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Dilute suspensions of micron-diameter dielectric spheres confined to two dimensions are induced to ag-
gregate linearly by application of an electric field. The growth of the average cluster size agrees well
with the Smoluchowski equation, but the evolution of the measured cluster size distribution exhibits
significant departures from theory at large times due to the formation of long linear clusters which
effectively partition space into isolated one-dimensional strips.

PACS numbers: 64.60.Cn, 68.70.+w, 77.30.+d, 82.70.Dd

The study of irreversible aggregation of diffusing par-
ticles has been greatly elucidated by computer simula-
tions, because graphic representation of the associating
particles revealed the novel structures known as fractals.
Experimentally, direct observation of diffusing aggregat-
ing particles has been restricted to particles confined to
two dimensions.!™ Focusing a microscope on a colloidal
suspension confined to a plane allows visualization of all
the particles and permits measurement of statistical
properties such as the evolution of the cluster size distri-
bution. Additionally, the effect of the spatial distribu-
tion of clusters on the aggregation process can be as-
sessed, and the observed motion of approaching particles
and their subsequent bonding reveals further details of
the aggregation process.

We present experimental studies of irreversible aggre-
gation of micron-diameter polystyrene spheres suspended
in an aqueous medium and confined to a thin layer, to
which a high-frequency uniform electric field is applied
in the plane of the sample. At high frequencies the
spheres act as dielectric holes in the water. A single
sphere distorts the field in such a way that it is
equivalent to a dipole pointing along the external field.
Once the spheres approach each other mutual polariza-
tion further distorts the field creating higher-order, al-
though weaker, multipoles.*> The nonadditive nature of
the field-induced multipoles and the alignment of the
moments along the field direction distinguish this case
from the previously studied system of spheres with per-
manent dipole moments. >

It is observed that a dilute suspension of dielectric
spheres in a strong electric field will undergo linear ag-
gregation forming clusters of spheres resembling pearl
chains with the chain axis along the field.®"'® We
present for this system the first measurements of the
cluster size distribution of sufficient quality to quantita-
tively compare with the scaling predictions of irreversible
aggregation. !!'-14

Chain growth is a function of the amplitude of the
field. When a large-amplitude field is applied, the
spheres assemble into long chains. At high fields, associ-
ation of the spheres is irreversible in the sense that clus-
ters are never seen to break as long as the field is on.

The chains are flexible: Within one chain fluctuations in
the sphere-sphere separation and in the angle between
sphere centers and the external applied field are ob-
served. When the field is turned off the chains break up,
and the particles diffuse apart. The charge on the col-
loids creates a short-range repulsive potential that pre-
vents van der Waals forces from permanently bonding
the particles. High-resolution microscopy reveals that
the sphere surfaces are separated by (5-10)% of a diam-
eter at our highest applied field.

With low-amplitude fields the association of particles
is reversible. Chains form and break apart into smaller
chains, and after a transient period a dynamic equilibri-
um among clusters is reached with a time-independent
cluster size distribution. At low field amplitude, the life-
time, mean size of the chains, and fluctuations within a
chain are strong functions of the applied field strength.
This process of reversible association will be discussed in
a future publication.

A single uncharged dielectric sphere immersed in a
solvent distorts a uniformly applied electric field in such
a way that the field outside the sphere can be described
as the superposition of the undistorted field and the field
due to a point dipole located at the center of the sphere
with moment

n=c,a’

i:f‘r_}E, (1)

with €,,€, the complex dielectric constants of the solvent
and the particle, where e=¢€'+i¢", a the radius of the
sphere, and E the electric field.*%'> Two spheres
separated at large distances interact primarily through a
dipole-dipole potential with the interaction energy given
by

U= pu>  1—3cos’6
8ehal (1+¢&)3

where 6 is the angle between the line connecting the
centers and the external field and the separation between
sphere centers is r =2a(1+¢&). When ¢, > ¢€,, the ratio
of the field energy to the thermal energy for two dipoles
in contact is U/kT =¢,,aE?/32kgT. Since polystyrene
is charged in water, it is surrounded by a shell of coun-

’ (2)
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terions. However, if the field alternates faster then the
double layer can follow there will be no induced dipole
moment in the double layer and only dielectric polariza-
tion of the polystyrene occurs. This cutoff frequency is
approximately equal to the inverse of the time for the
ions to diffuse the radius of the sphere, which for 1-um
spheres occurs between 1 and 10 kHz.'¢

The sample cell is composed of two glass microscope
slides. Transparent, indium-tin-oxide electrodes were on
one slide, etched by photolithography from precoated
glass slides, thereby leaving conductive strips on the
glass. A 477-um gap between electrodes was employed
in this study. The other slide consisted of a small rec-
tangular piece of glass glued with optical cement to a mi-
croscope slide and was positioned above the electrode
gap. Polystyrene spheres of 1.27 um diam were suspend-
ed in a 50-50 mixture of D,O and H,O to match the
density of the polystyrene. Potassium chloride was add-
ed to the suspension to increase the dielectric constant of
the thin aqueous layer relative to the glass slides and
thus to confine the electric field. The final salt concen-
tration was 2 mM and a nonionic surfactant was added
to promote stability of the suspension against salt-
induced aggregation. Observations of the association of
these particles were made directly with a microscope
equipped with a video camera and a digital-image pro-
cessor. A typical example of associating particles seen in
the microscope is illustrated in Fig. 1.

FIG. 1. Photographs of associating 1.27-um balls. (a) No
field, (b)-(d) 9.9, 66.7, and 210 sec, respectively, after turning
on a 1000-V/cm (U/kT=19), 30-kHz electric field. The
edges of the electrode, spaced 330 um apart, are seen as re-
gions where there are no chains.
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The most frequently used theoretical description of ir-
reversible aggregation is Smoluchowski’s equation which
describes the time evolution of the cluster size distribu-
tion. The rate of change of the population of clusters
comprised of kK monomers, 7 (2), is

k=1 2 Kymnj— X Kijngn; . (3)

ivj=k =1
In the above equation, K;; is the coagulation kernel and
represents the probability per unit time for coalescence
of an i cluster and a j cluster. Within this theory, the
mechanism by which nx changes with time is two clus-
ters coagulating into a single larger cluster. The as-
sumption that there are only binary collisions limits the
applicability of the Smoluchowski equation to low cluster
densities. Also, since there are no spatial variables in
this equation, the Smoluchowski equation is necessarily
of the mean-field form.

Computer simulations have shown that the cluster size
distribution, n;(z), approaches a scaling form, ny(z)
=Mk ~2¢(k/n(¢)), and the Smoluchowski equation was
also shown to support the same scaling form'!"'* when
the kernel is a homogeneous function of degree 2, i.e.,
K (s, js) =s*K(i,j). The constant M is the total number
of spheres, M =23, kn, (¢), and 7(¢) is the average length
of the chains, n(¢)=M/N, where N=2;n;(¢t). The
simulations as well as analytical results have shown that
n(t) ~1t* for large times, where z=1/(1 —1). This rela-
tion holds for dilute systems undergoing linear aggrega-
tion even in two dimensions which appears to be the
upper critical dimension.'”"!?

To study irreversible aggregation we performed nine
aggregation trials and the distributions were averaged to-
gether. The volume fraction for these runs was ¢ =0.9%
+0.04%, with U/kT=30.9 0.2 at a frequency of 150
kHz. Typically 1000 spheres were in the field of view.
At high fields the rate of aggregation was only slightly
dependent on field strength in contrast to the low-field
behavior.! We can compare the measured rate of
growth with the Smoluchowski equation. An argument
was offered recently for the form of the kernel used to
describe linear aggregation.!” The coagulation kernel
K;j is a product of an effective diameter of the cross sec-
tion of two clusters, R;+ R;, and a diffusion coefficient,
D;+Dj, where D; and R; are the diffusion constant and
the radius of a cluster of size i, respectively. Since the
chains aggregate by joining end to end, the cross section
does not vary with chain length. The diffusion constant’s
dependence on chain length is assumed to be a power law
or D; ~i* Thus the coagulation kernel is given by

Kij~i}”+j}‘. 4)

Measurement of the average chain length for the nine
trials is shown in Fig. 2 from which we determined
z=0.601+0.02 and A=—0.67. We assume that the
friction coefficient of a chain of i spheres, 7;, scales like
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FIG. 2. Average chain length as a function of time for the
Smoluchowski theory ( ) and experiment (@). The volume
fraction was ¢=0.9% and interaction strength U/kT =30.9.
The exponent describing the growth of the average chain
length (z=0.60) was determined during the time interval
100-1000 sec. One arbitrary constant was used to scale the
units of time between the Smoluchowski equation and experi-
ment.

ni~i ~*. In the absence of hydrodynamic coupling be-

tween spheres A = — 1. Actually a given sphere moves in
the slip stream of its neighbors and 7; is significantly less
than in;. Thus we expect that A > —1 for chains of
moderate length. We have kindly been given a computer
program by Johnston'® that numerically integrates the
Smoluchowski equation using a predictor-corrector tech-
nique.?® Integration was terminated when 1% of the
mass was present in clusters larger than 120. Using the
kernel from Eq. (4) with A= —0.67 and the experimen-
tally measured initial distribution of cluster sizes, Eq.
(3) was numerically solved to yield the cluster size distri-
bution as a function of time, from which we extract the
average length, also shown in Fig. 2.

The experimental cluster size distributions are shown
in Fig. 3 at different stages of aggregation. As time
progresses the distribution broadens, but there are al-
ways some of the small-sized clusters present. Viewed
under a microscope the motion of a cluster appears dif-
fusive until two clusters are about a particle diameter
away from each other. Then the ensuing motion is
ballistic and, for example, a monomer adding onto a long
chain snaps into position at the end of a chain. The
larger chains diffuse more slowly than the smaller
chains, but with time clusters continue to coalesce into
longer and longer chains. At later stages of aggregation
there are often small clusters, such as monomers or di-
mers, diffusing between two long chains. These small
clusters must migrate to the end of a chain before they
can aggregate, which can take a long time. Thus long

1000

100

0.1

FIG. 3. The evolution of the cluster size distribution mea-
sured at different times after application of the field: (1) 1.6,
(2) 10, (3) 100, (4) 330, and (5) 1000 sec. Measured distribu-
tions: Distributions calculated from the Smoluchowski
theory using the kernel extracted from the growth of the aver-
age chain length: --- -

chains effectively cut the plane into strips and we observe
the beginnings of crossover from two- to one-dimensional
behavior.!” This is the first experimental observation of
this effect. Occasionally it was observed that spheres
stuck temporarily to the glass. This would prevent the
monomer peak from disappearing, and could hamper the
decay of those small clusters that contained one an-
chored particle. However, watching videotapes of the
experiments showed that at least half of the small clus-
ters during the late stages of aggregation were freely
diffusing. In Fig. 3 the experimental distributions as a
function of time are compared with the theoretical clus-
ter size distribution generated by the numerical solution
of the Smoluchowski equation using the experimentally
observed initial cluster size distribution. The predicted
decrease of the number of small clusters at large times is
strikingly different from the experiment. Figure 1(d) is
a typical example of the spatial distribution of chains at
the beginning of crossover. A long chain prevents chains
on opposite sides from diffusing perpendicular to the
chain axis and coalescing but eventually the chains on
the sides can diffuse around the end of the long chain
since all chains are of finite length. Thus strictly one-
dimensional aggregation is never observed in the time
course of the experiment. Indeed, a recent theoretical
study'® predicts that for the kernel of Eq. (4) the cross-
over time is infinity.

The scaling form of n,(¢) discussed above suggests
that a plot of k2n, (¢)/M vs k/n(¢) for all distributions at
all times should fall on a single curve, as shown in Fig.
4(a). The entire aggregation run is plotted in this figure,
from 0.03 to 1000 sec after the field was turned on.
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FIG. 4. Scaling form of the cluster size distributions shown
in Fig. 3. Over forty cluster size distributions spanning times
from 0.1 to 1000 sec are plotted here. At early times, when
n(t) <2.5 (1 <35 sec), the cluster size distribution does not
scale. O, 0 <t <35 sec; X, 35<1<120 sec; and O, 120<¢
<1200 sec. (a) Experiments. (b) Smoluchowski equation.

Scaling does not begin until after the average length is
greater than about 2.5 diam. The early-time points are
denoted by squares in Fig. 4(a). Note that the squares
begin above the main body of points and come diagonal-
ly down to meet the curve as k/n(¢) decreases. The
squares for k/n(t) <1 represent the monomers of early
distributions. A similar plot, generated from a numeri-
cal solution of Eq. (3), is shown in Fig. 4(b). It shows
the same behavior as the experimental data: Only at
later times does the distribution function scale.

In summary, we have measured the kinetics of irrever-
sible association of diffusing colloids interacting with an
induced dipole potential and compared the evolution of
the cluster size distribution with the Smoluchowski
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theory. The experimental distributions are similar to the
Smoluchowski distributions except that there are always
more small clusters observed experimentally than the-
oretically predicted. We suggest that this is a conse-
quence of the two-dimensional nature of the sample, in
which the long clusters effectively partition the space be-
tween them, isolating smaller clusters.
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