus. However, as the ionic strength decreases the discrepancy between
theory and experiment becomes significant. In conclusion, it is fair to say that an
accurate liquid-state theory for rods which have attractive attraction is still lacking.
In the section on the phase behavior of hard rods we argued that the measurement
of the order parameter is a more stringent test of the validity of the Onsager theory
when compared to the measurements of the I-N phase coexistence. In the same spirit
we have attempted to measure the order parameter of the nematic phase at different
polymer concentrations.

This is an important question when viewed in the context of the van der Waals
theory of liquids, which for spherical particles states that the repulsive part of the inter-
molecular potential is mainly responsible for the liquid-like structure of fluids (Widom
1967). The attractive potential determines the density of the fluid by providing a
cohesive energy that is largely independent of the exact configuration of the fluid. It
remains to be seen if this van der Waals picture is also true for a liquid of attractive
rods. If so, one would expect that the strength of the attraction only determines the
density of the liquid of rods while its structure, as characterized by the order parame-
ter, would depend only on the constituent rod concentration. The nematic samples of
the fd/polymer mixtures turn out to be quite viscous and it is difficult to reproducibly
obtain monodomain samples, which results in noisy measurements of the order param-
eter. Although noisy, our results indicate that the van der Waals picture also holds
for the rod/polymer mixture. In other words, the nematic order parameter remains
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independent of the polymer concentration in a rod-polymer mixture. For more details
the reader is referred to the following paper (Dogic et al. 2004a).

It is of interest to consider if the phase diagram for rod/polymer mixtures is generic
to other rod-like systems in which it is possible to induce attractive interactions. For
example, another well studied and very effective agent for condensing charge stabilized
rods are multivalent counterions. Most biopolymers such as fd, actin, DNA and mi-
crotubules are negatively charge-stabilized colloids under physiological pH conditions.
Adding multivalent cations to such a solution induces the formation of tightly packed
bundles (Tang et al. 1996; Tang et al. 1997; Bloomfield 1991). Bundle formation is
usually observed at a very low concentration of rods and the effect of rod concentra-
tion has not been studied systematically. This corresponds to the upper left corner of
the fd/Dextran phase diagram shown in Fig. 1.24. Interestingly, when we prepare a
mixture of a polymer at very high concentration and fd we observe the formation of
the bundles that look remarkably similar to the bundles observed in the mixture of fd
and multivalent counterions.

Recently a study of a mixture of 50 nm long DNA fragments and trivalent or
tetravalent spermidine and spermine condensing agent was published (Pelta et al.
1996; Sikorav et al. 1994). As opposed to other studies, the authors here use a finite
concentration of DNA fragments and observe a formation of nematic(cholesteric) phase
instead of bundles. In another recent study of actin filaments mixed with multivalent
salts the authors report the formation of a new phase in which actin is condensed
into two-dimensional rafts, which subsequently stack on top of each other at 90 de-
grees (Wong et al. 2003; Borukhow and Bruinsma 2001; Lee et al. 2004). Such a
phase would have no analogy in rod/polymer mixtures. Clearly rod/counterion mix-
tures still remain poorly understood. In our view it would be of interest to compare
such systems to the phase behavior of rod/polymer mixtures.

In this section we have only considered the influence of polymer on the bulk
isotropic-nematic phase transition. When these studies are extended to account for
the formation of the positionally ordered smectic phase a whole range of new and
unexpected phenomena are observed. These will be reviewed in the next few sections.

1.6 Entropically driven microphase separation in
rod/sphere mixtures

The influence of polymers on the entropy driven isotropic-nematic phase transition is
qualitatively understood with a mixture being either in a single uniformly mixed phase
or a macroscopically demixed phase. However it recently became apparent that there
is a third possibility of a microphase separated state for a wide range of polymer and/or
hard sphere sizes or concentrations. In microphase separation the system begins to
phase separate into regions that are either rich in rod or sphere component. Unlike
bulk demixing, the phase separating regions grow until they reach a critical size at
which point they organize into a well ordered three dimensional structure. The full
complexity of the phase diagram of the fd/polystyrene spheres (PS) mixture for one
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Figure 1.25: Phase diagram of a mixture of fd virus and polystyrene spheres (Dsp=100nm)
in 10 mM tris buffer. Suspension of pure fd forms isotropic, cholesteric(nematic) and smectic
phases with increasing concentration as described in Sec. 1.3. Increasing the volume fraction
of spheres induces the formation of a number of microphase separated states most notably
lamellar and columnar phases. Images of these structures are shown in Fig. 1.28. The
isotropic-cholesteric phase transition for pure rods is at 18 mg/ml while nematic-smectic
phase transition is at 50 mg/ml. Filaments are layered structure discussed in more details in
Sec. 1.9.3. (After ref. (Adams et al. 1998))

spheres size is shown in Fig. 1.25. Other phases are observed for different sized spheres.
Usually microphase separated states are found in amphiphilic molecules such as

block copoloymers, lipids or surfactants (W. M. Gelbart and Roux 1994). The mi-
crophase separated state formed in rod/polymer mixtures is different in two funda-
mental aspects from the microphase separated states formed by amphiphilic macro-
molecules. First, all amphiphilic molecules and block copolymers are characterized by
a covalent bond between mutually immiscible blocks. Microphase separated structures
have enrmous surface area and the resulting surface energy is very high. Consequently,
in the absence of the bond between immiscible blocks it is commonly assumed that
such materials would bulk phase separate into two immiscible macroscopic phases.
In a fd/polystyrene mixture the covalent bond between the immiscible components
is absent, and the mixture is free to macroscopically phase separate. Therefore it is
surprising that under certain conditions such a mixture forms a stable microphase sep-
arated state instead of macroscopically phase separated sample. A microphase state
in a mixture implies that the surface tension between the components of the mixture
is very small. In amphiphilic and copolymeric systems the phase separation is largely
driven by enthalpic contributions to the free energy. In rod/sphere mixtures the in-
teraction that dominates the phase behavior of the system are hard core excluded
volume interactions. All transitions in such a system are driven by a purely entropic
contribution to the free energy and it follows that the microphase separation is a state
with highest entropy, not lowest energy.
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Figure 1.26: Stability boundaries for a rod-sphere mixture calculated using the theory de-
scribed in Sec. 1.2.6. For this particular phase diagram the rod aspect ratio was L/Dsc=20 and
the diameter of spheres are equal to the diameter of rods Dsc/Dsp=1. The full line indicates
the theoretical prediction for the points in the phase diagram at which the system becomes
unstable towards lamellar fluctuations. The dashed line indicates the instability towards the
complete demixing into two macroscopically phases. Squares indicate the nematic-lamellar
phase transition obtained from Monte Carlo simulation. (After ref. (Dogic et al. 2000))

1.6.1 Lamellar phase in rod/polymer and rod/sphere mixture

In this section we review the theoretical and experimental studies of the lamellar
phase, which is the simplest microphase separated state. The lamellar phase is char-
acterized by one-dimensional long ranged order in which liquid-like layers of rods are
intercalated with layers of spheres. The existence of the lamellar phase was first pre-
dicted using a density functional theory where the excluded volume interactions are
treated at the level of the second virial coefficient (Koda et al. 1996). Because of
the highly approximate nature of the second virial approximation the formation of
the intercalated lamellar phase was also verified using Monte Carlo simulations in the
same work. Both the theoretical model and the computer simulations made a number
of simplifying assumptions; most importantly that the rods are perfectly aligned and
that the diameter of the rods and spheres are equal. Therefore in this model the rods
do not exhibit an isotropic-nematic phase transition. The same model of a mixture of
spheres and perfectly aligned spherocylinders was later generalized to include sphere
of arbitrary size (Dogic et al. 2000).

The theoretical prediction for the stability diagram of a typical rod/sphere mixture
is shown in Fig. 1.26. The theory predicts the stable entropy driven formation of a
lamellar phase when a low volume fraction of spheres is added to a nematic phase of
perfectly aligned rods. At a high concentration of both rods and spheres the model
predicts complete bulk phase separation, while at low sphere/rod concentrations the
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Figure 1.27: Volume excluded to the center of mass of a spherocylinder due to the presence
of another sphere or spherocylinder is indicated by light shaded region. The large excluded
volume between spherocylinder and a sphere is the reason for the enhanced formation of the
lamellar phase. (After ref. (Dogic et al. 2000))

mixture is miscible. More importantly, it is found that the rod/sphere mixture forms
the layered lamellar phase at a lower volume fraction when compared to the formation
of layered smectic phase in suspension of pure hard rods. Therefore the spheres do
not only passively partition into the smectic gaps, but actively shift the boundaries
of the nematic-lamellar phase transition and significantly stabilize the lamellar phase.
Recent simulations have considered rod/sphere mixtures in which the rods have full
orientational degrees of freedom(Lago et al. 2004). The existence of a stable lamellar
phase was confirmed in this more realistic model. It was also found that the spheres
actively stabilize the lamellar phase with respect to nematic phase in agreement with
theory and simulations on mixture of spheres and perfectly aligned rods.

A simple intuitive picture for the formation and enhanced stability of the lamel-
lar phase emerges from the consideration of the total excluded volume in a mixture.
The entropy driven transition to an ordered structure is always driven by a decrease
in the total excluded volume of the system. Therefore we would expect that the
excluded volume of the lamellar phase is smaller then the excluded volume of the
uniform rod/sphere mixture. It is useful to compare this quantity in two extreme
cases of a spatially uniform mixture and a perfectly ordered one dimensional lamellar
phase. Fig. 1.27 illustrates the volume that is excluded to the spherocylinder due to
the presence of either another sphere or spherocylinder. For spherocylinders with large
asymmetry the excluded volume of a sphere is about half that of another spherocylin-
der. In a mixture in which the concentration of spherocylinders is spatially uniform
replacing a single spherocylinder with two sphere leaves the total excluded volume
unchanged. However, this procedure significantly decreases the total volume fraction
of the particles. Therefore in a rod/sphere mixture we have packing problems similar
to those encountered in a suspension of pure spherocylinders, but at a lower total
volume fraction. By forming a layered lamellar phase the mixture can significantly
reduce the total excluded volume because the periodic one dimensional density order
associated with lamellar order significantly reduces the probability of very unfavorable
sphere-spherocylinder contacts. For quantitative details that emerge from the analysis
of the second virial theory the reader is referred to the following reference (Dogic et al.
2000).
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Figure 1.28: DIC images of microphase separated phases observed in a mixture of fd and
polystyrene spheres (Dsp=0.1 µm). The phase diagram of this particular mixture is shown
in Fig. 1.25. a) At sphere concentrations below 1% a stable columnar phase is observed. (see
Fig. 1.29) b) At intermediate concentrations the spaces between columns gradually fill in and
the sample continuously transforms into the lamellar phase. c) At high sphere concentrations
a single phase lamellar phase is formed with a layer spacing of 1.1 µm. Scale bar indicates
10 µm.

An alternative way to consider the enhanced stability of the lamellar phase in the
rod/sphere mixture is to focus on the effect of spherocylinder ends. In section 1.2.5 we
discussed the formation of the smectic phase as a consequence of unfavorable packing
that occurs around the ends of rod-like molecules. Adding spherical particles to the
nematic phase of rods increases the effective concentration of the “ends” without sig-
nificantly changing the total volume of the solution. The only way that the system can
accommodate these extra “ends” is to undergo a transition to an entropy stabilized
microphase separated state.

Subsequent to the prediction by Koda and coworkers a layered lamellar phase was
experimentally observed in a mixture of fd virus and polystyrene spheres (Koda et al.
1996; Adams et al. 1998). Under the experimental conditions, fd virus and polystyrene
spheres approximate the behavior of hard rods and spheres, respectively. An optical
micrograph of a typical lamellar phase is shown in Fig. 1.28c. The layer periodicity
of the lamellar phase is 1.1 µm while that of a smectic phase of pure fd suspension
is 0.9 µm. The evidence obtained from samples where the spheres are fluorescently
labelled and from electron microscopy on freeze-fractured samples indicates that the
structure of the lamellar phase is that of intercalated layers of spheres and rods. It
is important to note that the experimental parameters were that the diameter of the
sphere (Dsp = 0.1 µm) is roughly 10 times smaller than the rod length (L = 1 µm)
and ten times larger than the rod diameter (Dsc ∝ 10 nm). These parameters are
very different from the parameters used in the simulation by Koda and coworkers.
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The experimental results also show that spheres significantly stabilize the formation
of the lamellar phase. As can be seen from the phase diagram shown in Fig. 1.25 the
suspension of pure fd forms a layered smectic phase at 50 mg/ml. Adding spheres at a
volume fraction of 2% induces the formation of the layered lamellar phase at 20 mg/ml.
In addition to the above described case, the lamellar phase is consistently observed
for a wide variety of polystyrene sphere sizes ranging from 0.02 µm to 0.2 µm. After
filling the sample chamber we find that the layers will form within few minutes and
over the next few days the defects slowly anneal and the overall order improves. We
have had samples that have remained layered for a period of few years before drying
up. This provides a strong indication that the lamellar phase is an equilibrium state
and not a kinetically trapped structure.

Besides fd/PS mixtures the lamellar phase has also been observed in mixtures of fd
virus and with a wide variety of polymers such as polyethylene oxide (PEO), Dextran
and poly(N-isopropyl-acrylamide) (NIPA). This is perhaps not too surprising since in
the second virial theory the effect of the sphere-sphere excluded volume has negligible
effects on the overall topology of the phase diagram. It is the polymer-spherocylinder
excluded volume that drives the phase transition. The effect of the polymer size has
not been systematically studied so far.

The second virial theory also indicates that it should be possible to obtain a lamellar
phase in a binary mixture of rods with sufficiently different contour length (Koda and
Kimura 1994). Due to a paucity of well defined monodisperese hard rod systems
the lamellar phase has to our knowledge been only observed in mixtures of fd and
either colloidal spheres or polymer. We believe as better defined rod systems become
available it will be shown that the lamellar phase is a generic structure found in all
rod-sphere mixtures. We do note that the lamellar-like structure have been observed
in a study of polydisperse TMV and the spherical protein Bovine Serum Albumin
(BSA) (Adams and Fraden 1998).

While both lamellar and smectic phases have the same quasi one dimensional long
range order, the main difference between these phases is the spacing of the layers.
Theory predicts that the lamellar layer spacing will swell with increasing volume frac-
tion of spheres (Koda et al. 1996; Dogic and Fraden 2001). Therefore it should be
possible to go from the smectic to lamellar phase without ever crossing a phase bound-
ary. However, it is also possible to envision a first order transition between coexisting
smectic and lamellar phases. In such a sample there would be a coexistence between
two layered phases with different layer spacing. On the experimental side both the
continuous swelling of the smectic phase and the coexistence between a smectic phase
with periodicity of 0.9 µm and a lamellar phase with 1.1 µm periodicity have been
observed. These are described in greater detail in Sec. 1.9.3 and Sec. 1.9.4.

1.6.2 Columnar phase and chain-like structures in mixtures
of fd and hard spheres

In addition to the lamellar phase, other more complex structures are observed in mix-
tures of fd rods and hard spheres. In particular, for mixture of fd and 0.1 µm PS
spheres a columnar structure is observed. The phase diagram (Fig. 1.28) shows that
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Figure 1.29: A three dimensional reconstruction using DIC optical microscopy of a sample
in which the lamellar phase at the bottom is coexisting with the columnar phase at the top.
The mixture is composed of 0.1 µm PS spheres and fd liquid crystals. Middle figure is a
schematic illustration the arrangements of the rods and spheres in this particular sample.
The rods in the top columnar phase are not drawn for clarity, but they form a nematic phase
that fills the space between columns. (a1) Image of the XY cross-section of the top columnar
phase. (a2) Image of the ZX cross section. The column spacing in the top columnar phase
is twice the spacing of the bottom lamellar phase. Scale bars are 3 µm. (After ref. (Adams
et al. 1998))

such a phase is formed when nematic rods are mixed with a low volume fraction of
spheres. In a columnar phase 0.1 µm spheres coalesce together until they reach a crit-
ical diameter of 0.3 µm. Subsequently these clusters assemble into one-dimensional
columnar structures which are oriented perpendicular to the nematic director. Fur-
thermore these columns form a two dimensional lattice (Figs. 1.28a and 1.29) which
can have varying lattice parameters. Unlike the lamellar phase, which occurs for both
PS/fd and polymer/fd mixtures the columnar phase has so far only been observed in
a PS/fd mixture.

With increasing sphere volume fraction the columnar phase will continuously trans-
form into a lamellar phase as illustrated in Fig. 1.28b. A 3D reconstruction of such
a coexisting sample is shown in Fig. 1.29. In addition to 0.1 µm spheres, columnar
phases have also been observed for sphere sizes ranging from 0.06 to 0.12 µm in diam-
eter. The theoretical understanding of the stability of the columnar phase is currently
lacking. In particular, it is not known what determines the spacing of the spherical
columns in the direction perpendicular to the nematic director. Furthermore, it seems
that 0.3 µm is a “magical” size of the column because mixtures of rods with spheres of
diameters ranging from 0.06 µm to 0.12 µm assemble into the columnar phase where
individual columns always have the final diameter of 0.3 µm. Individual spheres are
observed to diffuse between columns indicating that these are equilibrium and not
kinetically trapped structure. The robustness of the diameter of the self-assembled
columns suggest the examination of 0.3 µm spheres in a nematic background of fd
rods.
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Figure 1.30: Arrangement of 0.3 µm and 0.4 µm polystyrene spheres dispersed in a fd
nematic liquid crystal. (b) At high rod concentration just below the nematic-smectic phase
transition 0.3 µm spheres form an elongated chain. The chain has an open structure in which
spheres can be separated by a distance which is a multiple of the contour length of fd (c) With
decreasing concentration of the rods we observe that the chains can assume configurations
in which they come together at 90 degrees. (d) At a concentration of fd just above the I-N
phase transition the spheres arrange themselves into cubic-like crystals. Scale bar indicates
5 µm

Unlike mixtures of fd and smaller spheres, large 0.3 µm spheres do not move easily
through the nematic background and the sample is easily arrested in a metastable state.
When a low volume fraction of 0.3 µm spheres are mixed with highly concentrated
and well aligned rods which are close to the nematic-smectic phase transition chain-
like structures form (Fig. 1.30b). These chains usually have an open structure where
spacing between individual spheres can be several microns. However, this spacing
is always a multiple of the fd contour length. The open chain structure is highly
metastable and therefore we conclude there is a large energetic barrier preventing
spheres from hopping. Often it is possible to observe open chains even days after
the original sample was prepared although there is a slow tendency for spheres to
eventually form closed chains where adjacent sphere are in contact. This indicates
that closed chain structures have lower free energy then open chains.

With decreasing concentration of the background fd the nematic order decreases.
When 0.3 µm spheres are suspended in such weakly aligned nematics they arrange
themselves into bcc crystalline-like structures (Fig. 1.30d). At intermediate concen-
trations of background fd we sometimes observe chains that have 90 degree turns
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(Fig. 1.30c). Curiously, when we increase the size of the sphere to 0.4 µm we no longer
observe the formation of open chains, but only closed chains. Therefore the depletion
stabilization is maximum for 0.3 µm spheres.

The formation of open and closed one-dimensional chains can be qualitatively un-
derstood if we look at a schematic illustration of a suspension of spheres in a nematic
background (Fig. 1.30a). The diameter of the sphere (300 nm) is much larger then the
diameter of the fd rod (7 nm), therefore a sphere acts as a wall which locally induces
the formation of the smectic phase. The second sphere can easily be placed right next
to the existing sphere or one rod length away along the nematic director because of the
locally induced smectic correlations. This reasoning was used to theoretically explain
the formation of the open-chain structures (van der Schoot 2000; van der Schoot 2002).
For the sphere to hop between these two positions there has to be a fluctuation where
all the rods move away. This is energetically very unfavorable and it is rarely observed
in experiments. We suspect that as the sphere size increases beyond 0.3 µm it signif-
icantly distorts the local director. In this case the elastic free energy of the nematic
leads to long range interactions which drive rearrangement of the spheres (Poulin et al.
1997). While the formation of chains is partially understood, the formation of bcc-like
structures remains a mystery. One can only speculate that the chain-like structures are
intimately connected to the formation of the lamellar phase while bbc-like structures
are related to the formation of the columnar phase observed in a mixture of fd and
spheres with smaller diameter. It would be of great interest to explore the behavior of
the fd/sphere mixture as a function of the contour length of fd. We are curious to learn
if the columnar phase observed for fd with other contour lengths. We encourage sim-
ulation and theoretical examination of the microphase separated structures described
in Fig. 1.29 and 1.30. The simulations will be challenging as the dynamics are slow
and large number of particles are necessary. However, simulating a unit cell of the
lamellar or columnar phase should be readily feasible.

1.7 Self-assembled colloidal membranes and

twisted ribbons

In the previous two sections we described the formation of lamellar and columnar
phases, which occur when a low volume fraction of spherical particles are added to a
background nematic phase of fd virus. The behavior of the rod/polymer mixture at
different conditions, where a low volume fraction of rods is added to a high background
concentration of isotropic polymers proves to be equally rich in surprising phenomena.
The full phase diagram of a fd/Dextran mixture is shown in the inset of Fig. 1.31.
In Sec. 1.5 we focused on the part of this phase diagram where bulk I-N phase sep-
aration is observed. Here we extend that work to take into account the positionally
ordered smectic phase. At very high concentrations the fd/polymer mixture becomes
essentially immiscible and phase separates into a polymer-rich isotropic phase and
essentially pure suspension of highly concentrated rods. According to the rules of
thermodynamics the osmotic pressure in these two coexisting phases will be equal.
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Figure 1.31: The coexistence concentrations of a highly concentrated immiscible fd/Dextran
(M. W. 150,000) mixture. The Dextran concentration and corresponding osmotic pressure
are indicated on the vertical axis while the fd concentration is plotted horizontally. Since
the mixture is immiscible for these high concentrations the osmotic pressure of the isotropic
Dextran solution is equal to the rod osmotic pressure. The complete phase diagram of a Dex-
tran/fd mixture is shown in the inset of the figure. Tie lines along which the mixture phases
separates into coexisting phases are indicated with dashed lines. The fd/Dextran mixture is
dissolved in 190 mM NaCl, 10 mM tris at pH=8.15. To obtain coexistence concentrations
the sample was centrifuged at 4000g for 15 minutes.(After ref. (Dogic 2003))

From previously published data, the relationship between Dextran concentration and
osmotic pressure is known and thus the osmotic pressure of a suspension of rods can be
deduced(Nordmeier 1993). In the fd/Dextran mixture the polymer osmotic pressure
is analogous to temperature in molecular systems. With decreasing osmotic pressure
(polymer concentration) the coexisting rods melt into the nematic phase while with in-
creasing polymer pressure the rods freeze into the smectic phase. In the phase diagram
shown in Fig. 1.31 there is possibility a triple point where isotropic, nematic and smec-
tic phases coexist. However, this point has not been determined due to appearance of
novel structures that will be described in the following sections.

In region 3 of the phase diagram we observe condensation of rods into quasi two-
dimensional colloidal membranes. These membranes consist of a single layer of es-
sentially parallel rods (Dogic and Fraden 2001; Dogic 2003). An image of a mature
membrane that has been equilibrating for a few weeks is shown in Fig. 1.32. In
Fig. 1.32a the rods point into the image plane and consequently the membrane is opti-
cally isotropic and shows no birefringence when observed with polarization microscopy.
The interface between rods and background isotropic polymer solution shows signifi-
cant fluctuations that are associated with the membrane line tension. In Fig. 1.32b,
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Figure 1.32: Formation of colloidal membranes in mixtures of fd and Dextran (M.W.
500,000) in 20 mM tris and 100 mM NaCl buffer a) DIC image of a colloidal membrane viewed
edge-on in which the rods lie perpendicular to the image plane. b) Image of a membrane in
which fd rods lie in the image plane taken with polarization microscopy. c) A sequence of
images taken 1/30th of a second apart illustrating the lateral growth and coalescence of a
membrane. The membranes coalesce only when they approach edge on with the rods in each
membrane oriented parallel to each other. Scale bars indicate 5 µm. (After ref. (Dogic 2003;
Dogic and Fraden 2001))

the rods lie in the image plane and the thickness of the membrane is approximately
equal to the contour length of a fd virus. In this view, the membrane exhibits visible
fluctuations that are associated with its bending rigidity. In principle, both the bend-
ing rigidity and the line tension could be measured by analyzing the fluctuations of a
sequence of images similar to those shown in Fig. 1.32. Because of their similarity to
membranes formed by amphiphilic molecules such as lipids or block copolymers, we
name these two dimensional structures colloidal membranes.

Besides forming planar membranes, fd/polymer mixture can also assemble into
twisted ribbons (Fig. 1.33). In general we observe that ribbons form at lower polymer
concentration, while with increasing polymer concentration the flat membranes become
more prevalent. The schematic illustration of the arrangement of rods in a twisted
ribbon is shown in Fig. 1.33b. Images taken with a polarization microscope indicated
alternating bright and dark regions along an individual ribbon. The bright birefringent
regions correspond to an area where the rods lie in the plane of the image and dark
regions indicate where the rods lie perpendicular to the image plane. It is possible for
the ribbons to form branches as shown in Fig. 1.33. The difference in energy between
twisted ribbons and flat membranes must be very low as it is often possible to observe
both planar membranes and twisted ribbons within the same sample.

A sequence of images showing a transformation of a twisted ribbon into a flat
membrane is shown in Fig. 1.34. In this particular case we have applied a flow field,
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Figure 1.33: a) A DIC image of a suspension of self-assembled ribbons in a mixture of fd
and Dextran (M.W. 500,000) in 20 mM tris and 100 mM NaCl buffer. Scale bar indicates 5
µm. b) A schematic illustration of the configuration of the rods within a single ribbon

which can simultaneously untwist the ribbon and stretch it to many times its initial
length. After the flow is stopped some of the ribbons remain under tension because
they are fixed at both of their ends. Subsequently, over a period of minutes these
ribbons under tension will break and relax towards their equilibrium state. In the
same sample some structures will relax back to a twisted ribbon and remain in that
state for many hours. However, in this particular case, after an initial fast relaxation
to the state shown in Fig. 1.34c the twisted ribbon continued to slowly untwist until
it became a flat two dimensional membrane shown in Fig. 1.34e.

One possible reason for the stability of twisted ribbons is the chiral nature of fd
itself. As discussed previously, a bulk solution of fd at intermediate concentrations
forms a twisted cholesteric structure instead of nematic phase. This indicates that
fd rods prefer to be slightly twisted with respect to each other. A flat membrane
such as the one shown in Fig.1.32 is geometrically incompatible with twist. However,
when rods form an elongated strip it is possible for them to twist with respect to each
other. Therefore we expect two contributions to the total energy which determines
the shape of a twisted ribbon or two-dimensional membrane. The formation of a flat
membrane is favored by line tension since this creates a structure with minimum area
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Figure 1.34: A sequence of images illustrating the collapse of a stretched, untwisted ribbon
into a two-dimensional membrane. The ribbons are stretched by applying a shear flow. In
this process by chance both of the ends of the ribbon are fixed. After a while the tension
induces the fast collapse of a stretched ribbon into a twisted ribbon which subsequently slowly
untwists into a flat membrane. The images are taken roughly a few seconds apart. Scale bar
indicates 5 µm.

to circumference ratio, while the formation of twisted ribbon is favored by the chiral
contribution to the free energy. It should be possible to experimentally measure the
line tension by analyzing the fluctuations of the membrane. Preliminary experiments
indicate that it is also possible to apply torque to birefringent ribbons and either over-
twist or untwist ribbons using optical tweezers. We hope that from these experiments
the chiral contribution to the free energy can be determined. These measurements
should shed more light on the stability of twisted ribbons and colloidal membranes.

It is important to determine wether the colloidal membranes are a kinetically
trapped metastable state, or if they represent a true equilibrium structure in region 3
of the phase diagram shown in Fig. 1.31. Their pronounced tendency to grow, albeit
very slowly, indicates that they are indeed equilibrium structures. In some samples
that are a few months old we observed membranes that are millimeters in size. It
is also possible to observe a process of coalescence of two membranes as shown in a
sequence of images in Fig. 1.32c. In order for the coalescence to take place the rods
in both membranes have to be aligned along the same direction. We note that the
membranes do not stack up on top of each other unless the polymer concentration
is significantly higher. There are additional observations with regards to the kinetics
of the underlying isotropic-smectic phase transition that suggest that membranes are
stable structures for a specific range of fd and polymer concentrations. These are
discussed in more detail in Sec. 1.9.2.

The formation of colloidal membranes seems a poorly explored, yet very generic
phenomena frequently observed in rod-like particles with attractive interactions. It
is observed when fd is mixed with a wide variety of polymers such as Dextran,
PEO (Dogic and Fraden 2001), poly(N-isopropylacrylamide) (NIPA) (Alsayed et al.
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2004), and ferrofluids (Lin 2004). In addition to the fd system, membranes are also
observed in mixtures of TMV with BSA and PEO (Adams et al. 1998) and in pure sus-
pensions of inorganinc rod-like colloids made of β-FeOOH (Maeda and Maeda 2003).
The latter particles have no polymer added to it, but it is very likely that they have
direct attractive forces of van der Waals origin. Since the intermolecular interaction
between these components are well known it would be of great interest to measure the
bending rigidity of the membrane and see how it depends on molecular parameters,
such as rod length, or polymer osmotic pressure.

One possible explanation for the stability of colloidal membranes are the entropic
forces associated with confining the fluctuations of the membrane when a stack of
membranes forms. If these fluctuations are associated with wavelengths much larger
then the thickness of the membrane they can be described within continuum theory.
A stack of fluctuating membranes confined by two walls will show strong effective re-
pulsive interactions first described by Helfrich (Helfrich 1973; Lipowsky 1995). The
competition between the Helfrich repulsion and long range attractive interactions due
to van der Waals can give rise to phase transitions from bound to unbound mem-
branes (Lipowsky 1995). Because of the large thickness of the membrane, the bending
rigidity is very large for colloidal membranes. Consequently, one does not expect
strong repulsive interactions associated with long wavelength fluctuations, which can
lead to stability of the colloidal membranes. However, in addition to long wavelength
fluctuations the surface of the membrane is roughened at length scales comparable
to the thickness of the membrane by the relative displacement of molecules with re-
spect to each other. These fluctuation modes are often called protrusions (Goetz et al.
1999). The origin of a short range repulsion often observed between lipid membranes
has been attributed to these protrusion fluctuations (Israelechvili 1991; Wennerstrom
and Israelachvilli 1992). In lipid membranes these forces have a very short range of a
few angstroms, but in colloidal membranes due to the extreme anisotropy of the con-
stituent rods they could easily reach 100 nm. It seems plausible that these protrusion
fluctuation can lead to thermodynamic stability of colloidal membranes.

1.7.1 Monte Carlo Simulation of Colloidal Membranes

To examine this issue in more detail we have preformed a Monte Carlo simulation
on a simplified system. Instead of simulating the full rod/polymer mixture we have
focused on a one-component system of perfectly parallel rods, which interact with
each other via direct attractive interactions. The attraction potential is designed so
that it mimics the depletion potential between two rods (Fig. 1.23). If spherocylinders
are pointing along the z direction, in the x-y direction the strength of the attractive
potential is proportional to the overlap area between two disks whose diameter is equal
to Dsc+Dsp. The strength of the potential also depends on the relative displacement of
the center of mass of each spherocylinder along the z direction. The depletion potential
is at a maximum value when the relative displacement along the z direction of two
spherocylinders is zero. The overlap along the z direction is equal to L+Dsc−|z1−z2|
if this quantity is larger then zero. Subsequently, this dimension is multiplied with
the overlap area in the x-y direction and the whole value of the excluded volume is
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Figure 1.35: Effective potential between two membranes obtained from Monte Carlo sim-
ulation. The aspect ratio of rods is 25 (L=50,Dsc=2), while the range of interaction is
0.75 Dsc = 1.5. To obtain the strength of the intermolecular attraction the overlap volume is
multiplied by a constant Π, which is this particular case is -0.002. The potential was obtained
for four different temperatures (β = 1/kT ), which are indicated in the upper right corner.
There were 144 rods within each membrane. The order within each membrane is that of a
two-dimensional crystal. However, we expect that a similar intermembrane potential will be
found for liquid-like membranes.

multiplied by an overall constant, which characterizes the strength of the potential.

Initially we place the rods so that they form a single crystalline membrane and
find that at low temperatures the rods never escape the membrane and the membrane
remains stable for the whole duration of the simulation. At high temperature rods
evaporate from the membrane and the membrane eventually disintegrates. For tem-
peratures where the membrane remains stable, we measure the effective intermolecular
potential between two membranes. The probability that the membranes are separated
by the distance h is determined. Once this probability is known it is easy to extract the
effective potential between two membranes Ueff = −kT ln ρ(z). To sufficiently sample
all energetically unfavorable separations we use the technique of multiple histograms
as described by Frenkel and Smith (Frenkel and Smith 1996).

Effective potentials obtained from this simulation are shown in Fig. 1.35. At high
temperatures the effective interaction is completely repulsive between two membranes.
If mapped onto an athermal rod/polmer mixture, high temperature corresponds to
low polymer concentration or equivalently low osmotic pressure. In this region we
expect that isolated colloidal membranes will be the equilibrium structures. As the
temperature is gradually reduced, the effective potential changes from repulsive to
attractive. In a certain temperature range (β=2.50) there is both a local minimum,
which favors bound membranes and a global minimum energy which favors membranes
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that are infinitely far apart. This would indicate that the swelling transition of a
bound membrane pair is a first order phase transition. At low temperatures there is
a deep attractive minimum. We would therefore expect that under these conditions
individual colloidal membranes would not be stable, but would stack up on top of each
other making smectic filaments. This structure is indeed observed in experiments in
region 4 of the phase diagram shown in Fig. 1.31. These experiments are discussed in
more detail in section 1.9. Our simulations also suggest that a smectic phase composed
of highly anisotropic attractive rods will swell with increasing temperature before they
melt into the nematic phase. This is in fact observed in a novel thermotropic mixture
of fd and NIPA polymer (Alsayed et al. 2004). The behavior of this particular system
is discussed in more detail in section 1.9.4.

It is perhaps not entirely surprising that for highly anisotropic rods the long range
order along the rod axis will melt at a different temperature when compared to the
order within each layer (colloidal membrane). In our simple example of perfectly
aligned rods it is always possible to decrease the strength of attraction between layers
(membranes) by increasing the length of the spherocylinder by two and decreasing the
strength of depletion interaction by two. While this decreases the strength of interac-
tion between the layers, the interaction of rods within each layers remains unchanged.
Therefore we believe that the stability of the colloidal membranes is the result of the
high aspect ratio of our system. This argument is true as long as the average pro-
trusion fluctuations are smaller then the range of attractive potential. To establish
a closer connection with experiments, our simulations will have to be repeated on a
more realistic system where the rods are flexible and charged and are allowed both
translational and rotational degrees of freedom.

1.7.2 Crystalline membranes

Two-dimensional membranes described in the previous section were formed in a mix-
ture of fd and polymers with relatively high molecular weight. Their fluidity and ease
by which they are deformed by an external field, such as shear flow, strongly sug-
gests that the rods within each membrane have a liquid-like structure. By decreasing
the polymer size it is possible to obtain two-dimensional membranes with hexagonal
shape (Fig. 1.36). The shape of these membranes indicates that fd rods within each
membrane assume a crystal-like configuration, but this would have to be confirmed
with x-ray experiments. Changing polymer concentration modifies the appearance of
the crystalline membranes dramatically. At high polymer concentration the polymer
membrane boundary is relatively sharp. The induction time for crystal nucleation as
evidenced by the turbidity of the sample is relatively short. Consequently many nuclei
are formed relatively quickly. Each membrane has a specific nucleation site protruding
into the third dimension. It seems plausible that multimeric fd always present at low
volume fraction forms the initial nucleation site.

At lower polymer concentration the induction time can take up to an hour and
the polymer membrane boundary is more fluid like. Since there are relatively few
nuclei, crystals grow to a size of 30-40 µm over a period of few days. Unlike crystals
at higher polymer concentrations, when viewed from the side they exhibit fluctuations
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Figure 1.36: Two dimensional crystalline membranes observed in a mixture of fd and the low
molecular weight polymer PEO (Mw 8000). (a-d) These images are taken at a relatively low
polymer concentration. Under these conditions it is possible to observe crystalline membranes
that have screwlike dislocations. Images (b) and (c) are sidewise images of the same membrane
focused at different z positions. (e) Images of nuclei and (f,g) membranes taken at high
polymer concentration. On average the size of the membranes at these conditions is much
smaller that for those shown in images (a) to (d). The scale bar indicates 5 µm. (After
ref. (Dogic and Fraden 2001))

visible with an optical microscope. A large number of these membranes have screw-
like dislocations which can easily be identified when viewing a membrane sideways
(Fig. 1.36b and c).

The concentration of rods within the membrane is so high (≈ 250 mg/ml) that
the polymer is probably completely excluded. There is complete phase separation
into immiscible phases and the osmotic pressure of the isotropic polymer solution is
identical to the pressure of the rods within the membrane. The polymers with a
small radius of gyration such as PEG, Mw 8000, (Rg=4 nm) are able to induce a
much higher osmotic pressure in the membrane when compared to larger polymers
for which liquid membranes are observed (Dextran Mw 150,000 Rg=11nm). It follows
that with increasing osmotic pressure, the rods within the membrane undergo a two
dimensional liquid to crystal phase transition analogous to crystallization observed in
two-dimensional disks (Bates and Frenkel 2000). We have not yet obtained conditions
for which it is possible to continuously change experimental parameters so that the
liquid-like membranes transform into crystalline ones. However, this remains intriguing
because of the possible existence of the hexatic phase at intermediate concentrations
between the liquid and crystal phases (Halperin and Nelson 1978).
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1.8 Surface induced smectic ordering in
rod/polymer mixtures

So far we have been only concerned with the behavior of rod-like particles in bulk
phases. However, we also observe unexpected phenomena at the interfaces between
two phases which will be summarized in this section. From studies of materials at the
molecular scale it is well known that surfaces play an important role in the kinetics of
bulk phase transition. Most materials, such as ice exhibit surface pre-melting in which
a thin layer of melted liquid forms at the gas-solid interface. This occurs at tempera-
tures below the bulk liquid-solid phase transition (Dash et al. 1995; Lied et al. 1994).
In contrast, the phenomena of surface freezing, where a thin layer of ordered phase
spontaneously appears at the liquid-gas interface above the temperature of bulk liquid
to crystal phase transition is observed in very few materials, most notably alkanes,
thermotropic liquid crystals and surfactant polymers (Wu et al. 1993; Ocko et al.
1986; Lang 1999). It has been noted that the nucleation of the bulk phase transition is
closely related to the behavior of the sample at the interface. The observation that it
is difficult to prepare superheated crystals is explained by the presence of the surface
pre-melted layer which acts as a heterogeneous nucleation site (van der Veen 1999;
Cahn 1986). For materials which exhibit surface freezing the opposite effect is true.
Thus it is difficult to supercool the liquid phase below the equilibrium crystallization
transition (Sloutskin et al. 2001; Sear 2002).

While most surface freezing transitions have been studied in molecular systems,
we recently observed a similar phenomena in a colloidal fd/Dextran mixture. If the
mixture described in Fig. 1.31 is prepared below the bulk isotropic-smectic coexistence
(region 2 of phase diagram shown in Fig. 1.31) surface induced formation of the smectic
phase is observed. An image of an isotropic-nematic surface completely covered with
the surface smectic phase is shown in Fig. 1.37e. Below the image plane is a dense
nematic suspension while above the image plane is an isotropic Dextran solution. The
layered smectic-like structure is observed only within a thin layer confined to the
isotropic-nematic interface. From optical images it is difficult to measure the exact
thickness of this layer, but we can estimate that it is at most a few hundred nanometers
thick. If a bulk phase separated sample which exhibits surface freezing is mixed by
vigorous shaking, small nematic tactoids will form. The interface of these tactoids will
be covered with surface induced smectic phase as is illustrated in Fig. 1.39b. As the
tactoids coalesce the smectic phase always remains confined to the narrow layer next
to the interface. This provides strong support that smectic structures in Fig. 1.37e are
entirely induced by the isotropic-nematic surface.

In molecular systems which exhibit surface freezing it is usually found that with
increasing temperature the thickness of the surface frozen layer continuously decreases.
Surprisingly, we find that with decreasing osmotic pressure of the mixture the surface
induced smectic phase swells to the point where isolated layers are observed. There-
fore the surface induced smectic phase behaves very differently from the bulk phase.
While the bulk smectic phase of pure rods melts into a nematic phase the surface
induced smectic phase continuously swells. It is found that isolated layers exhibit
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Figure 1.37: DIC optical micrographs of the surface induced smectic phase. The image lies
in the plane of the isotropic-nematic interface with the denser nematic phase being below the
image plane and the lighter polymer-rich isotropic phase above the image plane. (a) With
decreasing polymer concentration the surface induced smectic phase swells until individual
layers are observed. In (b) a low volume fraction of rods are labelled with the fluorescent
dye Alexa 488 and appear as black lines. Overlaying the fluorescent image with a DIC image
indicates that the surface induced phase has smectic C configuration. Scale bars is 5 µm.

large fluctuations and the rods within a layer are always aligned along the director
of the background nematic field. Therefore it is possible to think of the background
nematic as a confining field. The tight coupling between the surface smectic layers
and the fluctuating nematic background can lead to enhanced fluctuations similar to
those encountered when the semi-flexible polymer is suspended in the fluctuating ne-
matic background (Dogic et al. 2004b). Quantitative analysis of the fluctuations of
the surface induced smectic phase has not yet been preformed.

On a surface partially covered with smectic layers, the layers can be either bundled
together (Fig. 1.37c) or spaced far apart from each other (Fig. 1.37d). These con-
figurations indicate the presence of both attractive interactions, which cause bundle
formation and repulsive interactions, which cause layer swelling. Because of their size,
the smectic layers diffuse very slowly on the surface and it is very difficult to determine
the equilibrium configuration. Often even weeks after the samples are prepared the
structures continue to evolve. At present it is not yet clear what are the main physical
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forces responsible for the effective potential between swollen surface smectic layers.
Recently we have been able to manipulate individual layers on the surface and are
hoping to experimentally measure the forces between individual smectic layers.

The reason for the formation of the surface induced smectic phase can perhaps
be construed from theoretical studies of the isotropic-nematic interface in a hard-
rod suspension. After some controversy, it is now well established that the density
profile across the isotropic-nematic interface for Onsager rods is monotonically in-
creasing (Chen and Noolandi 1992; Shundyak and van Roij 2001). However, if more
complex mixtures of thin and thick rods are prepared in the neighborhood of its triple
point it is found that the interface profile can be highly non-monotonic (Shundyak and
van Roij 2002). The presence of the surface induced smectic phase would be a natural
consequence of a non-monotonic density across the isotropic-nematic interface. Since
the only parameter that determines the phase behavior of hard rods is their concen-
tration and if their density is higher at the interface with the polymer-rich isotropic
phase it would follow that the smectic phase would first form at the interface. At
present little is known theoretically or experimentally about quantitative aspects of
the density profiles across interfaces in the rod-polymer mixtures.

Besides fd/Dextran mixtures a surface induced smectic phase was also observed
in mixtures of fd and PEO. Experimentally we find that the range of stability of the
surface induced smectic phase is very sensitive to the size of the polymer. For a mixture
of fd and Dextran (Mw 150,000) it is possible to observe the surface induced smectic at
rod concentrations 3.5 % below the bulk isotropic-smectic phase transition, while this
number decreases to 1.5 % for a mixture of fd and larger Dextran (Mw 500,000). For
mixtures of fd and Dextran (Mw 2,000,000) we have not observed any surface induced
freezing.

Much remains to be understood about the surface induced smectic structures. For
example, the fluorescence images (Fig. 1.37b) and polarization microscopy indicate
that the rods within each layer actually have a smectic-C like configuration. This
again is in stark contrast to the bulk phase behavior.

1.9 Kinetics of liquid crystalline phase transitions

While the subject of how a crystal nucleus grows out of a dense liquid composed of
spherical particles has been studied in great detail (Debenedetti 1996) less is known
about how a smectic or nematic phase will nucleate from isotropic rods. What is the
shape of the critical nucleus of nematic rods forming from a metastable isotropic so-
lution? What determines the height of the nucleation barrier of the nematic droplet?
These questions remain mostly unanswered and the kinetics of phase transitions in
rod-like particles remains essentially unexplored. When the possibility of both posi-
tional and orientational order is taken into account the complexity of kinetic pathways
increases even further. Here we summarize our recent experimental work on the ki-
netics of the phase transitions in liquid crystals. We first briefly review the behavior
of pure rods and then focus in more detail on the behavior of rod/polymer mixtures.

It is important to mention that because of the slow time-scales and large length-
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Figure 1.38: A optical micrograph of an anisotropic nematic tactoid suspended in the
background isotropic liquid. The scale bar indicates 5 µ.

scales involved, colloids are in many ways an ideal system to study fundamental ques-
tions with regard to kinetics of phase transitions. The time and length scales involved
make the system amiable to determining the real space structure using optical mi-
croscopy. For example, in a recent study using optical microscopy, it was possible
to directly visualize critical nuclei of a colloidal crystal growing from a metastable
liquid (Gasser et al. 2001). Experiments such as these make it possible to test the
fundamental concepts of classical nucleation theory.

1.9.1 Kinetics of the isotropic-nematic and nematic-smectic
phase transition in hard rod suspensions

While the phases formed by colloidal liquid crystals are structurally identical to those
found in low molecular weight, single component, thermotropic liquid crystals it seems
that the kinetics of phase transitions in rod-like colloids can be very different from their
thermotropic counterparts.

If a sample is prepared in the isotropic-cholesteric coexistence region it will spon-
taneously form nematic droplets in the isotropic background (Fig. 1.38). The shape
of the droplet is determined by three factors : (1) surface tension, which acts to min-
imize the surface area of the droplet, (2) boundary conditions for the orientation of
the rods at the I-N interface, and (3) elastic energy, which is minimized when the rods
are parallel. For the virus, the boundary conditions are that the rods align parallel to
the I-N interface. Minimizing the surface tension creates a spherical droplet, but the
high curvature leads to a large elastic energy. The equilibrium shape is an elongated
droplet, which lowers the elastic energy at the cost of raising the surface energy. The
shape of these droplets was analyzed in a recent theoretical work (Prinsen and van der
Schoot 2003). Understanding the shape of nematic tactoids is the first step towards
understanding the nucleation of the nematic phase out of a metastable isotropic so-
lution. It remains an open question as to what is the actually shape of the critical
tactoids and what is the height of the barrier for the nucleation of the nematic phase
of hard rods from the isotropic phase.

Solutions of TMV, which closely approximate a suspension of hard rods with infi-
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Figure 1.39: Multiple steps by which the colloidal membranes are created from a metastable
isotropic suspension in a fd/Dextran mixture. (a) In a first step within minutes of preparing
the homogeneous mixture, a metastable nematic tactoid forms from the isotropic suspension.
(b) As a second step the isotropic-nematic interface is almost immediately covered with the
surface induced smectic phase. (c) Finally, in a third step after a period of days, colloidal
ribbons such as those discussed in section 1.7 are formed. This sample is prepared in region
2 of the phase diagram shown in Fig. 1.31. Scale bars indicate 3 µm.

nite rigidity, exhibit a nematic-smectic transition which is either second order or a very
weakly first order phase transition (Wang et al. 1994). In contrast to these experimen-
tal findings, the latest computer simulations of the nematic-smectic phase transition
in hard rods indicates a first order phase transition with about a 2% discontinuity
between coexisting nematic and smectic concentrations (Polson 1997). On the other
hand, the cholesteric-smectic phase transition in semi-flexible fd virus is found to be
strongly first order and no pre-transitional fluctuations have been observed (Dogic and
Fraden 1997). It was speculated that the finite flexibility of fd virus changes the order
of the nematic phase transition, which was confirmed using theoretically (Tkachenko
1996).

1.9.2 Kinetics of the Isotropic-Smectic phase transition

By adding enough dextran to a solution of fd it is possible to widen the isotropic-
nematic coexistence to the point where direct isotropic-smectic coexistence is obtained.
Taking advantage of the size of fd viruses it is possible to directly visualize the forma-
tion of smectic layers using optical microscopy as they nucleate from the metastable
isotropic phase. It is not at all obvious how the kinetics of this phase transition
proceeds.

We have studied the kinetics of the isotropic-smectic phase transition in a immis-
cible fd/Dextran mixture whose phase diagram is shown in Fig. 1.31. At low poly-
mer concentrations, below 49 mg/ml in region 1, coexistence between an immiscible
polymer-rich isotropic phase and a rod-rich nematic phase is observed. The shape
of the nematic droplets formed in the background isotropic phase is very similar to
anisotropic tactoids formed at isotropic-nematic coexistence in pure virus suspensions.
In region 2 the smectic phase wets the isotropic-nematic interface as discussed in sec-
tion 1.8.
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Figure 1.40: (a) At higher concentrations of polymer in region 3 of the phase diagram
shown in Fig. 1.31 we observe the nucleation of colloidal membranes directly out of metastable
isotropic solution. (b) With further increasing polymer concentration in region 4 bulk smectic
filaments are formed. Scale bar indicates 3 µm.

In region 3 of the phase diagram there is evidence that isolated colloidal membranes
discussed in section 1.7 form an equilibrium structure. Depending on the precise loca-
tion within region 3 we have observed two different kinetic pathways by which these
membranes form from a metastable isotropic suspension. At lower polymer concen-
tration the structures observed during the multiple step kinetics for the formation of
the membranes are shown in Fig. 1.39. In a first, fast step we observe a very quick
formation of a metastable nematic tactoid (Fig. 1.39). Instantaneously, the isotropic-
nematic interface of the tactoids is covered with the surface induced smectic phase. In
the second, slow step that takes a few days, the surface induced smectic phase acts as
a nucleation site for the formation of the twisted ribbons. These ribbons grow from
the interface and can reach many hundreds of microns in length. The fact that the
fd/Dextran mixture is essentially immiscible indicates that the ribbons grow due to
the diffusion of rods from the metastable nematic phase through the surface induced
smectic phase into the more stable ribbons-like structures.

If the polymer concentration is increased within region 3 of Fig. 1.31 membranes
directly nucleate from the isotropic solution as illustrated in Fig. 1.40a. The mem-
branes remain stable in this region as they laterally coalesce (Fig. 1.32) and can reach
sizes of many tens of microns in diameter. These structures were discussed at length
in section 1.7. Finally, at higher polymer concentration in region 4 the membranes
stack up on top of each other and form elongated filaments, which internally have a
smectic-like structure (Fig. 1.40b) (Frenkel and Schilling 2002). This transition from
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isolated membranes to smectic filaments is predicted by the simulation of parallel sphe-
rocylinders with direct attractive interaction described in more detail in section 1.7.
It is important to mention that the the boundaries between different structures are
not very well defined and it is often possible to observed multiple structures within
the same sample.

As discussed in section 1.8, the bulk isotropic-smectic phase transition is super-
seded by the surface induced formation of the smectic phase at the isotropic-nematic
interface. For a long time it was thought that the state of order at the interface reg-
ulates the kinetics of the bulk phase transition. The kinetics pathway illustrated in
Fig. 1.39 provides direct visual evidence for the importance of the surface smectic layer
to the overall kinetic pathway of the formation of the smectic phase.

Another factor that can significantly affect the kinetics of the phase transition is
the presence of a metastable phase boundary (Sirota and Herhold 1999; ten Wolde
and Frenkel 1997; Olmsted et al. 1998). For example, colloids with short range
attractions have an equilibrium phase diagram as shown in Fig. 1.20b where a gas-
liquid phase transition is metastable with respect to the gas-crystal phase transition.
Recent simulations suggest a remarkable enhancement of the nucleation rate of a
crystal when the sample is prepared in the vicinity of the critical point associated with
the metastable gas-liquid phase transition (ten Wolde and Frenkel 1997). The reason
is because the crystals nucleus is formed in two steps for these particular conditions.
In a first step, a dense liquid droplet associated with the metastable gas-liquid phase
separation is formed and in a subsequent step a crystal nucleates within this dense
droplet. This significantly reduces the nucleation barrier when compared to nucleation
of a crystal directly from a dilute gas phase. In a similar way the presence of the
metastable nematic phase is important for the nucleation of the smectic phase or
colloidal membranes. Figure 1.39 shows that for slightly supersaturated rod/polymer
mixtures a metastable nematic tactoid nucleates in a first, fast step. Subsequently,
isolated colloidal membranes are formed after two additional intermediate stages - the
surface smectic (Fig. 1.39b) and the twisted ribbon (Fig. 1.39c).

1.9.3 Filamentous structures associated with nematic-smectic
phase transitions

In certain regions of the rod/sphere phase diagram the whole sample forms a single
lamellar phase (Fig. 1.28). However, upon changing the concentration of either com-
ponent of the rod/sphere mixture it is also possible to obtain co-existence between the
lamellar phase and either a nematic, or a smectic phase with a wavelength different
from the lamellar phase. In contrast to nematic tactoids in the isotropic background,
the droplets associated with lamellar-nematic or smectic-nematic coexistence assume
a shape of elongated filaments with a cylindrical cross section. Often these filaments
can be many millimeters long (Fig. 1.41a). They are observed in both rod/sphere
and rod/polymer mixtures when the total rod concentration is close to the nematic-
smectic phase transition. In contrast, when polymers are added to a nematic phase of
fd rods at low concentrations close to I-N phase transition they will phase separate into
isotropic, polymer rich tactoids in the background nematic phase. These inverted tac-
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Figure 1.41: Coexistence between the lamellar phase and the background nematic phase
observed in a mixture of fd and Dextran (M.W. 500,000). The virus/polymer mixture is
prepared in a tris buffer pH=8.0 at 100 mM ionic strength. The sequence of images illustrate
the transformation of layered lamellar filaments into isotropic, polymer rich tactoids that
occurs when polymer is added to the mixture. Scale bar indicates 5 µm.

toids (Fig. 1.39e) have the same shape as nematic tactoids in an isotropic background
(Fig. 1.38).

It is of interest to examine how the cylindrical smectic filaments transform into
polymer rich tactoids with increasing dilution. If a sample containing smectic fila-
ments, such as ones shown in Fig. 1.41a, is diluted with buffer solution the layers
within a filament will swell as illustrated in Fig. 1.41b. Upon continued dilution the
layers swell further and filaments decrease in length so it is possible to observe their
ends (Fig. 1.41c). Finally, at the lowest concentration, individual polymer rich tactoids
are observed in the nematic background. These tactoids are often deformed by a few
isolated monolayers. While filaments observed in Fig. 1.41 are obtained by adding a
low volume fraction of polymer or spheres to a very dense nematic phase that is close
to the nematic-smectic phase transition it is also possible to obtain very similar fila-
mentous structures by adding a high concentration of polymer to dilute isotropic rods.
In this case, one obtains smectic filaments which coexist with an isotropic background
suspension. The formation of such filaments was theoretically studied by Frenkel and
Schilling (Frenkel and Schilling 2002).

The observation of nematic-lamellar phase co-existence might seem contradictory
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a
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Figure 1.42: Coexistence between the lamellar phase and the background nematic phase
observed in a mixture of polystyrene spheres (Dsp = 0.1µm) and fd virus at 5 mM ionic
strength (10 mM tris, pH=8.15). Unlike layered filaments formed in fd/Dextran mixtures
the spacing of these filaments is always 1.1 µm. They can be many millimeters long, but
occasionally it is possible to observe a tapered end of a filament as illustrated in image (b).
Scale bar is 5 µm.

to the generic-phase diagram of the rod/polymer mixture shown in Fig. 1.31. In this
phase diagram there are no indications of the lamellar phase or tie-lines between the
nematic and lamellar phase. In order to obtain bulk coexistence necessary to measure
the phase diagram we had to centrifuge the samples in region 3 and 4. Due to the
density difference between the lamellar layers and dextran solution is seems plausible
that the centrifugation procedure induces the lamellar to smectic phase transition. It
seems likely that as the volume fraction of rods within region 3 is increased we actually
go from isolated membranes to swollen lamellar phase to smectic phase. However, this
is merely a speculation at this point. We do feel that the phase diagram presented in
Fig. 1.31 is not final and that the location of the lamellar phase in the rod/polymer
mixture should be carefully examined in future work.

While Fig. 1.41 illustrates the behavior observed in fd/poylmer mixtures, identical
filaments are also observed in mixtures of fd and polystyrene spheres with Dsp =
0.1µm. There are however, two important differences between these two cases. First,
in the polymer/fd mixture it is possible to prepare samples with different layer spacing
and with decreasing osmotic pressure these layers continuously swell (Fig. 1.44). In
contrast, fd/PS mixture exhibit only lamellar phases with constant 1.1 µm spacing.
This might be because there is a direct phase transition from isotropic phase to lamellar
phase in the rod/PS mixture. Therefore, the swelling transition might be preempted
by the melting of rods into the isotropic phase. Second, in the fd/PS mixture it is also
possible to obtain coexistence between a smectic phase with 0.9 µm and a lamellar
phase with 1.1 µm periodicity. This indicates a first order phase transition between
a smectic and lamellar phase. So far we have not observed a similar discontinuous
transition between two layered structure with different periodicity in the fd/polymer
mixture. In fact, the work summarized in the next section indicates that swelling of
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Figure 1.43: Melting of the lamellar phase observed in a fd/NIPA mixtures (50 mg/ml
fd and 7.5 mg/ml NIPA). At low temperatures the mixture forms a uniform lamellar phase
with periodicity of 1.3 /mum. Images a to f indicate the process by which the microphase
separated lamellar phase melts into bulk isotropic-nematic coexistence. Scale bar indicates 5
µm. (After ref. (Alsayed et al. 2004))

the lamellar phase in fd/polymer is continuous.

1.9.4 Multiple pathways observed in melting of the lamellar
phase

Up to now we have only discussed the behavior of entropic suspensions of rods, or rod-
polymer mixtures. Athermal, excluded volume interactions govern the phase behavior
of such systems and the only parameter that determines the phase diagram are the
concentrations of the constituent components. In athermal systems it is possible to
melt the structure using shear flow and subsequently study the process of nucleation
and growth of ordered structures, such as the smectic phase or colloidal crystals (Dogic
2003; Gasser et al. 2001). However, to study the reverse process of melting would
require changing the colloidal concentration in situ, which is a challenging experimental
task.

To overcome this difficulty and have an easily tunable experimental parameter
with which it is possible to control the phase behavior of colloidal systems we have
recently designed a novel thermotropic-lyotropic fd/polymer mixture (Alsayed et al.
2004). Instead of athermal polymers such as Dextran or PEO, we used the thermo-
sensitive polymer poly(N-isopropylacrylamide) (NIPA). The solubility of NIPA in wa-
ter is highly temperature dependent and below its Θ temperature of 31 ◦C it assumes a
swollen coil, while above this temperature it is water insoluble and assumes a collapsed
globule from (Wu and Wang 1998). A small increase in temperature results in increas-
ing monomer-monomer attraction, which in turn decreases the osmotic pressure of the
polymer solution. When this polymer solution is in coexistence with an immiscible
suspension of hard rods, aqueous solvent flows from the low osmotic pressure polymer-
rich phase into the higher osmotic pressure rod-rich phase. This subsequently dilutes
the rods and leads to a temperature induced phase transition in a suspension of hard
rods.
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Figure 1.44: Plot of the lamellar periodicity as a function of temperature obtained from
a light scattering experiment. Upon heating it is possible to swell the sample to 1.40 µm
while upon cooling we only observe formation of lamellar phase of 1.31 µm, indicating the
presence of large hysteresis. The images illustrating the appearance of the lamellar phase
at each temperature in the heating cycle are shown in Fig. 1.43. (After ref. (Alsayed et al.
2004))

At low temperatures the fd/NIPA mixture forms a microscopically phase separated
lamellar phase similar to those discussed in section 1.6.1. With increasing tempera-
ture dislocations act as a nucleation site for the formation of the nematic tactoids
(Fig. 1.43b). Interestingly, the nematic tactoids in the smectic background have a
shape very similar to those encountered at isotropic-nematic coexistence. As dis-
cussed in section 1.6.1 the nematic phase is highly immiscible with spherical particles
and therefore the formation of the nematic tactoids is accompanied with the expul-
sion of the polymer into lamellar layers which results in the swelling of the layers
(Fig. 1.43c). With further increase in temperature most of the sample melts into
the nematic phase, which coexists with highly swollen lamellar filaments (Fig. 1.43d).
These lamellar filaments transform into isotropic droplets (Fig. 1.43e-g) in a similar
way to filaments observed in fd/Dextran mixtures and described in section 1.9.3.

The process of lamellar melting can also be followed with light scattering to ob-
tain the lamellar layer spacing averaged over a large sample volume (Fig. 1.44). The
scattering pattern shows a single sharp ring, and with increasing temperature it simul-
taneously moves to lower angles and broadens significantly. This indicates that the
lamellar phase continuously swells. Above a temperature of 15 ◦C only large forward
scattering is observed. Interestingly, when cooling the sample down from high temper-
atures lamellar spacing is only observed at temperatures below 13 ◦C. This indicates
that the lamellar melting is a strongly first order phase transition with large hysteresis
and a large nucleation barrier.

It is worth looking back on the simulation results for the effective intermolecu-
lar potential between colloidal membranes obtained from the computer simulation of
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Figure 1.45: Isolated colloidal membranes observed when low volume fraction or fd rods
are dissolved in the background NIPA polymer (7.5 mg/ml fd and 37 mg/ml NIPA). Below
25 ◦C there is a coexistence between isolated membranes and multiple layers stacked up on
top of each other. At 26 ◦C multiple layers melt into nematic tactoids while single layer
membranes remain stable up to 30◦C. At this temperatures small three dimensional tactoids
nucleate within two-dimensional membrane. It can be concluded Scale bar indicates 5 µm.
(After ref. (Alsayed et al. 2004))

perfectly aligned spherocylinders with a depletion attraction potential. These sim-
ulations indicate that the position of the minimum between two layers continuously
increases with increasing temperature until the layers become unbound 1.35. This is
in qualitative agreement with experiments shown in Fig. 1.44.

The behavior of the fd/NIPA mixture in a different region of the phase diagram,
where a low volume fraction of fd is dissolved in the background polymer, exhibits
a coexistence between multilayer lamellar droplets and isolated colloidal membranes,
such as ones shown in Fig. 1.45a. With increasing temperature the multilayer droplets
melt around 26 ◦C. However, single isolated layers remain stable up to temperatures of
30 ◦C. Once a nematic tactoid nucleates within the membrane the rest of the membrane
is quickly transformed into the nematic phase. This observation suggests that there
is a topological nucleation barrier for melting of the two-dimensional membrane into
a three dimensional nematic tactoid. In order for the tactoid to form there has to be
a collective protrusion of the rods into third dimension. By examining the behavior
of isolated membranes in Fig. 1.45 and stacks of membranes in Fig. 1.44 is possible to
conclude that there are not only nucleation barriers to freezing into the lamellar phase,
but also for melting of the lamellar phase. This is in stark contrast to three-dimensional
crystals, which are very difficult to superheat above their melting temperature (Dash
1999).

The structures observed during the process of lamellar melting are in many ways
very similar to structures observed in athermal fd/polymer mixtures described in the
previous two sections. The advantage of the fd/NIPA mixtures is that it is possible
to continuously cycle between these structures by simply changing the temperature.
However, there are a few differences worth mentioning between this study and the
previous studies on the isotropic-smectic coexistence. The NIPA polymers used in
these experiments have large radius of gyration (Rg = 70nm) compared to Dextran
(M. W. 150,000, Rg = 20nm) used for studies of isotropic-smectic phase transition. For
this large polymer we do not observe the phenomena of surface freezing. In addition,
fd mixtures with large polymers have a pronounced tendency to form a lamellar phase,
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while smaller polymers such as Dextran 150,000 phase separate directly into isotropic-
smectic coexistence (Fig. 1.39).

1.10 Conclusions and open questions

In this chapter we have summarized the phase behavior of colloidal rods and mixtures
of rod-like and sphere-like colloids whose interactions are dominated by short ranged
repulsive interactions. We have first reviewed the Onsager theory of the isotropic-
nematic phase transition which treats the excluded volume interactions at a second
virial level. The Onsager theory can be generalized to include positionally ordered
smectic phases. The predictions of these very simple theories and confirmed by com-
puter simulations are that rods form isotropic, nematic and smectic phases with in-
creasing concentration. This agrees well with the experimentally measured phase
diagram of monodisperse virus particles. The measurements of the order parame-
ter represent the most stringent test of the Onsager theory extended to semi-flexible
charged rods. For this particular experiment, the agreement with theory is quantita-
tive at high ionic strength. These experiment firmly establish fd rods as ideal hard
rod systems.

While the phase behavior of hard rods is well understood, extending the theory to
account for long range repulsive interactions due to surface charge results in significant
quantitative differences with experiment. These effects become significant at either low
ionic strength or high rod concentration. Another extension of the Onsager theory has
been to include attractive interactions. Introducing such interactions results in a rapid
breakdown of second virial approximation. So far there are no satisfactory theoretical
solutions to these problem.

A major part of this review is devoted to description of numerous novel structures
observed in rod/sphere mixtures. While the behavior of the bulk suspension of pure
rods is at least qualitatively understood, the observation of lamellar phases, colloidal
membranes, surface-induced smectic phases and twisted ribbons are mostly lacking
theoretical description. We believe that these structure are generic to the phase be-
havior of rod/sphere mixtures and will be observed in other model rod-like systems as
they are developed in the future.

In many ways the phase behavior of rod/sphere mixtures encompasses the be-
havior of both thermotropic liquid crystals and amphiphilic molecules. The classic
model systems of soft condensed matter physics, such as thermotropic liquid crystals or
ampiphilic molecules are reasonably well understood. On the one hand, thermotropic
liquid crystals with increasing temperature melt from layered smectic phases into ne-
matics and finally into the orientationally disordered isotropic phase. There are only
scattered reports of a smectic phase that can be successfully swollen by the addition
of isotropic solvent (Rieker 1995). On the other hand, the amphiphilic systems such
as lipid membranes, form a layered smectic phase at high concentration. With dilu-
tion these systems will swell to a large degree until they form isolated vesicles. The
latter systems will almost never melt into nematic phase. With increasing dilution of
rod/sphere mixtures we observe both swelling of the smectic layers to the point where
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isolated membranes are observed and their subsequent melting into a nematic phase.
The competition between these two processes results in a myriad of novel colloidal
structures, which are outlined in the present review. The relative stability of these
structures will have to be carefully examined in future work.
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