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ABSTRACT

Liquid Crystal Phase Transitions of Monodisperse and Bidisperse

Suspensions of Rodlike Colloidal Virus

A dissertation presented to the Faculty of the

Graduate School of Arts and Sciences of Brandeis

University, Waltham, Massachusetts

by Kirstin Rachael Purdy

We experimentally study the role of steric and electrostatic interparticle in-

teractions in monodisperse and bidisperse suspensions of rodlike colloids. For our

model system we used aqueous suspensions of the charged semiflexible filamentous

bacteriophages fd and M13. In solution, these particles undergo entropically driven

liquid crystal phase transitions from isotropic to cholesteric ( or chiral-nematic) to

smectic phases with increasing concentration. For the monodisperse suspensions,

we present as a function of ionic strength, measurements of the role of flexibility

and surface charge on the transitions between these phases. We also present the

evolution of the helical pitch of the cholesteric phase with concentration as a func-

tion of solution ionic strength and particle surface charge in order to understand

the coupling between ionic strength and surface charge in the expression of chirality

in the nematic phase. Unwinding and aligning the chiral-nematic phase in a mag-

netic field allowed us to measure the nematic ordering of fd as a function of rod

concentration and solution ionic strength. The nematic orientational distribution

function was measured using x-ray diffraction and birefringence techniques. Results
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were compared with available theoretical predictions for charged flexible rods. Mea-

surements of the phase behavior consistently show unexpected behavior at low ionic

strengths, where electrostatic repulsion is poorly screened, and good agreement with

theoretical predictions at high ionic strength, where electrostatic interactions are well

screened. For the bidisperse suspensions we measured the phase behavior mixtures

of fd and fd coated with poly(ethylene-glycol): two particles of identical length and

different diameter. When the diameters differ significantly these mixtures exhibit

isotropic-cholesteric, cholesteric-cholesteric and isotropic-cholesteric-cholesteric coex-

istence. Measured phase diagrams were compared to predictions for binary rod phase

behavior.
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Chapter 1

Introduction

1.1 Overview

In this thesis we experimentally study the role of steric and electrostatic interparticle

interactions in phase transitions of monodisperse and bidisperse suspensions of rodlike

colloids. Knowing the interactions between particles allows us to predict the phase

behavior of these particles. The most simple interaction between two particles is a

hard-core interaction, where the particles only feel each other when they are in contact

with one another. In a hard particle fluid the energy E of the system is proportional

to NkBT , and thus the free energy, F = E − TS, is proportional to the entropy S

by F = T (NkB − S). The equilibrium phase behavior of the hard particle system

is athermal, or independent of the temperature T , because it depends only on the

maximization of the entropy, as both S and NkB are independent of temperature.

Historically, the first step towards understanding the ordering of hard particles

was taken in 1949 when Onsager wrote his seminal paper on the phase behavior of

hard rods [1]. He showed that hard-core repulsion between highly anisotropic particles

is sufficient to produce a stable nematic phase. A nematic phase is defined as a

system of rodlike particles which have a long range orientational order and short range

1



positional order (Fig. 1.1). Charged particles will similarly produce a nematic phase

as the interparticle interactions are strictly repulsive [1]. Later, it was shown through

theory and computer simulations that hard rods could also exist in a stable smectic

phase [2, 3]. A smectic phase is defined as having quasi-long range one dimensional

periodic order in the direction of the alignment of the particles and short-ranged liquid

like order in the other two dimensions. Parallel to the development of hard-rod phase

behavior was the equally important development of theory and simulations which

showed that hard spheres can also undergo a disorder-order transition from a liquid

to a crystal [4, 5]. It is now well accepted that repulsive interactions are sufficient

to form nematic and smectic phases in anisotropic systems and a crystal phase in

spherical systems.

Furthermore, the hard-rod theory developed by Onsager can be extended for

studies of multi-component hard-particle suspensions. The most simple version of

a multi-component system is a binary system. For a binary mixture of hard rods,

hard-core repulsion has been shown to produce an isotropic to nematic transition

in both theory and simulation [6, 7, 8, 9], as in the monodisperse case, but also,

if the particles are dissimilar enough, isotropic-isotropic or nematic-nematic phase

separation where the two different particles partition themselves into the coexisting

phases different compositions [10]. As in the monodisperse case, the phase transitions

are driven entirely by the hard-core repulsion between like and unlike rods. In this

thesis we limit our experiments to measurements of monodisperse and bidisperse

mixtures of purely repulsive rods using a colloidal rod system. Onsager’s hard-rod

theory, however is not limited to only monodisperse and bidisperse rod systems, as

it has also been used in the prediction of the phase behavior of tridisperse [11] and

polydisperse suspensions [12].

Spherical and anisotropic colloids are the only known experimental systems

to exhibit the phase behavior predicted for hard-particle systems and thus they have

2



Isotropic Nematic Smectic

Figure 1.1: Isotropic, nematic and smectic phases schematically drawn for hard sphe-
rocylinders. With increasing concentration a suspension of hard spherocylinders will
undergo a phase transition from higher to lower symmetry to maximize the entropy
of the system.

become very useful in experimentally studying hard-particle thermodynamics [13, 14].

Using colloids to study the liquid to crystal transition of hard spheres is very econom-

ical and simple as techniques have been developed for chemically synthesizing highly

monodisperse polymeric spheres which have interactions which approximate a hard-

sphere potential. However, creating monodisperse suspensions of anisotropic particles

is much more difficult chemically and is a topic of continuing investigation. Fortu-

nately, the rod-like viruses including fd, M13, Pf1 and TMV are created biologically

to be highly monodisperse and thus are ideal particles for studying anisotropic hard-

particle phase behavior. In this thesis we specifically use suspensions of the viruses

fd and M13 which have been shown to exhibit liquid crystal behavior which agrees

with model hard-rod predictions at low concentrations. These particles are unique in

that the very nature of their structure lends itself to relatively simple chemical and

genetic modification allowing for the creation of a wide variety modified viral particles

which also behave as model hard-rods. Modifying the particle structure can change

its physical properties (length, diameter, flexibility) as well as its interaction potential

(electrostatic, steric hard-core). In this thesis we use these modified colloidal rods to

experimentally measure how changes in repulsive interactions and/or particle shape

change the liquid crystal phase transitions of monodisperse and bidisperse suspensions

from that predicted for hard-rods.
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In the following sections we describe the basic theoretical and experimen-

tal foundations of this thesis. In section 1.2 we introduce Onsager’s theory for the

isotropic-nematic phase transition of hard-rods and present extensions of this theory

with include the effects of charge and flexibility. We also introduce a scaled particle

theory for rods which are not well described by Onsager’s theory. Throughout this

thesis we will use these theories for comparison with experiments. In section 1.3 we

introduce in more detail our experimental system of filamentous bacteriophages, fd

and M13. We show that these viruses are a highly versatile model system which forms

liquid crystal phases often well described by Onsager’s theory, and which can easily

be manipulated by genetic or chemical means to vary significant variables which effect

phase behavior. Section 1.4 is dedicated to an outline of this thesis.

1.2 Theoretical background

1.2.1 Onsager’s theory for an entropy driven phase transition

in a system of hard rods

To describe the phase behavior of hard spherocylinders Onsager developed a theory

based on the second virial expansion of the free energy [1]. The free energy of hard

rods in a solvent expanded to the second virial coefficient is:

∆F

NkBT
=

µ0

kBT
− 1 + log c + σ − c

1

2

∫ ∫

βf(Ω)f(Ω′)dΩ′dΩ (1.1)

where µ0 is the chemical potential of the solvent, kB is the Boltzmann constant, T is

the temperature, and c is the rod concentration N/V . The single rod orientational

distribution function f(Ω), is normalized by integrating over the solid angle Ω,

∫

f(Ω)dΩ = 1 (1.2)
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The orientational entropy term σ is equal to:

∫

f(Ω) log(4πf(Ω)dΩ (1.3)

The second integral contains the excluded volume interactions, with β = 1
V

∫ ∫

Φ12dr1dr2

equal to the integral over of the Mayer-Mayer function, Φ12, which is equal to -1 if

two particles intersect and zero otherwise. The Mayer-Mayer function is related to

the hard-particle interaction potential w by

e−w/kBT = 1 +
∑

i<j

Φij +
∑

ΦijΦi′j′ + ... (1.4)

Note that by limiting the free energy expansion to the second virial coefficient we

include only two-body interactions and curtail this expression to the first two terms;

this severely limits the accuracy of this approximation at high particle concentrations

where three or more particle interactions are common. For long thin rods of length

L and diameter D, β simplifies to

β = −2L2D| sin γ| (1.5)

where γ(Ω,Ω′) is the angle between adjacent rods. In the isotropic phase, << sin(γ) >>=

π/4 and b is the second virial coefficient in the isotropic phase Bi
2 = b = L2Dπ/4.

If we define

ρ =
4

π

∫ ∫

| sin(γ)|f(Ω)f(Ω′)dΩ′dΩ (1.6)

then the free energy can be written simply as

∆F

NkBT
= constant + log(c) + σ(f) + bcρ (1.7)
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To find the isotropic-nematic phase boundaries, the free energy is first mini-

mized with respect the orientational distribution function as a function of concentra-

tion. The equilibrium concentrations for the coexisting isotropic and nematic phases

can then be found by setting the osmotic pressure (Π) and chemical potential (µ) of

the isotropic phase (f(θ) = 1/4π) equal to the osmotic pressure and chemical poten-

tial of the nematic phase, respectively. The osmotic pressure and chemical potential

are defined as

Π = φ2∂F (φ)

∂φ

µ = F (φ) + φ
∂F (φ)

∂φ
(1.8)

where φ is the volume fraction of spherocylinders. The equations for equal osmotic

pressure and chemical potential are

(ci + c2
i ) = (cn + c2

nρn)

log(ci) + 2ci = log(cn) + 2cnρn + σn (1.9)

To solve for the equilibrium coexistence concentrations for hard and charged

rigid rods, Onsager used a trial orientational distribution function of

f(θ) =
α

4π sinh α
cosh α cos θ (1.10)

where θ is the angle between the nematic director and a test rod and α is the mini-

mization parameter. Because the rods are cylindrically symmetric, the orientational

distribution function is independent of azimuthal rotations. Using the Onsager trial

function, ρ simplifies to

ρ(α) =
2I2(2α)

sinh2(α)
(1.11)

6



where I2 is a modified Bessel function, and σ(α) simplifies to

σ(α) = log(α coth(α)) − 1 + (sinh α)−1 tan(sinh α)−1 (1.12)

The isotropic and nematic coexistence concentrations can be determined using Eq.

1.8. The resulting values are [1]

bci = 3.340 and bcn = 4.486. (1.13)

Numerical calculations have also been done to solve for the exact form of the ori-

entational distribution function [7, 15]. Using the exact form of the orientational

distribution, function the coexistence concentrations obtained were:

bci = 3.289 and bcn = 4.191 (1.14)

as determined by Herzfeld, Lekkerkerker and Chen [15, 7].

The nematic order parameter can also be calculated once the orientational

distribution function is known:

S = 2π

∫ π

0

(

3

2
cos(θ) − 1

2

)

f(θ) sin(θ)dθ (1.15)

Similarly, the nematic order parameter as calculated using Onsager’s trial orienta-

tional distribution function is S = 0.847, whereas the coexisting nematic order pa-

rameter calculated numerically from the exact orientational distribution function is

S =0.7922 [15, 7]. We observe that the coexistence concentrations and order parame-

ter determined numerically differ from those predicted using Onsager’s trial function.
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1.2.2 Effect of charge in a hard rod system

If the hard rods described previously are now charged, an additional electrostatic

interaction energy can be incorporated into Onsager’s theory. The electrostatic in-

teraction between two rods is approximately [1, 16]:

wel(x)

kT
=

Ae−κ(x−D)

sin(γ)
(1.16)

where x is the closest distance of approach between two charged rods, γ is the angle

between adjacent rods, A is the proportionality constant obtained from solving the

Poisson-Boltzmann equation, and κ−1 is the Debye screening length. This additional

interaction changes the second virial coefficient:

β(γ) = −2L2 sin(γ)(D +

∫ ∞

0

(e−
wel(x)

kT − 1)dx) (1.17)

This integral equation adds a term to the diameter of the hard-rod creating an effective

diameter:

Deff = D(1 +
1

κD
(ln A′ + CE − log(sin(γ))) (1.18)

where CE = 0.577215665 is Euler’s constant, and A′ = Ae−κD as described in [16].

In the isotropic phase Deff simplifies to

Deff = D(1 + (log A′ + CE + log 2 − 1/2)/κD). (1.19)

The phase behavior of charged rods in the Onsager limit can thus be described by

Onsager’s theory for hard rods with an effective diameter larger than their bare

diameter. The Deff for the isotropic phase of fd virus rods is shown in Fig. 1.2 for

three experimentally obtainable surface charges. The value for A′ is determined by
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Figure 1.2: Effective diameter as a function of ionic strength and surface charge. With
increasing ionic strength Deff approaches the bare diameter of fd (M13) D = 6.6 nm.
The effective diameter is plotted for surface charges of (a) 10 e−/nm, (b) 7 e−/nm
and (c)4 e−/nm. These surface charge densities are equal to the surface charge of fd
at pH 8.2, fd at pH 5.2 and M13 at pH 8.2, and M13 at pH 5.2, respectively. At these
surface charge densities Deff is insensitive to variation in charge.

numerically solving the Poisson-Boltzmann equation using the routine developed by

Philip and Wooding [17]. Due to the nonlinearity of the Poisson-Boltzmann equation,

changing the surface charge has only a minimal effect on the effective diameter. Fig.

1.2 shows that increasing ionic strength decreases the effective diameter.

In a nematic phase the electrostatic repulsion will depend on the angle between

two interacting rods. Charged particles will tend to misalign as they have a lower

energy when perpendicular to each other than when they are parallel. This effect

is known as twist, and is characterized by the parameter h = κ−1/Deff, where κ−1

is the Debye screening length. Twist is manifested by an increase in the effective

diameter in the nematic phase. For charged polymers, twist acts to destabilize the

nematic phase. For highly charged polymers (similar to the bacteriophage used in

our experiments) h is small, and has little effect on Deff [14]. The specific effect of

electrostatic interactions on the isotropic and nematic phases of suspensions of M13

and fd bacteriophage is the subject of much investigation in Chapters 2 and 3.
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1.2.3 Flexible hard rods in Onsager’s theory

The persistence length (P) of a polymer describes the length over which two tangent

vectors along that polymer are correlated. It is also equal to one half the Kuhn length

of the polymer [18]. The ratio which describes the flexibility of a polymer is the ratio

of the polymer contour length to its persistence length, or L/P . If L << P , the

polymer is considered rigid, whereas if this ratio is large, L >> P , the polymer is

flexible. The term in the free energy which accounts for the rotational entropy of the

rods and the entropy associated with the loss of configurations due to confinement of

the bending modes of the semi-flexible rods in the nematic phase is Eq.1.21. The effect

of flexibility on the isotropic-nematic phase transition was theoretically investigated

by Khoklov and Semenov [19]. Semiflexibility modifies σ by:

σ(f) =
L

2P

1

4π

∫

(∇f)2

4f
dΩ (1.20)

In the limit of very flexible L/P >> 1 and very rigid L/P << 1 rods the equilibrium

properties of the I-N phase transition have been calculated explicitly using Eq. 1.20

[19]. For Onsager’s distribution function, σ has been derived in the semiflexible limit

L ∼ P by extrapolating between the hard rod and the flexible chain limits [20, 21, 22].

The expression for σ obtained by Hentschke is given by

σ(α,
L

P
) = ln(α) − 1 + πe−α +

L

6P
(α − 1) +

5

12
ln

(

cosh

(

L

P

α − 1

5

))

(1.21)

To determine the effects of flexibility in the limit where P ∼ L Chen numer-

ically minimized the free energy using σ as defined in Eq. 1.20, and subsequently

calculated the properties of the isotropic-nematic phase transition. Flexibility acts

to increase the packing entropy needed to enter the nematic phase, which is shown
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by an increase in the concentration of rods needed to cross the phase boundary from

the isotropic to the nematic phase. Increased flexibility also lowers the nematic or-

der parameter and narrows the isotropic-nematic coexistence region. In Fig. 1.3 we

show the evolution of the predicted coexistence concentrations and nematic order

parameter with increasing flexibility as determined by Chen [23].

1.2.4 A scaled particle theory for hard rods

In this thesis we experimentally measure the phase transitions of colloidal rodlike

particles. Previous measurements have shown that the experimental phase behav-

ior of bacteriophage suspensions is qualitatively described by Onsager’s theory for

charged-semi-flexible rods, however, for more quantitative comparison to theoreti-

cal predictions it is often necessary to go beyond Onsager’s second virial expansion.

Specifically, because the free energy is truncated at the second term in the virial ex-

pansions it is not appropriate for describing the behavior of suspensions where third

and higher virial coefficients, which describe multiple particle interactions, become

significant. By expanding the free energy to include second and third virial coef-

ficients it has been shown that Onsager’s theory is exact for the isotropic-nematic

transition of rods with L/D > 100 [26]. However, when studying phase behavior

above the isotropic-nematic phase transition, or in the limit where the aspect ratio

of the particles is small (L/D < 100) we often turn to a scaled particle theory, which

incorporates all virial coefficients of the free energy in an approximate way.

The scaled particle theory for hard spherocylinders was originally developed by

Cotter [27]. Scaled particle theory has the desired features of equaling Onsager’s the-

ory in the L/D → ∞ limit, and equaling the scaled particle hard sphere theory in the

L → 0 limit. Additionally, the coexistence concentrations for the I-N transition pre-

dicted by the scaled particle theory are in very close agreement with the results from

computer simulations for rods of various aspect ratio [24, 25], even for L/D < 100
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Figure 1.3: Isotropic concentration (ρiso = (4/π)L2D(N/V )), number density differ-
ence between isotropic and nematic phase (W = Cn/Ci − 1) and order parameter (S)
of the nematic phase co-existing with isotropic phase as a function of the flexibility
of the particle L/P as calculated by Chen [23]. The theoretical curves are the exact
numerical results within the second virial approximation.
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Figure 1.4: The isotropic-nematic phase transition for hard spherocylinders as pre-
dicted by Onsager’s theory (dotted line) and scaled particle theory (solid line) [24].
Squares are simulation results of Bolhuis and Frenkel [25]. Open squares are the coex-
isting nematic phase and solid squares are the coexisting isotropic phase. The volume
fraction presented is for spherocylinders φ = (N/V )(πLD2/4 + πD3/6), where N/V
is the number density of particles , but the true aspect ratio of the spherocylinder is
(L + D)/D.

where Onsager’s theory no longer accurately predicts the simulation results. These

results are presented in Fig. 1.4. This comparison has been previously published

[24]. This agreement between scaled particle theory and simulations indicates that

the scaled particles theory provides a good approximation for third and higher virial

coefficients. Here we present the calculation of the isotropic-nematic phase diagram

using scaled particle theory [27, 28]. The expression for the free energy of a pure

hard spherocylinder colloidal suspension is given by:

F (δ, φ, α)

NkbT
= ln(φ) − ln(1 − φ) + σ(α,L/P ) + Π2(δ, α)

φ

1 − φ

+
1

2
Π3(δ, α)

(

φ

1 − φ

)2

(1.22)

where φ is the volume fraction of spherocylinders

φ =
Nrods

V

(π

6
D3 +

π

4
D2L

)

. (1.23)

The coefficients Π2 and Π3 are given by the following expressions
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Π2(δ, α) = 3 +
3(δ − 1)2

(3δ − 1)
ξ(α), (1.24)

Π3(δ, α) =
12δ(2δ − 1)

(3δ − 1)2
+

12δ(δ − 1)2

(3δ − 1)2
ξ(α) (1.25)

and the parameter δ is the overall length to diameter ratio of the spherocylinder

δ = L+D
D

. The function σ(α,L/P ) is an expression that accounts for the rotational

entropy of the rods and the entropy associated with the loss of configurations due to

confinement of the bending modes of the semiflexible rods in the nematic phase has

been derived by extrapolating between the hard rod and the flexible chain limits [20,

21, 22]. In this paper the expression for σ obtained by Hentschke is used for numerical

calculations and is given by

σ(α,
L

P
) = ln(α) − 1 + πe−α +

L

6P
(α − 1) +

5

12
ln

(

cosh

(

L

P

α − 1

5

))

(1.26)

The function ξ(α) that describes the interactions between rods at the level of

the second virial coefficient is given by:

ξ(α) =
2I2(2α)

sinh2(α)
(1.27)

For this calculation we assume the Onsager ansatz for the orientational distri-

bution function given by :

f(α, cos(θ)) =
αcosh(α cos(θ))

4πsinh(α)
. (1.28)

After the expression for the scaled particle free energy (Eq. 1.22) is obtained, we

minimize the scaled particle free energy with respect to the parameter α to find the
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order parameter, S, of the nematic phase at that rod concentrations. Use of the

Onsager approximation for the orientational distribution function is appropriate as

we will show in Chapter 5 that it accurately describes the measured distribution of

rod orientations.

To find the concentrations of rods in the coexisting isotropic and nematic

phases we solve the conditions for the equality of the osmotic pressure and chem-

ical potential as in Eq. 1.8. In Fig. 1.5 we present the phase behavior predicted

by scaled particle theory for hard rods as a function of rod flexibility. The scaled

particle results are shown for L/D = 100 and L/D = 20. For comparison we in-

clude the results computed at the second virial limit [23]. First we observe that the

scaled particle theory for long rods agrees very well with Onsager’s prediction for the

isotropic coexistence concentration. However, the nematic order parameter and the

coexistence width predicted by scaled particle theory both differ significantly from

the second virial prediction. This is partially due to the use of Onsager’s orientational

distribution function in the scaled particle theory. It has been shown previously that

using different distribution functions can have a significant effect on the properties

of the coexisting nematic phase [29]. The increased sensitivity of the nematic order

parameter to the form of the orientational distribution function as compared to the

coexistence concentrations indicates that measuring the nematic order parameter is

a much more sensitive test of the accuracy of Onsager’s theory. This is discussed

in detail in Chapter 5. Second, we observe that there is a significant change in the

predicted coexistence concentrations with decreasing particle length in the scaled

particle theory. The change in phase transition properties with decreasing L/D in-

dicates an increasing influence of higher virial coefficients on the isotropic-nematic

phase transition.

To take into account the fact the experimental rods are charged, instead of

using the hard core diameter D in our calculations we use the effective diameter Deff
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[30]. Strictly speaking this re-scaling procedure by Deff is valid only for densities

at which the system is described by the second virial approximation, therefore our

theoretical prediction has an uncontrolled approximation. Despite this fact the agree-

ment between the theory and the experiments is quite satisfactory, particularly in the

limit of high ionic strength, as we will show in the following chapters. We note that

there has been recent effort to extend the validity of the scaled particle theory to

include electrostatic interactions, but this theory was not included in our calculations

[31, 32].

1.3 The versatility of fd and M13 virus as a col-

loidal particle

Throughout this thesis we study the liquid crystal phase transitions of suspensions

of the charged and semiflexible bacteriophages fd and M13. Both M13 and fd are

charged semiflexible rodlike virus with a contour length L of 0.88 µm, diameter D of

6.6 nm and persistence length P of 2.2 µm[14]. The ratio of the persistence length

to contour length P/L = 2.5 indicates that these rods should behave as semi-flexible

particles. The molecular weight of the phages is 1.64 ×107 g/mol. Above pH 4,

these particles are negatively charged and interact via a combination of electrostatic

repulsion and hard-core interactions.

The viral rods are composed of a single stranded DNA about which 2700 copies

of its major coat protein are helicoidally wrapped. This virus structure is illustrated

in Fig. 1.6. The composition of the major coat protein (p8) on M13 differs from

that of fd by only one amino acid; the negatively charged aspartate (asp12) in fd is

substituted for the neutral asparagine (asn12) in M13 [33]. This has a minimal effect

on the virus structure, as determined by x-ray diffraction, but indeed has a significant

effect on surface charge. The fd virus p8 protein has 5 negatively ionizable amino
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Figure 1.5: Isotropic concentration (bc = (4/π)L2D(N/V )), number density difference
between isotropic and nematic phase (W = Cn/Ci − 1) and order parameter (S) of
the nematic phase co-existing with isotropic phase as a function of the flexibility of
the particle L/P . Solid lines are calculated from Onsager’s theory [23], dashed and
dotted lines are the scaled particle theory results for L/D = 100 and L/D = 20,
respectively.
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acids and one positively ionizable amino acid which are exposed to the virus surface.

These amino acids and the terminal amine, which contributes approximately 1/2 e+ at

neutral pH are responsible for determining the net viral surface charge, approximately

3.5e−/protein subunit at pH 7.2 [34]. M13 p8 proteins are identical accept for the

aforementioned switch in the 12th amino acid, which results in a net charge per p8 of

about 2.5e− at neutral pH. This results in a total charge difference between fd and

M13 of approximately 30%. The net surface charge of both virus particles can then

be increased or decreased by increasing or decreasing the solution pH, respectively.

In Fig. 1.7 we present a schematic diagram of the charge configuration along the

length of the virus. The effect of this surface charge difference in the interparticle

interactions, and thus phase behavior is a topic which is studied in Chapters 2-4.

In solution fd and M13 have been shown to exhibit isotropic, cholesteric and

smectic phases with increasing concentration [30, 35]. An isotropic phase is a dilute

solution of rods in which the rods are randomly oriented. Between crossed polarizers

this phase appears dark. A cholesteric phase is a nematic phase which has a helical

superstructure. In a cholesteric phase the rods orient locally about a nematic director

which twists 360o over a finite length. This length is referred to as the cholesteric

pitch. Experimentally the cholesteric phase is characterized by its birefringence pat-

tern observed between crossed polarizers. As the local alignment of the rods twists,

the length of the cholesteric pitch spans two bright and two dark lines between po-

larizers. These are regions where the rods are parallel, or perpendicular to the plane

of observation, respectively.

The smectic phase is also birefringent, but is most easily characterized by its

strong Bragg scattering of visible light from the periodic layering of the rods. The

smectic layers spacing is about 1% larger than the length of the rods within the layers.

For rods with a length of about 1µm, the scattered light is in the visible range λ ∼ L.

In Fig. 1.8 we present the phase diagram of fd virus suspensions as a function
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Figure 1.6: Schematic of the structure of M13 (fd) virus. Each of the coat proteins
which encase the single stranded viral DNA are labeled. There are a few copies,
approximately five, of each of the minor coat proteins (p3, p6, p7, p9), and 2700
copies of the major coat protein (p8).

3.3 nm

6.6 nm

M13 fd
1.6 nm

6.6 nm

1.6 nm

Figure 1.7: Schematic diagram of the surface charge configuration of M13 and fd
virus. Coat-protein repeat is 5 fold about the viral axis with 3 visible in this 2D
representation. Two more coat proteins in each row are not shown and are on the
opposite face of the cylinder. The circumferential separation between coat proteins at
the same height is πD/5 = 4.2 nm. Black represents acidic amino acids (negative at
high pH), and pink (grey) represents basic (positive at high pH) amino acids. Known
distances are labeled [33].

of ionic strength. The details of the isotropic-cholesteric and cholesteric-nematic

transitions for fd and M13 are discussed in detail in the following chapters. We do

plot the theoretically predicted isotropic coexisting concentrations, as determined

by Chen for semiflexible rods [23] with an electrostatic effective diameter Deff to

show that fd suspensions indeed are well described by Onsager’s theory for charged

semiflexible rods, particularly at high ionic strength where L/Deff is large and the

second virial approximation is valid.

To produce these virus, a strain of E. Coli, JM101, is grown and infected with

either M13 or fd. The protocol for the growth and purification of the virus is described

extensively in the Appendix and in [36]. For one liter of bacterial growth media (LB
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Figure 1.8: Phase transitions for suspensions of fd as a function of ionic strength.
The isotropic-cholesteric transition is indicated by the circles, with the open circles
the coexisting isotropic phase. The cholesteric- smectic transition is indicated by the
squares with the open symbols the highest measurable nematic phase concentration.
The phase behavior was measured at pH 8.15 in 20 mM Tris buffer with NaCl added
to change the ionic strength. The solid line is the second virial theoretical prediction
for coexisting isotropic phase for charged semiflexible rods with L/P = 0.4 [23].

media) we obtain between 10 and 50 mg of purified virus. We can alter the contour

length of the fd particles by changing the length of the DNA packaged within the viral

coat proteins. Experiments indicate that the viral length is proportional to the length

of the encapsulated DNA. Using the phagemid method, well documented in molecular

biology, a plasmid DNA sequence which contains the M13 origin of replication, but

not necessarily all of the DNA needed to encode viral proteins, is grown in a slowly

reproducing E. Coli bacteria, Xl1-Blue. The origin of replication contains a DNA

sequence which begins the replication of viral DNA. An M13 helper phage, M13K07,

which has a damaged packaging gene, but a complete protein encoding sequence, is

then allowed to infect the bacteria. The viral proteins are translated from the helper

phage by the bacteria, but the plasmid DNA sequence is preferentially packaged into

the proteins as the helper phage DNA is damaged at the site where the viral proteins

are bound (packaging gene), but the plasmid DNA is not. The resulting suspension is

predominantly protein coated plasmid DNA, or phagemid, with a small percentage of
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helper phage. The protocol for this procedure is described in detail in the Appendix.

We have grown virus and phagemid with a range of lengths (1.2 µm, 0.88 µm, 0.66

µm, and 0.4 µm).

In addition to modifying the virus particles biologically, they can also be mod-

ified chemically after growth is completed. The diameter of the virus rods can be

altered by coating the surface with irreversibly bound polymers. The terminal amine

of each of the coat proteins are ideal reaction sites for chemical modification of the

virus particles. The type of polymer used to coat the virus depends on the specific

properties required. If the neutral polymer poly(ethylene glycol) (PEG) is used to

coat the surface of the virus and the molecular weight is large enough (5,000 -20,000

g/mol) the polymer coating acts to sterically stabilize the rods, allowing them to

interact in a charge independent matter [37, 38].

Specific genetically modified M13 virus, which are typically used in phage-

display technology, are available commercially with a modified p3 protein. Phage

display libraries are available in which a random library of unique peptides 7-12

amino acids in length are incorporated into the p3 protein. One of the unique peptide

sequences can be selected by binding it to the target of choice (typically an antigen)

and then amplifying the phage. By selecting peptide sequences containing unique

chemistry (for example the sulfur containing cysteine), functionalized polymers (PEG,

DNA, etc) can also be bound to this site allowing for the creation of asymmetric

colloidal particles.

The unmodified colloidal virus rods are an ideal experimental system for study-

ing hard-rod phase behavior as their high degree of monodispersity makes them the

only particles known to accurately follow the predicted phase progression for hard-

rods (isotropic, nematic, smectic)[14, 25]. The isotropic-nematic phase behavior of fd

quantitatively agrees with Onsager’s theory for charged, semi-flexible rods[30]. The

ability to synthesize a wide range of colloidal particle sizes and shapes allows for
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thorough exploration of the entropy driven phase behavior of a wide range of particle

shapes and interparticle interaction potentials (sterically stabilized or electrostati-

cally repulsive). By modifying the length, diameter and surface charge of these rods

we have the ability to study the fundamental theories of liquid crystal ordering and

demixing in monodisperse and bidisperse mixtures.

1.4 An outline of this thesis

The goal of this thesis is to enhance the understanding of the relationship between

interparticle interactions and the properties of bulk colloidal liquid crystal phases

through experimental measurement of the liquid crystal phase transitions of suspen-

sions of the rodlike M13 and fd viruses. Before this thesis the basic phase behavior

of suspensions of fd virus was known. The fd suspensions were known to exhibit

isotropic-cholesteric and cholesteric-smectic phase behavior which qualitatively agreed

with theoretical predictions for charged-flexible rods. In this thesis we expand the

study of the phase behavior of virus suspensions to further measure the equilibrium

phase behavior of monodisperse and bidisperse suspensions of colloidal rodlike par-

ticles. Due to the complex interactions between the colloidal particles we find that

certain aspects of the liquid crystal phase behavior are very sensitive to subtle changes

in interaction parameters (surface charge, particle length, etc.), while others remain

insensitive.

Chapters 2 and 3 describe how surface charge and flexibility influence the

isotropic-cholesteric (Chapter 2) and cholesteric-smectic (Chapter 3) phase transi-

tions. By varying the contour length of the bacteriophages while maintaining local

structure the competition between flexibility and rigidity within the semiflexible limit

is measured and theoretical predictions are tested. Furthermore by varying the surface

charge of the virus particles (either M13 or fd) the efficacy of current approximations
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of electrostatic interactions for use in comparison of our charged-rod results with

hard-rod theories is tested. Both M13 and fd form a cholesteric phase in suspension,

however the free energy difference between the cholesteric phase and the nematic

phase is small [39], thus Onsager’s theory will describe the isotropic-cholesteric (I-

Ch) transition as well as the isotropic-nematic (I-N) transition. Although we study

the I-Ch transition in this thesis, we expect our results to apply to the I-N transition

as well and thus we will use I-Ch and I-N interchangeably.

Chapter 4 continues the investigation of the effect of surface charge, now on

the cholesteric phase. The evolution of the pitch with concentration depends strongly

on the interparticle electrostatic interactions which depend on both surface charge

and solution characteristics (pH and ionic strength). Changing the pH alters the

number of ionizable amino acids on the surface of the virus particles and thus changes

their bare charge in solution. Additionally, the coupling between the helicity of the

enclosed viral DNA and the macroscopic chiral structure (the cholesteric pitch) is

investigated by adding silver ions to the virus suspension. These ions intercalate

between the DNA base pairs altering the structure of the viral DNA and subsequently

the cholesteric pitch, suggesting a correlation between viral DNA/protein interactions

and the macroscopic expression of chirality.

In Chapter 5 the functional form of the angular distribution of the nematic

phase is determined as a function of fd concentration. Measuring the angular dis-

tribution function is the most direct test of the accuracy of Onsager’s free energy.

Typically fd virus forms a cholesteric phase, but when placed in a magnetic field the

cholesteric pitch unwinds and the virus suspension forms a mono-domain nematic

phase. The orientational distribution of the rods was imaged in Fourier space via

small angle x-ray diffraction. These images were then deconvolved using computer

analysis to extract the real space orientational distribution of the particles. The

nematic ordering was also measured from the birefringence of the nematic samples
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allowing for an accurate measurement of the intrinsic birefringence of the fd rods.

Chapter 6 returns to the study of the isotropic-nematic phase transition but

this time for bidisperse mixtures of rods of different diameters and different lengths.

The phase behavior of mixtures of fd and fd coated with poly(ethylene-glycol), two

particles of identical length and different diameter, was measured. Bidisperse rod

mixtures can exhibit isotropic-cholesteric (isotropic-nematic), isotropic-cholesteric-

cholesteric (isotropic-nematic-nematic) and cholesteric-cholesteric (nematic-nematic)

coexistence with increasing concentration, depending on the relative aspect ratio of

the two rod types. The stability and evolution of the nematic-nematic coexistence

region is studied in detail. Theoretical phase diagrams corresponding to the experi-

mental conditions are also presented and compared with the measured results.

In Chapter 7, we investigate the nematic-smectic phase transition of monodis-

perse colloidal rod-sphere copolymers. In analogy to the familiar case of block copoly-

mers and amphiphiles (surfactants, lipids, etc.), microphase separation of these col-

loidal copolymers is expected to occur due to entropic interactions. In this chapter we

calculate the stability of a smectic phase of these copolymers in a parallel geometry.

We additionally present a description of the experimental bio-chemical synthesis of

these particles using M13 virus as our rod and a polymer (DNA or poly(ethylene

glycol) as our sphere. We verify the feasibility of this M13/polymer complex and

describe the future direction of these experiments.

An appendix describing the detailed biological protocols for the production of

the bacteriophage used in the above experiments is also included in this thesis.
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Chapter 2

The isotropic-cholesteric phase

transition of filamentous virus

suspensions as a function of rod

length and charge

The viruses studied are genetically engineered, charged, semiflexible filamentous bac-

teriophages that are structurally identical to M13 virus, but differ either in contour

length or surface charge. While varying contour length (L) we assume the persistence

length (P ) remains constant, and thus we alter the rod flexibility (L/P ). Surface

charge is altered both by changing solution pH and by comparing two viruses, fd and

M13, which differ only by the substitution of one charged for one neutral amino acid

per virus coat protein. We measure both the isotropic and cholesteric coexistence

concentrations as well as the nematic order parameter after unwinding the cholesteric

phase in a magnetic field as a function of rod surface charge, rod length, solution

ionic strength and solution pH. The isotropic-cholesteric transition experimental re-

sults agree semi-quantitatively with theoretical predictions for semiflexible, charged
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rods.

2.1 Introduction

For a suspension of rigid rodlike particles, Onsager determined that hard-core inter-

actions alone are sufficient for inducing an entropy driven phase transition from an

isotropic phase, in which the particles are randomly oriented, to a nematic phase,

in which the orientation of the particles is distributed about a preferred direction[1].

When the rodlike particles are semiflexible and/or charged, like many biopolymers

such as DNA and F-Actin, the properties of the phase transition can differ signif-

icantly from those predicted for hard, rigid rods. Small amounts of flexibility are

predicted [19] and observed [30, 40] to increase the stability of the isotropic phase

and lead to a less ordered nematic phase. In this Chapter, we study the effects

of flexibility on the isotropic-nematic (I-N) transition using suspensions of the rod-

like charged, semiflexible M13 virus and M13 virus length-mutants. By varying the

contour length (L) of our experimental charged rods while maintaining a constant

persistence length (P ) we change the rod flexibility (L/P ). The persistence length is

defined as the length over which tangent vectors along a polymer are correlated [18].

In our experiments the flexibility of the rods remains within the semiflexible limit,

where P ∼ L. The effect of surface charge on the I-N transition of charged rods is

also investigated. Surface charge is varied by modifying both the surface chemistry

of the rods and the solution chemistry, by changing pH.

While Onsager developed the original theory for the isotropic-nematic transi-

tion of hard and charged rigid rodlike particles, Khokhlov and Semenov were responsi-

ble for incorporating flexibility into this theory [19]. They extended Onsager’s theory

to include systems of semiflexible rods with a large length (L) to diameter (D) aspect

ratio (L/D) and arbitrary persistence length. They explicitly calculated the equilib-
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rium properties of the I-N phase transition in the limit of very flexible L/P >> 1

and very rigid L/P << 1 rods and interpolated between the two limits to find the

properties of semiflexible rod phase behavior. Shortly afterwards, Chen numerically

calculated the concentrations of the coexisting isotropic and nematic phases as well

as the order parameter of the coexisting nematic phase for arbitrary flexibility using

Khokhlov-Semenov theory[23]. For rigid rods, the limit of stability of the isotropic

phase is predicted to be ci = 4/b, where ci is the number density and b = πL2D/4,

the average excluded volume in the isotropic phase [41]. For flexible rods, Khokhlov-

Semenov theory predicts that slight semiflexibility will increase the stability of the

isotropic phase by increasing bci, and will narrow the I-N coexistence region. Flexibil-

ity is also predicted to significantly lower the nematic order parameter at coexistence.

The nematic order parameter S is the second moment of the orientational distribution

function of the rods, f(θ), or S = 2π
∫

P2(cos(θ))f(θ)dθ, where P2 is the second Leg-

endre polynomial. For a completely aligned nematic S = 1, whereas for an isotropic

phase S = 0. For rigid rods the predicted nematic order parameter at coexistence is

S = 0.79 [15]. The predictions from the Khokhlov-Semenov theory show quantitative

agreement with the measured I-N transition for suspensions of charged semiflexible

virus fd, charged polymer xanthan, and neutral polymer PBLG [30, 40].

Electrostatic interactions are incorporated into the Onsager model by rescaling

the bare rod diameter D to a larger effective diameter Deff which depends on the ionic

properties of the particle and the solution [1, 16]. Deff is calculated from the second

virial coefficient of Onsager’s free energy equation for charged rigid rods. In Fig. 2.1

we plot Deff as described by Stroobants et al. [16] as functions of ionic strength and

rod surface charge. The non-linear Poisson-Boltzmann equation used in Stroobants

description of Deff was solved numerically using the approximations developed by

Philip and Wooding [17]. With increasing ionic strength Deff decreases approaching

the bare rod diameter. Past experiments have shown that Deff accurately describes the
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Figure 2.1: (Color Online) Effective diameter as a function of ionic strength and
surface charge. With increasing ionic strength Deff approaches the bare diameter of
fd (M13) D = 6.6 nm. The effective diameter is plotted for surface charges of 10
e−/nm, 7 e−/nm and 4 e−/nm. These surface charge densities are the same as those
measured for (a) fd at pH 8.2, (b) M13 at pH 8.2 or fd at pH 5.2, and (c) M13 at pH
5.2. At these surface charge densities Deff is insensitive to variation in charge.

ionic strength dependence of the I-N transition of fd virus suspensions [30]. For highly

charged rods, the effect of surface charge on Deff is small as the non-linear nature of

the Poisson-Boltzmann equation leads to counterion condensation near the colloid

surface which renormalizes the bare surface charge to a lesser effective charge, which

is nearly independent of the bare surface charge. In the nematic phase, the effective

diameter increases due to an added effect called “twist” which is characterized by the

parameter h = κ−1/Deff, where κ−1 is the Debye screening length. The effect of twist

on Deff, however, is predicted to be small for fd [30], and we neglect it here. Studying

the influence of ionic strength and surface charge on the I-N phase behavior tests if

Deff can be accurately used to map charged rod phase behavior to hard-rod theories.

Onsager’s theory is based on an expansion of the free energy truncated at

the second virial level, so that only two-particle interactions are considered. This

assumption has been shown to be accurate in the limit of very long rods, where

L/D > 100 [26], or for very dilute suspensions. In our experimental system, however,

decreasing the ionic strength rapidly decreases our effective aspect ratio to values far

below the L/D = 100 limit. In order to accurately predict the phase behavior of rods
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with an effectively small aspect ratio, the theoretical free energy needs to incorporate

third and higher virial coefficients. Scaled particle theory (SPT), which incorporates

all higher virial coefficients in an approximate way is one theory which accomplishes

this[27]. A scaled particle theory for hard rigid rods was originally developed by Cotter

[27]. More recently we have expanded this theory to include charge and semiflexibility

[42, 28]. In conjunction with the Khokhlov-Semenov second virial theory we use this

scaled particle theory to interpret our experimental results.

In this Chapter we present experimental measurements of the isotropic-nematic

phase transition of semiflexible charged colloidal rods as a function of rod length, sur-

face composition, solution pH, and solution ionic strength. We measure both the

coexistence concentrations and the nematic order parameter and compare our results

to both Onsager’s theory, by way of Chen’s numerical calculation[23], and scaled

particle theory. For our model rods we use monodisperse suspensions of charged

semiflexible rodlike fd virus, wild type M13 virus, and mutants of M13 virus which

differ from the wild type only by their contour length. In solution, these particles

exhibit isotropic, cholesteric (or chiral nematic), and smectic phases [43, 30, 35, 37].

Suspensions of fd have been previously shown to exhibit an I-N transition which agrees

with theoretical predictions for semiflexible rods with an effective diameter Deff [30].

M13 virus is structurally identical to fd virus, differing only in surface charge, making

these two particles an ideal system for studying the influence of bare surface charge on

the isotropic-nematic transition. Additionally, by comparing the I-N phase behavior

of each of the M13 mutants, which except for length are structurally identical, and

therefore by assumption have the same persistence length, we measure the influence

of flexibility, defined as the ratio L/P on this transition. Though fd and M13 ex-

hibit a cholesteric phase, the free energy difference between the cholesteric and the

nematic phase is much smaller than the difference between the isotropic and nematic

phases [39]. This allows us to compare our results to theoretical predictions for the
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isotropic-nematic (I-N) transition. We refer to the cholesteric phase as the nematic

phase henceforth.

Motivation for these length and surface charge dependent measurements of the

I-N transition arose because new measurements of the nematic-smectic (N-S) tran-

sition in this same system [44] exhibit measurable surface charge dependence and

ionic strength dependence which can not be accounted for by treating the virus as

a hard rod with a diameter Deff, in contrast to our previous measurements, which

were limited in range of ionic strength [35]. The new N-S measurements inspired

a closer look at the ability of Deff to describe the effects of surface charge on the

I-N transition. New measurements of the N-S transition as a function of length also

indicate that semiflexibility has no measurable effect on the N-S transition for the

limited range studied, which is as predicted, but which is in sharp contrast to the

large predicted effect of flexibility on the I-N transition for the same range. The mea-

surements presented here of the I-N transition as a function of charge and flexibility

will contribute to the understanding of the relative importance of these variables in

the evolution of the liquid crystalline ordering of charged semiflexible rodlike particles

with concentration.

2.2 Materials and Methods

Properties of fd and wild type M13 include length L =0.88 µm, diameter D = 6.6

nm, persistence length P =2.2 µm and molecular weight M = 1.64 × 107 g/mol[14].

Each virus consists of approximately 2700 coat proteins helicoidally wrapped around

single stranded DNA. The two viruses differ only by one amino acid per coat protein.

In fd this amino acid is the negatively charged aspartate (asp12), and in M13 it is

the neutral asparagine (asn12)[33]. Thus at near neutral pH fd has one more negative

charge per coat protein (3.4±0.1 e−/protein) than M13 (2.3±0.1 e−/protein), which
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results in a net charge difference of approximately 30% [34]. X-ray diffraction studies

are unable to clearly discern any structural differences between M13 and fd [45]. The

M13 length-mutants share the same properties as wild type M13, varying only in

length and molecular weight, which scales linearly with length. The M13 mutant

have lengths of 1.2µm, 0.64µm, and 0.39µm. Wild type M13, fd, and M13K07 (the

1.2µm mutant phage) were grown using standard techniques [36]. The other two

mutant phages were grown using the phagemid method, which produces bidisperse

solutions of the phagemid and the M13K07 helper phage [36]. We chose two plasmid

DNA sequences, PGTN28 (4665bp) and LITMUS38 (2820bp) (New England Biolabs,

Cambridge MA) to form our phagemids of length 0.64µm and 0.39µm, respectively.

Sample polydispersity was checked using gel electrophoresis on the intact virus, and

on the viral DNA. Except for the phagemid solutions, which contained approximately

20% by mass helper phage M13K07, the virus solutions were highly monodisperse as

indicated by sharp electrophoresis bands.

In a bidisperse system of long and short rods it is predicted that when isotropic

and nematic phases are in coexistence, the longer rods will strongly partition into the

nematic phase [7, 46]. Using this fractionation effect we attempted to purify the

bidisperse suspensions of the phagemid and M13K07 helper phage. We observed par-

titioning of the long rods into the nematic phase by DNA agarose gel electrophoresis

(2-3 fold more long rods in the cholesteric phase than in the isotropic phase in qualita-

tive agreement with Lekkerkerker et al. [7]), but were unable to successfully measure a

difference in long rod concentrations in the isotropic phase after successive iterations

of fractionation. The effect of fractionation on the coexistence concentrations was

assayed by comparing the isotropic and nematic concentrations of coexisting samples

(about 50% of each phase in one sample) with the highest concentrations for which

the samples remained completely isotropic and the lowest concentrations for which

the samples remained completely nematic, respectively. The only difference we ob-
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A B C D E F
pH fd M13 e−/subunit mobility ratio M13 e−/subunit fd M13

e−/subunit (charge of fd minus 1) mM13/mfd (electrophoresis) e−/nm e−/nm
8.2 3.4± 0.1 2.4± 0.1 0.67 2.3± 0.05 10 7
5.2 2.3± 0.1 1.3± 0.1 0.5 1.2± 0.05 7 3.6

Table 2.1: Surface charge of fd and M13 at pH 8.2 and 5.2. (A) The charge of fd
obtained by titration experiments [34]. (B) M13 has one less negative amino acid
per coat protein than fd, thus the surface charge of M13 can be approximated by
subtracting one charge per protein subunit from the fd surface charge values. (C)
Ratio of electrophoretic mobility (m), determined from Fig. 2.2, of M13 to fd. (D)
By multiplying the known fd charge by m, the linear surface charge density of M13
can be calculated. (E),(F) fd and M13 surface charge per unit length, respectively.

served was that the nematic concentration measured in coexistence with the isotropic

phase was consistently about 5-10% lower than the nematic concentration measured

when the sample was 100% nematic. The lower concentrations in the coexisting ne-

matic phases are due to the partitioned long rods undergoing the I-N phase transition

at lower mass concentrations. Because the effect of bidispersity is small, we report

the phase behavior for the 0.39µm and 0.64 µm rods at the limits of the coexistence

region with the understanding that the samples contain about ∼20% (by mass) 1.2

µm rods.

All samples were dialyzed against a 20mM Tris-HCl buffer at pH 8.2 or 20mM

Sodium Acetate buffer adjusted with Acetic Acid to pH 5.2. To vary ionic strength,

NaCl was added to the buffering solution. The values for surface charge of fd and

M13 at pH 8.2 and pH 5.2 are presented in Table 2.1. The surface charge of fd

was determined by titration experiments [34], and the surface charge of M13 was

calculated in two ways, both starting from the known fd surface charge. One way is

to compare the molecular composition of fd and M13, and the second is to use the

fact that because M13 and fd are identical except for their surface charge, their the

electrophoretic mobilities are proportional to net surface charge [47]. In Fig. 2.2,

we show using agarose gel electrophoresis of intact virus that fd migrates 200% faster

than M13 at pH 5.2 and 150% faster at pH 8.2. Note in Table 2.1 we show that the
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Figure 2.2: Agarose gel electrophoresis of fd and M13 virus at pH 8.2 (gel 1) and
pH 5.2 (gel 2). At pH 5.2 the buffer was 40 mM Sodium Acetate, and at pH 8.2
the buffer was 40 mM Tris-Acetate-EDTA (TAE). Gels were run at ∼1.0% agarose
concentration and ∼3.5 V/cm for 4 hours. Samples were placed in loading wells
at a concentration of approximately 0.3 mg/ml. M13 and fd have the same length
(L = 0.88µm) and diameter (D = 6.6nm), and differ only in surface charge. The
ratio of electrophoretic migration distances between M13 and fd within each gel is
therefore equal to the ratio of the surface charge. The electrophoresis bands for fd
at pH 5.2 and M13 at pH 8.2 are not at the same migration distance, because the
absolute migration distance is also a function of the buffer ions.

surface charge of M13 at pH 8.2 is the same as the surface charge of fd at pH 5.2.

All measurements were done at room temperature. The virus concentrations

were measured by absorption spectrophotometry with the optical density (A) of the

virus being A
1mg/ml
269nm = 3.84 for a path length of 1 cm. The nematic order parameter

was obtained by unwinding and aligning the cholesteric phase in a 2T permanent

magnet (SAM-2 Hummingbird Instruments, Arlington, MA 02474)[48] and measuring

the sample birefringence. At 2T, the magnetic field has a negligible effect on nematic

ordering[49, 50]. The nematic order parameters were calculated from the optical

birefringence measurements obtained with a Berek compensator using the equation

∆nsatS = ∆n, where ∆nsat is the saturation birefringence. The value for ∆nsat/ρ =

3.8 × 10−5[ml/mg], where ρ is the concentration of virus in [mg/ml], as determined

for fd via x-ray diffraction [42].
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Figure 2.3: Isotropic-nematic coexistence concentrations as a function of M13 mutant
contour length at 5 mM and 110 mM ionic strengths at pH 8.2. Open symbols
represent the coexisting isotropic phase and solid symbols the nematic phase. Shaded
areas are a guide to the eye indicating the coexistence regions. For rigid rods the
coexistence concentrations ρi ∝ 1/L at a constant ionic strength (constant Deff).
Deviations from this relationship are most likely due to rod flexibility.

2.3 Results

2.3.1 Effect of length and flexibility on the isotropic-nematic

transition

Figure 2.3 presents the length dependence of the I-N coexistence concentrations at

high (110 mM) and low (5 mM) ionic strength. For rigid rods beffci, the dimensionless

concentration of the isotropic phase in coexistence with the nematic phase, is pre-

dicted to be a constant, beffci = 3.29 [24], where beff = π
4
L2Deff and ci = ρiNA/M . In

ci, ρi is the isotropic mass density, NA is Avogadro’s number, and M is the molecular

weight. Because the molecular weight is proportional to viral length, M = MwtL/Lwt,

with Mwt and Lwt equal to the molecular weight and length of wild type M13. Thus

beffci = ρiLDeff(
π
4
LwtNA/M) = 25ρi[mg/ml]L[µm]Deff[µ m]. Therefore, for rigid rods,

ρi = const/L/Deff, and at constant ionic strength (constant Deff) ρi should be pro-

portional to 1/L. However, we observe that at a given ionic strength, the slope of ρi
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Figure 2.4: Dimensionless concentration of the isotropic phase in coexistence with
the nematic phase as a function of M13 mutant contour length for three ionic
strengths at pH 8.2. The concentration is defined as beffci = π

4
DeffL

2Ni/V =
25.4ρi[mg/ml]L[µm]Deff[µm]. Scale on the top of the graph identifies the flexibility in
terms of L/P with P = 2.2µm. If the rods are rigid the phase behavior is predicted to
be independent of length (Onsager) (dashed line). Semi-flexible rods show increasing
beffci with increasing flexibility as predicted by Khokhlov-Semenov theory calculated
by Chen (solid line). Scaled particle theory at 100 mM ionic strength (SPT110) and
at 10 mM ionic strength (SPT10) indicate that beffci depends on L/Deff.
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vs 1/L is not linear in Fig. 2.3, but instead increases with rod length, corresponding

to an increase in beffci. This is shown more clearly in Fig. 2.4, where beffci is plotted

as a function of length. The increase in beffci with length is in agreement with pre-

dictions for rods of increasing flexibility (L/P ), as shown by the theoretical curves

from Khokhlov-Semenov theory and from SPT for semiflexible rods with a persistence

length of P = 2.2µm. At high ionic strength ( I > 60 mM) we see good agreement with

Khokhlov-Semenov theory calculated numerically by Chen (solid line) [23]. However

with decreasing ionic strength, we measure an increase in the flexibility dependence of

beffci. Subsequently, Khokhlov-Semenov theory only qualitatively describes the exper-

imental results at low ionic strength. Agreement of the hard-rod Khokhlov-Semenov

theory with our data is better at high ionic strength than at low ionic strength be-

cause the range of electrostatic interactions is weaker and L/Deff is large, making the

second virial approximation valid.

To interpret the observed increase in flexibility dependence of the phase transi-

tion with decreasing ionic strength, we turn to the scaled particle theory. The method

for determining the scaled particle theoretical coexistence concentrations and nematic

order parameters is described elsewhere [28]. In Fig. 2.4 we present the predicted

SPT isotropic coexistence concentrations for rods with a diameter of 10.4 nm, (110

mM ionic strength), and 29.4 nm (10 mM ionic strength). At high ionic strength,

SPT shows fair agreement with experimental results, and the theoretical curve for

beffci is close to that predicted by Chen for the infinitely long rod limit. Additionally,

we observe in Fig. 2.4 that SPT indeed predicts a small dependence of beffci on L/Deff,

in contrast to the L/Deff independent second virial theory. This suggests that effec-

tive aspect ratio of the rods, which decreases with ionic strength, has a small effect

on the I-N transition concentration. However, the L/Deff dependence predicted by

SPT is opposite the trend experimentally observed; increasing Deff, by lowering ionic

strength, increases the measured beffci but lowers the scaled particle theory beffci. We
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argue that this discrepancy between scaled particle theory and experimental results

at low ionic strength is due to the approximate treatment of electrostatics in Deff,

which is used not only as the theoretical hard rod diameter in SPT but also scales the

experimental coexistence concentrations from ρi to beffci. Deff is determined from us-

ing the second virial coefficient, and therefore is not necessarily accurate beyond that

limit, ie. at low ionic strength. We note that the rescaled experimental coexistence

concentrations, beffci, are extremely sensitive to the value of Deff used to rescale the

measured coexistence concentrations, ρi. Differences in Deff are translated linearly to

changes in the experimental beffci by beffci = 25ρi[mg/ml]L[µm]Deff[µm]. However, the

predicted effect of changing L/Deff on beffci, as shown by the SPT curves in Fig. 2.4,

is much smaller than the measured change in beffci with ionic strength. Agreement

between SPT and our experimental results improves if the effective diameter at low

ionic strength is smaller than predicted at the second virial limit.

The width of the coexistence region, (ρn − ρi)/ρi, was also measured and is

presented in Fig. 2.5. At low ionic strength, the coexistence width qualitatively

follows the decrease expected for increasing flexibility shown by the solid line due

to Chen [23]. For most rod lengths the value for the coexistence width is larger

than predicted by both Khokhlov-Semenov theory and by scaled particle theory. At

short rod lengths this discrepancy is most likely due to the intrinsic bidispersity of

the suspensions, which acts to widen the coexistence region [7]. A slow increase

in the coexistence concentrations with time (possibly due to bacterial growth) [50]

contributes to the large error bars, making comparison to predictions difficult. Above

10 mM ionic strength, where we see strong agreement between measurements of the

coexistence concentrations and theoretical predictions, it is not apparent that there

is any flexibility or ionic strength dependence in the width measurements.

The nematic order parameter obtained from measurements of the birefringence

of the magnetically unwound and aligned cholesteric phase in coexistence with the
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Figure 2.5: Width, (ρn−ρi)/ρi, of the coexistence region as a function of rod flexibility
L/P . Results are plotted for three ionic strengths (10 mM, 60 mM, and 110 mM).
Solid line is due to Chen for rods with P = 2.2µm [23]. Dotted and dashed lines are
due to scaled particle theory for M13 rods (q=7e/nm) with a hard diameter Deff at
110 mM (SPT110) and 10 mM (SPT10) ionic strength, respectively. For rigid rods,
the Onsager prediction for the I-N coexistence width is 0.29 [1, 15]. The width of
the coexistence region should decrease with increasing flexibility.

isotropic phase is presented in Fig. 2.6. We observe that at high ionic strengths,

the nematic order parameter decreases with increasing length (increasing flexibility)

in qualitative agreement with Khokhlov-Semenov theory calculated by Chen [23].

With decreasing ionic strength, however, the measured nematic order parameter in-

creases, approaching Onsager’s rigid-rod predictions, due to increasing the range of

electrostatic interactions. This has also been observed for fd virus suspensions [42].

Furthermore, at very low ionic strength (5 mM ionic strength) the nematic order pa-

rameter becomes independent of rod length and equal to the predicted rigid rod value

of S = 0.8. Scaled particle theory, as illustrated in Fig. 2.6, predicts that the nematic

order parameter is largely independent of ionic strength. This suggests that the ef-

fective aspect ratio of the rods, which decreases with ionic strength, does not effect

the nematic ordering. In addition, SPT agrees with the experimental measurements

at high ionic strength better than Khokhlov-Semenov theory.

Another possible explanation for an increase in nematic order parameter with
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decreasing ionic strength is electrostatic stiffening. If the interparticle interactions

are dominated by electrostatics, the flexibility of the rods might be screened. This

effective “electrostatic persistence length” Pel, which makes a charged polymer more

rigid when in solution, is a dominant effect in determining the flexibility of charged

flexible polymers with L/P ≫ 1. However, for the semiflexible M13 and fd, Pel is

predicted to be less than one percent larger than the bare persistence length [51].

Additionally, the results for the coexistence concentrations presented in Fig. 2.4 in-

dicate that with decreasing ionic strength the measured coexistence concentrations

deviate further from Onsager’s rigid-rod predictions. Thus the measured coexistence

concentrations and nematic order parameters exhibit contradictory trends, away from

Onsager’s rigid rod prediction versus towards Onsager’s rigid rod prediction, respec-

tively, with decreasing ionic strength. Therefore, electrostatic stiffening of the poly-

mer cannot account for the observed high values of the order parameter at low ionic

strength. Neither scaled particle theory, nor variation in the electrostatic persistence

length satisfactorily explain the low ionic strength data.

2.3.2 Effect of viral surface charge on the isotropic-nematic

transition

In this section we compare the phase behavior of M13 virus to that of fd virus as

a function of surface charge and ionic strength. Recall that these particles have the

same length L = 0.88µm and persistence length P = 2.2µm. In Fig. 2.7 we present

measurements of the isotropic coexistence concentrations as a function of viral surface

charge at high and low ionic strength. The theoretical curve is from scaled particle

theory for charged, semiflexible rods with L/P = 0.4. We only present the theoretical

results from scaled particle theory in this section as this theory should more accurately

describe the finite-length rod phase behavior than the second virial theory. In Fig.

2.7 we confirm that the charge dependence of the I-N coexistence concentrations
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Figure 2.6: (Color online) Nematic order parameter at coexistence as a function of
rod length for four different ionic strengths. Solid black line represents the theoretical
calculation by Chen [23] for the order parameter as a function of flexibility (L/P )
indicated by the scale on the top of the graph. The dashed line is the theoretical
nematic order parameter for rigid rods, S = 0.79[1, 15]. The scaled particle curves
(dotted lines) are calculated as in [42] for virus rods at 110 mM (SPT110) and 5 mM
(SPT5) ionic strength. Theoretical curves were calculated for rods with a persistence
length of 2.2µm. The measured order parameter decreases with increasing particle
length at high ionic strength, but remains constant at low ionic strength.
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above the graph for M13 and fd samples. Solid line is from scaled particle theory for
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Figure 2.8: (Color online) Width of the isotropic-nematic coexistence region for wild
type M13 and fd rods at three different surface charges as a function of ionic strength.
Both M13 and fd have a length of L = 0.88µm. Solid symbols are at pH 5.2 and
open symbols are at pH 8.2 for M13 (circles) and fd (squares) suspensions. Solid
line is from scaled particle theory for hard semiflexible rods with L/P = 0.4 and is
independent of rod surface charge. The Onsager prediction for the I-N coexistence
width in dimensionless units of bc for hard rigid rods is (4.19 − 3.29)/3.29 = 0.29
[1, 15]. The coexistence width does not clearly show any charge dependence.

is accurately described by scaled particle theory at high ionic strengths. However,

the efficacy of Deff as a means for incorporating all electrostatic interactions again

diminishes at low ionic strength (I<60 mM), as seen previously in Fig. 2.4 and in

Fig. 2.6.

Fig. 2.8 presents the width of the coexistence region as a function of charge

and ionic strength. The width of the coexistence region is independent of the surface

charge of the rods and agrees (within large error bars) with scaled particle theory pre-

dictions. Both the measured coexistence concentrations and coexistence widths show

that the effect of surface charge on the electrostatic interactions which drive the I-N

phase transition are weak, which is consistent with the idea of charge renormalization

incorporated into the calculations of Deff.

Nematic order parameters obtained from measurements of the birefringence of

magnetically unwound and aligned cholesteric samples of M13 at pH 8.2 are compared
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to previous measurements of fd suspension nematic order parameters, measured via

x-ray diffraction techniques, also at pH 8.2 [42], in Fig. 2.9. Recall that the ne-

matic order parameter of fd is known to be proportional to the birefringence of the

suspension by the relationship S = ∆n/∆nsat where ∆nsat = 3.8 × 10−5ml/mg [42].

The order parameter of M13 was measured at I-N coexistence as a function of ionic

strength, and deep within the nematic phase for high (110 mM) and low (10 mM)

ionic strength. Theoretical predictions from scaled particle theory for the nematic

order parameter of hard semiflexible rods with L/P = 0.4 are also shown in Fig.

2.9. The order parameters of M13 and fd were found to be equal as a function of

ionic strength and concentration, indicating that the surface charge difference of 30%

between the two particles does not affect nematic ordering. The insensitivity of the

nematic order parameter to surface charge is consistent with the surface charge renor-

malization incorporated into Deff calculations (Fig. 2.1) [30]. The strong agreement

of M13 and fd order parameters also indicates that these two different virus particles

have the same birefringence per particle, ∆nsat = 3.8×10−5ml/mg [42]. Additionally,

we again observe that the scaled particle theory fits the measured order parameter

best for high ionic strength data.

2.4 Conclusion

At high ionic strengths, where the range of electrostatic interactions are small and

L/Deff is large, the isotropic-nematic transition of the experimental system of charged

semiflexible bacteriophages is well described by Khokhlov-Semenov theory for semi-

flexible charged rods. Increasing flexibility increases the coexistence concentrations

beffci (Fig. 2.4) and lowers the nematic order parameter (Fig. 2.6). In the region

of high ionic strength, Deff accurately describes both the charge dependence and

ionic strength dependence of the isotropic-nematic phase transition (Fig. 2.7). At
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low ionic strength, however, we find that the I-N coexistence concentrations and the

nematic order parameter do not agree with theoretical predictions from either On-

sager’s second virial theory, or scaled particle theory. At low ionic strength, the

flexibility dependence of the nematic order parameter is much weaker than expected

(Fig. 2.6), but the flexibility dependence of the coexistence concentrations is much

stronger than expected (Fig. 2.4). Because of these contradictory results we suggest

that the disagreement between theoretical predictions and experimental data at low

ionic strength is due to the approximate incorporation of the electrostatic interactions

into the theoretical free energy via Deff.
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Chapter 3

The influence of charge and

flexibility on smectic phase

formation in virus rod suspensions

We present experimental measurements of the cholesteric-smectic phase transitions

of suspensions of charged semiflexible rods as a function of rod flexibility and surface

charge. The rod particles are structurally identical to M13 virus but vary in either

contour length, and therefore ratio of persistence length to contour length, or surface

charge. Surface charge is altered by changing solution pH and by comparing M13

to fd virus, which differ only by the substitution of a single charged amino acid for

a neutral one per viral coat protein. Phase diagrams are measured as a function

of particle length, particle charge and ionic strength. The experimental results are

compared with existing theoretical predictions for the phase behavior of flexible rods

and charged rods. In contrast to the isotropic-cholesteric transition, where theory

and experiment agree, the nematic-smectic transition exhibits complex charge and

ionic strength dependence not predicted by theory. Possible explanations for these

unexpected electrostatic interactions are discussed.
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3.1 Introduction

In a suspension of hard or charged rods, purely repulsive entropic interactions are

sufficient to induce liquid crystal ordering. Theoretically, hard rods exhibit isotropic,

nematic and smectic phases with increasing concentration [1, 25, 52]. Unfortunately,

although theoretically simple objects, production of hard, rigid monodisperse rods

is very difficult. Rigid and flexible polyelectrolyte rods, however, are abundant, es-

pecially in biological systems, which by nature lend themselves to mass-production.

Viruses, such as fd, M13 and Tobacco Mosaic Virus (TMV) are a unique choice

for use in studying liquid crystal phase behavior, in that they are biologically pro-

duced to be monodisperse and are easily modified by genetic engineering and post-

expression chemical modification. These virus particles are also, to our knowledge,

the only colloidal systems known to exhibit the predicted hard-rod phase progression

(isotropic-nematic-smectic) [53, 14]. Suspensions of charged β-FeOOH rods [54] are

the only other system known to form a stable smectic phase. Accurately describing

the nematic-smectic (N-S) transition for charged and/or flexible rods is important

because it elucidates the nature of interparticle interactions. Even though qualitative

theories have been developed to describe the effects of electrostatics or flexibility on

the N-S phase boundary [32, 35, 55], many challenges remain to correctly describe this

transition for charged and flexible particles. Near the N-S transition, the particles are

at very high concentrations, and as we will show, dilute-limit approximations of inter-

particle interactions which are appropriate at the isotropic-nematic transition cannot

be used. Additionally, our results add insight into the ordering of other important

rodlike polyelectrolytes including biopolymers like DNA and F-actin.

In this Chapter we will test the limits of current theoretical predictions for the

nematic-smectic phase transition in two ways. First, we measure the ionic strength

dependence of the phase transition for filamentous virus of identical structure and

varied length. By changing the rod length and leaving local particle structure con-
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stant, the rod flexibility is altered as defined by the ratio of persistence length P , or

half the Kuhn length, to contour length L, or P/L. In our experiments the flexibil-

ity of the particles remains within the semiflexible limit, meaning P ∼ L. Altering

the particle flexibility probes the competition between rigid and flexible rod phase

behavior in the semiflexible limit. It also allows us to probe the efficacy of current

methods for incorporating electrostatic repulsion into hard-particle theories through

measurements of a large number of values of ionic strength and particle size. Second,

we measure the nematic-smectic phase transition for filamentous virus of different

charge. Altering the surface charge by two independent techniques, solution chem-

istry and surface chemistry, probes the importance of the details of the surface charge

distribution in determining long range interparticle interactions. By varying these

three independent variables, length, charge and solution ionic strength, we system-

atically determine how electrostatic interactions and flexibility experimentally effect

the nematic-smectic phase boundary.

As in Chapters 2 and 3 we use the rodlike semiflexible bacteriophages fd and

M13 for our colloidal system. M13 and fd differ from one another by only one amino

acid per coat protein; the negatively charged aspartate (asp12) in fd is substituted

for the neutral asparagine (asn12) in M13 [33], and thus are ideal for use in studying

charge dependence of phase behavior. Changes in the surface charge of the particles

were also achieved by varying the pH of the solution [34]. By varying the length of

the M13 DNA we created M13 mutants which differ only in contour length. The M13

mutants have the same local structure, and thus we assume persistence length, as

M13. These mutant M13 viruses were used to measure the flexibility dependence of

the nematic-smectic phase transition.
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3.2 Materials and Methods

Properties of fd and M13 include length L = 0.88µm, diameter D = 6.6nm, and

persistence length P = 2.2µm [14]. The M13 mutants have lengths of 1.2µm, 0.64µm,

and 0.39µm[37]. Virus production is explained in the Appendix. Two of the length-

mutants (0.64µm and 0.39µm) were grown using the phagemid method [36, 37] which

produces bidisperse solutions of the phagemid and the 1.2 µm helper phage. Sample

polydispersity was checked using gel electrophoresis on the intact virus, and on the

viral DNA. Excepting the phagemid solutions which were 20% by mass 1.2µm helper

phage, virus solutions were highly monodisperse as indicated by sharp electrophoresis

bands. A characteristic of a high degree of monodispersity is the ability of these virus

to all form well defined smectic phases, as shown in Fig. 3.1. The bidispersity in the

phagemid solution does not suppress smectic phase formation [37].

All samples were dialyzed against a 20mM Tris-HCl buffer at pH 8.2 or 20mM

Sodium Acetate buffer adjusted with Acetic Acid to pH 5.2. To vary ionic strength,

NaCl was added to the buffering solution. The linear surface charge density of fd

is approximately 10e−/nm at pH 8.2 and 7e−/nm at pH 5.2 [34]. M13 surface

charge was calculated from the known fd surface charge by comparing both molecular

composition and electrophoretic mobilities[56]. As M13 and fd identical accept for

their surface charge, electrophoretic mobility is proportional to net surface charge

[47]. By multiplying the known fd charge by the ratio of M13 and fd electrophoretic

migration (fd migrates 200% faster than M13 at pH 5.2 and 150% faster at pH 8.2), we

find that the linear surface charge density of M13 is approximately 7e−/nm at pH 8.2

and 3.6e−/nm at pH 5.2, in agreement with calculations from molecular composition.

Since knowing the surface charge of the virus is critical to our analysis of

the N-S transition, we experimentally measured the pH of the virus solutions at

concentrations in the nematic phase just below the N-S transition. We found that

for an initial buffer solution at pH 8.2 (Tris-HCl buffer pKa= 8.2), the pH of virus
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a. b. c. d.

7µm

Figure 3.1: Differential interference microscopy (DIC) image of smectic layer lines of
M13 virus mutants of four different lengths.(a) Litmus phagemid L = 0.39µm. (b)
PGTN28 phagemid L = 0.66µm. (c) Wild type fd virus L = 0.88µm. (d) M13K07
helper phage L = 1.2µm.

suspensions near the smectic phase is slightly lower, but still well within the buffering

pH range (pH=pKa±1). The surface charge does not change significantly over this

range [34]. At pH 5.2 (Acetic acid buffer pKa= 4.76) the measured pH of the virus

suspensions near the N-S transition was slightly higher than 5.2. This shift further

away from the pKa may effect the buffering ability of the solution and subsequently

the phase behavior. Additionally, the shift in pH becomes stronger with decreasing

ionic strength, most likely due to the relative concentration of buffer ions (20 mM) to

virus counterions (50-100 mM). The implications of these measurements are discussed

further in the Results section.

All measurements were done at room temperature. The concentration of the

phases was measured by absorption spectrophotometry with the optical density (A)

of the virus being A
1mg/ml
269nm = 3.84 for a path length of 1 cm.

3.3 Electrostatic Interactions

The total rod-rod interparticle interaction includes a combination of hard core re-

pulsion and long ranged electrostatic repulsion. We present two possible ways to

incorporate the electrostatic repulsion into hard-rod theories. First, it is possible to

49



define an effective hard core diameter (Deff) larger than the bare diameter D, which is

calculated from the second virial coefficient of the free energy for charged rods [1, 57].

Increasing ionic strength decreases Deff, but for highly charged colloids, like M13 and

fd, the effect of surface charge on Deff is small as the non-linear nature of the Poisson-

Boltzmann equation leads to counterion condensation near the colloid surface which

renormalizes the bare surface charge to a lesser effective charge, which is nearly inde-

pendent of the bare surface charge [30, 58]. It has been experimentally verified that

this effective diameter accurately describes the electrostatic repulsion between virus

particles at the isotropic- nematic (I-N) transition in the limit of large L/Deff [30, 56].

Previously, we showed that a Deff independent of virus concentration could describe

the electrostatic interactions of virus suspensions at the nematic-smectic transition

[35]. However, we note that the use of Deff beyond the regime where the second virial

coefficient quantitatively describes the system (above the isotropic-nematic transi-

tion) is not necessarily justified. We show in this Chapter that this crude treatment

of the electrostatic interactions neglects significant features better described by the

scaled particle theory described in the following paragraph.

An alternative effective diameter was developed by Kramer and Herzfeld.

They calculate an “avoidance diameter” Da which minimizes the scaled particle

expression for the free energy of charged parallel spherocylinders as a function of

concentration[32]. With respect to ionic strength, Da exhibits the same trend as

Deff, but is defined to be independent of charge within the “highly charged” colloid

regime. Specifically, the renormalized surface charge of the colloidal rods in Kramer

and Herzfeld’s theory is defined to be 1 e−/7.1Åfor any colloidal rod (including fd and

M13) with a surface charge greater than or equal to 1 e−/7.1 Å[32]. The advantage

of this theory over Onsager’s effective diameter is its use of scaled particle theory. By

using the scaled particle theory, third and higher virial coefficients are accounted for

in an approximate way [59, 27], making this “avoidance diameter” more appropriate
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for incorporating electrostatic interactions at the nematic-smectic transition. The

disadvantage is that the free energy expression developed by Kramer [32] does not

reduce to Onsager’s theory in the absence of no electrostatic interactions. Kramer’s

calculations [32] qualitatively reproduce previously published data for the N-S tran-

sition of fd virus, but the limited range of data previously available did not include

some of the interesting features described in this theory, which we are now able to

test. Having an appropriate way to describe the electrostatic interactions between

rods is essential for separating the effects of charge, ionic strength and flexibility on

the N-S phase behavior we now present.

3.4 Results

The location of the N-S transition was determined by measuring the highest ne-

matic concentration (φN) and the lowest smectic concentrations (φS) observed, with

φ = πLD2c/4 and c equal to the nematic or smectic rod number density respectively.

Because of the high viscosity of the suspensions near the N-S transition, bulk separa-

tion of the nematic and smectic phases is not observed, however, smectic or nematic

domains can be observed using differential interference contrast microscopy (DIC) in

coexistence with predominantly nematic and smectic bulk phases, respectively. Typ-

ically coexistence is observed as ribbons of smectic phase reaching into a nematic

region.

Measurements of φS are presented in Fig. 3.2 as a function of the M13-mutant

particle length, and therefore virus flexibility by L/P , for multiple ionic strengths.

The influence of flexibility on the nematic-smectic transition of hard-rods has been

well studied theoretically [60, 55]. Adding a small amount of flexibility is expected to

drive the smectic phase to higher concentrations, from the predicted hard-rigid-rod

concentration of φS=0.47 [25], to approximately 0.75 . φS . 0.8 within the semi-
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Figure 3.2: Smectic phase concentration φS at the N-S transition for multiple ionic
strengths at pH 8.2 as a function of rod length L and flexibility L/P . Legend for
ionic strengths is as follows: ◦ 5 mM, N 10 mM, • 60 mM, ▽ 110 mM, � 150 mM.
With increasing ionic strength φS increases due to increasing electrostatic screening.
Dashed lines are a guide to the eye at constant ionic strength. Within experimental
accuracy the smectic phase transition is independent of flexibility within the range
0.18 < L/P < 0.54.

flexible limit[55]. Once within the semiflexible limit, however, φS is essentially inde-

pendent of flexibility. At a constant ionic strength Fig. 3.2 shows that within experi-

mental accuracy φS is independent of virus length, and thus independent of changing

flexibility in the range of 0.18 < L/P < 0.24, as predicted. This is in striking contrast

to the significant flexibility dependence measured at isotropic-nematic transition for

this same system of semiflexible M13 mutants which is described in [56]. At the

isotropic-nematic transition the dimensionless concentration bc = φI-NL/D increases

with increasing flexibility in agreement with theoretical predictions by Khokhlov and

Semenov [19, 23], especially at high ionic strength where L/Deff is large.

As seen in Fig. 3.2, ionic strength plays an important role in determining the

phase boundaries by screening electrostatic interactions. To compare our charged-

flexible-rod results with predictions for the N-S phase transition of hard rods, we graph

in Fig. 3.3 φN
eff as a function of rod length. We define φN

eff = φN(DN
eff)

2/D2. Because

crossed charged rods have a lower energy than parallel rods DN
eff increases with particle

alignment reaching a maximum possible value of DN
eff = 1.12Diso

eff , with Diso
eff equal to
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Figure 3.3: Nematic phase effective volume fraction φN
eff at the N-S transition for

multiple ionic strengths at pH 8.2 as a function of L. Legend for symbols is to the
right of the figure. Dashed lines drawn are a guide to the eye and are at constant
ionic strength. Because φN

eff strongly depends on ionic strength, we conclude that DN
eff

does not describe the electrostatic interactions at high virus concentrations.

the isotropic effective diameter, just below the smectic phase [57, 35]. The effective

volume fraction φN
eff should be equivalent to the hard-flexible rod concentration and be

independent of ionic strength if DN
eff accurately models the interparticle electrostatic

interactions. However, φN
eff depends quite strongly on ionic strength in Fig. 3.3.

Previously, we observed φN
eff = 0.75 independent of ionic strength for suspensions of

fd virus [35]. Though our data agrees semi-quantitatively with this near I=60 mM,

by expanding our measurements to include larger values ionic strength as well as

multiple particle lengths, we clearly measure an ionic strength dependence in φN
eff with

φN
eff ranging from 2.5 to 0.5. This large ionic strength dependence of φN

eff indicates that

DN
eff is not sufficient for describing the electrostatic interactions at the N-S transition.

This is not entirely surprising due to the fact that Deff is strictly defined to be accurate

at low concentrations where two-particle interactions are dominant.

We show in Fig. 3.4 the volume fraction of the nematic-smectic transition, φN

and φS averaged over results from all particle lengths as a function of ionic strength.

With increasing ionic strength the electrostatic repulsion between rods decreases ap-

proaching hard-rod phase behavior in the limit of very high ionic strength. We observe

53



φ

ρ [m
g/m

l]
nematic

smectic

1010 100100
0.000.00

0.110.11

0.220.22

0.330.33

0.440.44

00

100100

200200

300300

400400 Kramer and Herzfeld Kramer and Herzfeld

    effeff
NN=0.75

  ba
re

ba
re

Ionic Strength [mM]Ionic Strength [mM]

φ
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the N-S transition as a function of ionic strength at pH 8.2. Average is over the four
M13 length mutants. Solid line is taken from simulations by Kramer and Herzfeld
[32] for particles the same size as fd and with a renormalized surface charge of 1e−/7.1
Å. Dashed line is φbare = φN

eff ∗ D2/(DN
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2 with φN
eff = 0.75.

that above approximately I=100 mM, φS becomes independent ionic strength due to

a effective “close packing” of the rods in the smectic phase. This saturation at high

ionic strength is consistent with the phase behavior predicted by Kramer for parallel

charged spherocylinders with a concentration dependent avoidance diameter Da, as

mentioned previously [32]. However, Kramer’s theory predicts a saturation concen-

tration of φS
sat = 0.47, or the theoretical hard-spherocylinder (I→ ∞) limit [32, 25],

which is much higher than our experimental saturation value of φS
sat = 0.24. This

discrepancy is most likely due to the role of electrostatics being much stronger than

predicted by Da, as flexibility, our other independent variable, is predicted to increase

the N-S transition concentration. Contrastingly, simply scaling φN by D2
eff, does not

capture this sudden saturation, as shown by the dashed curve for φN
eff = 0.75, in

Fig. 3.4. Both approximations for the electrostatic interactions qualitatively repro-

duce some features of the N-S transition yet they both differ significantly from the

experimentally observed behavior.

In addition to measuring the effect of ionic strength on the phase behavior, we

also measured the effect rod surface charge. We measure the phase behavior of fd and

M13 at pH 5.2 and pH 8.2. Fig. 3.5 presents the ionic strength and pH dependence
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highlight the ionic strength independence at high ionic strength.
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of the N-S phase transition for fd (a) and M13 (b). Similar to the trend in Fig. 3.4,

increasing ionic strength increases the N-S transition concentration, until about 100

mM ionic strength, above which φS is independent of ionic strength. Above about

100 mM, the fd phase boundary saturates around φS
sat ∼ 0.21, independent of pH,

and the M13 phase boundary saturates around φS
sat = 0.24, also independent of pH.

Surprisingly, at these high ionic strengths, where the surface charge should be well

screened, fd suspensions have a phase boundary at lower concentrations than the M13

suspensions, independent of pH.

At low ionic strength, below about 100 mM, the pH dependence of the N-S

transition is stronger than at high ionic strength, as shown in Fig. 3.5a,b. Suspen-

sions at higher pH (higher surface charge) consistently enter a smectic phase at lower

concentrations. This is surprising because at the isotropic-nematic transition, where

the charge dependence is well described by Deff, the surface charge dependence of

the phase transition is very small [56]. Additionally, the non-linearity of the Poisson-

Boltzmann equation predicts that the long-range electrostatic potential between rods

is insensitive to surface charge changes and thus pH changes [1, 57]. The high sensi-

tivity of the N-S transition to changes in pH indicates that the charge independent

nature of both Deff and Da does not correctly characterize the electrostatic interac-

tions at the N-S transition.

It is also unexpected that M13 and fd would have different phase behavior

even when both virus have the same predicted surface charge of 7e−/nm, as shown

in Fig. 3.4c. At low ionic strength the phase behavior is similar, but fd suspensions

consistently enter the smectic phase at a slightly higher concentration. At high ionic

strength, the reverse is true; fd has a lower phase transition concentration than M13

suspensions, as mentioned above. At low ionic strength, the slight difference in phase

transition concentrations between M13 at pH 8.2 and fd at pH 5.2 could be due

the measured increase in pH at low ionic strength and low pH. Shifts in the pH,
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particularly near the viral pKa (pKafd = 4), i.e. at pH 5.2, can shift the viral surface

charge. Because the measured pH is higher than the original buffer, the actual surface

charge of the fd particles at pH 5.2 may have increased slightly. A small increase in

the surface charge of the fd samples would account for the disagreement with the M13

measurements. We stress however, that this high sensitivity of the N-S transition to

surface charge differences, is not predicted by either Deff or Da.

The difference between M13 and fd saturation concentrations at high ionic

strength and equal surface charge (Fig. 3.5c), however, is not well explained by this

argument. At high ionic strength, the measured pH of the concentrated virus so-

lutions is not significantly different from the initial buffer pH, as mentioned in the

Materials and Methods. However, at high ionic strength (I>110 mM) adjacent virus

surfaces are separated by distances smaller than the virus diameter (6.6 nm) [42],

which is on the order of the spacing between viral coat-proteins (1.6 nm) and the

Debye screening length κ = 3.0 Å/
√

(I) = 0.9 nm. Because the rods are separated

by distances on the order of the Debye screening length, the actual surface charge

configuration of the viral rods can no longer be approximated as a continuous charge

distribution as is done in the effective diameter calculation. Furthermore, it has been

shown theoretically that discretization of the surface charges can change the pre-

dicted counterion condensation when compared to the non-linear Poisson Boltzmann

equation [61]. Perhaps it is because we are in the regime where the surface charge con-

figuration can no longer be neglected that we observe charge-configuration-dependent

saturation of the nematic-smectic phase transition. Theoretical models or simulations

of the electrostatic interactions of a dense, rod-like polyelectrolyte system, which in-

clude the detail of the surface charge configuration may shed light on the experimental

differences between M13 and fd nematic-smectic transitions at high ionic strength.
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3.5 Conclusion

In summary, we have presented the nematic-smectic phase diagram as a function of

length, surface charge and ionic strength. We observed that in the semiflexible-rod

limit the N-S phase boundary is independent of rod flexibility in contrast to the

strong flexibility dependence seen at the isotropic-nematic transition. By studying

the ionic strength dependance of this transition we observed that renormalizing φS by

Onsager’s effective diameter does not produce an ionic-strength independent phase

transition concentration, which would be necessary to compare the flexible-rod phase

behavior to hard-particle theories. Scaled particle theory and Kramer and Herzfeld’s

avoidance diameter qualitatively reproduce the observed N-S phase behavior, but

more theoretical work is needed to find a way to compare the charged-flexible rod

results to the hard-flexible rod theories available. Furthermore, significant differences

were measured between M13 and fd N-S phase behavior, even when they shared the

same surface charge. In Chapter 4 we similarly measure a difference in the cholesteric

pitch in M13 fd suspensions when they also had equal surface charge. These results

indicate that the electrostatic interactions between these rods are much more compli-

cated than can be accounted for by calculating the interparticle potential assuming

a uniform renormalized surface charge. We hypothesize that the electrostatic inter-

actions between rods could be influenced by the configuration of the charged amino

acids on the rod surface. Experimental confirmation of this could be found by measur-

ing M13 and fd equations of state (pressure vs density), and thus the particle-particle

interactions, as a function of solution salt and pH, as in techniques developed for

DNA [62].
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Chapter 4

Searching for the origin of chirality

in the cholesteric phase of virus

suspensions by varying viral charge

and DNA/protein interactions

In this Chapter we present measurements of the cholesteric pitch of suspensions of

chiral rodlike fd and M13 virus as a function of changing electrostatic interactions be-

tween virus particles and changing interactions between DNA base pairs within the

virus particles. The electrostatic interactions are changed by changing the solution

ionic strength and/or viral surface charge. Surface charge is altered both by changing

solution pH and by comparing the two viruses, fd and M13, which differ only by the

substitution of one charged for one neutral amino acid per virus coat protein, respec-

tively. The inter-base-pair interactions are altered by the addition of silver ions, which

complexes with the DNA, into the solution. With these measurements we hope to

better understand the relationship between the intrinsic chirality of the virus particles

and the macroscopic chiral nematic phase. We present evidence that both electro-
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static and viral DNA/coat protein interactions directly affect the cholesteric phase.

Future directions for experiments to probe the correlations between DNA/protien

interactions and the cholesteric phase are also discussed.

4.1 Introduction

The charged semiflexible rodlike viruses fd and M13 are formed by a single stranded

DNA around which 2700 coat proteins are helicoidally wrapped. They are therefore

chiral rods exhibiting a helical charge distribution. They are also structurally identical

accept for the substitution of a single neutral amino acid in M13 for a charged one

in fd on each of the 2700 coat proteins. In solution, both viruses exhibit a cholesteric

phase, where the rods orient locally about a nematic director which twists 360o over

a finite length. This length is referred to as the cholesteric pitch. Molecular chirality,

however, does not guarantee a macroscopic chiral structure such as a cholesteric phase

[63]. Other chiral viruses such as Tobacco Mosaic Virus (TMV) [64], and Pf1 [65], a

virus with a helical structure extremely similar to fd and M13, exhibit only a nematic

phase. Pf1 and fd, however have distinctly different DNA structures within the protein

coat [66]. In this Chapter we propose that altering the DNA structure within the virus

may influence the presence (or absence) of a cholesteric phase by altering the helicity

of the whole virus via the viral DNA/protein interactions. We test this hypothesis by

measuring the cholesteric pitch as a function of added silver ions, which intercalate

into the enclosed viral DNA and have been shown to alter the microscopic helical

properties of the enclosed DNA [67, 68]. Additionally, previous measurements have

shown that ionic strength is one of the major physical parameters controlling the

macroscopic chirality of colloidal liquid crystalline suspensions [65, 38]. In hopes of

further understanding the role of electrostatic interactions between charged helical

rods and the observed macroscopic chiral properties, we directly probe the effect of
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virus surface charge on the bulk chirality of the cholesteric phase by modifying both

the surface chemistry of the rods and the solution chemistry, by changing pH.

Previously, M13 and fd virus rods have been shown to undergo a liquid crys-

tal phase transition from the isotropic phase to the cholesteric phase with increasing

concentration. This phase transition has been studied in detail for suspensions of

both M13 and fd virus as a function of ionic strength and pH (see Chapter 2) and has

been compared in detail to Onsager’s theoretical predictions for the isotropic-nematic

phase transition for charged semiflexible rods [1, 23]. The electrostatic interactions

between the rods in the isotropic phase are typically incorporated into hard-rod the-

ories by rescaling the bare rod diameter D to a larger effective diameter Deff which

depends on the ionic properties of the particle and the solution [1, 16]. This effective

diameter depends only weakly on the bare surface charge of the rods (Fig. 2.1), due

to counterion condensation near the colloid surface which renormalizes the bare sur-

face charge to a lesser effective charge nearly independent of the bare surface charge.

Correspondingly, the properties of the isotropic-cholesteric phase transition, which is

predicted to occur at a volume fraction of φ = 4Deff/L [1, 41] for long rigid rods, are

expected to depend only weakly on the viral surface charge [30]. In Chapter 2, this

was confirmed.

In the nematic (cholesteric) phase, there is an added effect called “electrostatic

twisting” which acts to misalign adjacent charged rods. Electrostatic twisting is

characterized by the parameter h = κ−1/Deff, where κ−1 is the Debye screening length

[16]. Twist manifests itself by increasing the effective diameter. Electrostatic twist is

also nearly independent of surface charge. Measurements in Chapter 2 of the nematic

order parameter of the unwound cholesteric phase confirm that the nematic ordering of

the viral suspensions is insensitive to any differences surface charge between M13 and

fd virus particles. In this Chapter, however, we test the sensitivity of the cholesteric

pitch to surface charge changes and find that it is indeed sensitive to the surface
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charge of the virus particles.

Theoretically, the transmission of microscopic helicity to macroscopic helicity

is thought to be through direct chiral electrostatic interactions [69, 70]. In one of

the most advanced theories of cholesteric assemblies of charged rods, proposed by

Kornyshev for DNA, the specific details of the helical symmetry of a macromolecules

surface charge pattern are suggested to be responsible for macroscopic twist [69].

However, recent results obtained on virus sterically stabilized with neutral polymer

indicate that these theories probably do not capture all the essential elements of the

connection between microscopic and macroscopic chirality in colloidal liquid crystals.

Specifically, a system of fd virus sterically stabilized with neutral polymer has been

shown to exhibit ionic strength dependent cholesteric properties [38], even though the

rods have ionic-strength independent phase behavior [37]. In this system macroscopic

chirality exists without direct electrostatic interactions. The helicity which drives the

existence of the cholesteric phase is then somehow transmitted through the polymer

layer. It has been proposed that, because fd is slightly flexible it may have helical

superstructure (curl) associated with it [38]. This would allow for the helical infor-

mation to be transferred through the polymer layer. Previous studies have shown

that similar phages (phage X) indeed have a visible curl [71]. In Fig. 4.1 we present

electron micrograph images comparing the curliness of X to that of fd. We hope that

by changing the interactions within the virus we can learn more about the factors

which contribute to the existence of a macroscopic cholesteric pitch and perhaps a

macromolecular curl.

In this Chapter we present evidence that suggests that the details of both the

internal and external virus structure contribute to the manifestation of the macro-

scopic cholesteric phase. We first present measurements of the cholesteric pitch of

virus suspensions at different ionic strengths as a function of solution pH and viral

surface charge configuration. By changing the pH of the solution we change the sur-
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Figure 4.1: Scanning transmission electron micrographs of (A) semiflexible M13 and
a single particle of tobacco mosaic virus (TMV), which is a rigid rod 300 nm in length
and 18 nm in diameter. (B-D) show the curly X phage. Magnification in (B) is the
same as in (A), whereas (C) is 2x higher and (D) is 2x lower than in (A). (Figures
courtesy of L. Day and are from a collaboration of L. Day and J. Wall.)

face charge of either it fd or M13 virus. Similarly, by comparing the pitch of M13 and

fd virus at constant pH and ionic strength we change the surface charge configuration

of the virus by changing the virus type. Measurements of the cholesteric pitch using

these two different techniques for changing the rod surface charge underline the role

of surface charge on the macroscopic expression of chirality. Doping the viral DNA

with silver ions, which bind strongly to the base pairs [67, 68], on the other hand, may

be able to probe for the proposed macroscopic helicity. Additionally, the DNA and

viral coat proteins have been shown to be rigidly linked [72], subsequently, changes in

DNA configuration could be translated to changes in the whole virus structure. By

measuring the cholesteric pitch as a function of the addition of silver ions into the

viral DNA we test the sensitivity of the macroscopic chiral structure to changes in

the microscopic structure of the viral DNA.
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Figure 4.2: (a)Schematic of fd structure showing relative positions of the different viral
coat proteins surrounding the single stranded viral DNA. (b) Schematic of the helical
positioning of the p8 proteins about the viral DNA. The p8 proteins are arranged in
two alternating layers of five-fold symmetry. The distance between adjacent subunits
p = 16 Å. The black lines in (b) indicate the 160 Åhelical pitch of the coat proteins
about the DNA. Image in (b) from [73].

4.2 Properties of the virus structure

The physical properties of M13 and fd are known [14] and include their length L = 0.88

µm diameter D = 6.6 nm, persistence length 2.2µm, and molecular weight 1.64×107

g/mol. The details of the helical protein structure, however, are of most interest in

this Chapter. As mentioned above, the viral rods are composed of a single stranded

DNA about which 2700 copies of its major coat protein, often referred to as g8p or

p8 after the eighth gene which encodes the protein, are helicoidally wrapped in two

layers of five-fold symmetry. Each of the layers is repeated along the long axis of the

virus every 3.3 nm. This virus structure is illustrated schematically in Fig. 4.2. The

helical pitch of the DNA within the virus is measured to be 2.7 nm [67]. The major

coat protein (p8) (shown in Fig. 4.4 for fd) is responsible for both the viral surface

charge and the charge neutralization of the DNA within the protein shell.
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Figure 4.3: Amino acid sequence of the major coat protein of several bacteriophages.
C-terminal ends, which are closest to the DNA, are lined up on the right for com-
parisons with each other. The n/s ratio is calculated by dividing the number of
nucleotides (n) by the number of protein subunits (s). The qs/qDNA ratio is calcu-
lated by dividing the charge of the protein subunit (qs) by the number of negative
charges from the phosphate backbone of the viral DNA per protein subunit(qDNA).
qs is equal to the sum of positive amino acids and the negative terminal Carboxylate
(q = −1 for pH>pKa=3.4), and qDNA is equivalent to n/s. Most of the sequences are
available in Genbank (sequences provided by L. Day.)
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Figure 4.4: (color online) Structure of major coat protein (p8) for fd virus. The
protein is oriented such that the observer is looking at the protein from the inside
of the virus. The negative amino acids are labeled and are colored green and the
positively charged amino acids are colored purple. Charges are for neutral pH. The
hydrophobic amino acids are colored orange. Image created using RasMol software
from protein data base structure 1IFI [33].

In Fig. 4.3 we present a representative list of the major coat protein structures

for many phage particles. For all the phage proteins listed there is consistently a large

sequence of amino acid residues which are neutral separating the external charged

residues from the internal charged residues. Measurements of the titration curves of

fd and Pf1 indicate that the amino acid residues which are exposed to the surface

are responsible for the viral surface charge [34]. The residues which are located on

the interior of the virus are therefore responsible for charge neutralization of the

viral DNA. From Fig. 4.3 we can identify approximately three types of protein-DNA

charge interactions. For charge neutralization we expect the ratio qs/qDNA = 1,

where the positive charges from the amino acid residues on each protein subunit

(qs) are equalized by the negative charges from the phosphate backbone of the DNA

qDNA = 1e−/nucleotide. For most of the phages, however, the charge of the interior

of the coat protein (C-terminus ) is slightly larger than the charge of the DNA from

the phosphate backbone, or qs/qDNA & 1. Phage with this qs/qDNA ratio include fd

66



and M13. For fd it is believed that qs/qDNA is actually one; the remaining negative

charge required for neutralization may come from the slight negativity of the Thymine

and Guanine nucleosides (pKa=9.2, negative at high pH, neutral at low pH) [34].

However the amount of negative charge from the nucleosides is fairly small, as most

of our experiments are at a pH much lower than 9.2. If the charge is not neutralized

within the fd particles it is possible that there will be some internal stress which we

suggest may effect the macromolecular shape of the virus.

For a few phages including Pf1, the phosphate backbone charges are completely

neutralized by the positive amino acids on the coat proteins, and for C2 and Pf3, there

are not enough charged amino acids to neutralize the DNA, qs/qDNA < 1. Charge

neutralization within the virus particles is what allows the particles to maintain their

stability. The phage fd-K48T, for example, differs from fd only by the replacement

of the neutral T48 for the positively charged K48 in fd. In order to maintain charge

neutrality within the virus core, fd-K48T grows to be 35% longer than the wild type

fd even though the enclosed DNA is the same length [74]. Presumably this is because

35% more p8 proteins were needed to neutralize the negatively charged DNA.

We mention the three types of charge ratios because these protein/DNA inter-

actions seem to correlate to the structure of the DNA within the phage, and to the

presence/absence of a cholesteric phase. First, it is well known that fd, which may

have a net positive charge internally, exhibits a well defined cholesteric phase [65].

The fd phage is also known to exhibit a DNA structure oriented such that the charged

phosphate backbone is near the coat proteins (“inside-in”). Pf1, which is stoichiomet-

rically neutral inside, however does not exhibit a cholesteric phase. It, furthermore,

has a different DNA structure where the phosphate backbone is oriented towards the

inside of the DNA (“inside-out”). Additionally, new studies by S. Tomar and L. Day

have shown that Pf3 also exhibits a cholesteric phase [75]. The DNA structure of

Pf3 is also inside-out, but the structure contains a large hole in the center of the
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DNA which allows for the addition of metal cations into the virus interior [66]. These

metal cations relieve the positive charge deficit and help to neutralize the interior of

the phage. Qualitatively, there perhaps is a correlation between the difference in the

DNA structure and the presence of a cholesteric phase. We mention this correlation

to emphasize the plausibility of a link between the chiral DNA structure, chiral virus

structure, and the cholesteric pitch, which we will test in one way in this Chapter.

The composition of the major coat protein (p8) on M13 differs from that of

fd by only one amino acid. The negatively charged aspartate (asp12) in fd is substi-

tuted for the neutral asparagine (asn12) in M13 [33]. The single amino acid difference

between M13 and fd has a minimal effect on the virus structure, as determined pre-

viously by x-ray diffraction [76]. But the difference has a significant effect on surface

charge. The fd virus p8 protein has 5 negatively ionizable amino acids and one posi-

tively ionizable amino acid which are exposed to the virus surface. These amino acids

and the terminal amine, which contributes approximately 1/2 e+ at neutral pH, are

the only amino acids on the p8 protein responsible for the net viral surface charge as

a function of pH. At pH 7.2 the surface charge of fd is approximately 3.5e−/protien

subunit [34]. M13, correspondingly, has a surface charge of about 2.5e−/protein sub-

unit at neutral pH. The two particles have a total charge difference of approximately

30%. Additionally, the net surface charge of both virus particles can be altered by

changing the solution pH; for fd the viral pKa is approximately 3 [34].

4.3 Sample Preparation

The M13 and fd bacteriophages were prepared and purified from bacterial solutions

as previously described [36]. To study the role of surface charge on the cholesteric

pitch, samples were prepared at either pH 8.2 using a 20 mM Tris-HCl buffer or at pH

5.2 using 20 mM Sodium Acetate buffer adjusted with Acetic acid. At pH 8.2 fd has
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a surface charge of 10 e−/nm and M13 has a surface charge of 7 e−/nm. At pH 5.2

the surface charges are 7 e−/nm and 3.6 e−/nm, respectively. The surface charge was

determined by titration experiments (fd) [34], and by whole virus gel electrophoresis

(M13) as described in Chapter 2, Fig. 2.2. Ionic strength (I) was adjusted by adding

NaCl.

To study the effect of the viral DNA structure on the macroscopic cholesteric

pitch, fd suspensions were dialyzed against a 150 mM NaHBO3 (Boric Acid) buffer

at pH 8.6. The ionic strength of the buffering solution was calculated to be 30 mM.

Quantities of AgNO3 were added in m = 0, m = 0.5 and m = 1 quantities, where m is

the molar concentration of DNA nucleotides (0.26 mg/ml fd=0.031 mg/ml DNA=0.1

mM nucleotides). The monovalent silver ion, Ag+, diffuses freely through the viral

coat protein and binds with the DNA within the virus [67, 68]. The silver ions have

a very high affinity for the amines (N) in the nucleotides and have been shown to

complex with the base pairs at these amines in place of the hydrogen-bonding. This

strong binding site accounts for the binding of silver ions up to m = 0.5. For silver

concentrations above m = 0.5 the remaining binding sites are weaker. The complexing

of the silver to the nucleotides is also completely reversible by the addition of NaCl

to the solution. After the silver is allowed to diffuse into the virus, the virus solution

is centrifuged at ∼200 000 g to pellet the virus. The virus pellet is then resuspended

in 150 mM Borate buffer. This helps to assure that any unreacted Ag+ or NO−
3

are removed from the solution and do not contribute to the ionic strength of the

solution. Disassociation of the silver from the DNA after centrifugation is predicted

to be minimal [75].

Typically fd concentration is measured via absorption spectrophotometry at

269 nm, optical density OD
3.84ml/mg
269nm for a sample 1 cm thick, however, the silver

cations alter the absorption spectra of the virus particles. To determine the fd con-

centration in the presence of silver cations, the absorption was measured instead at
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260 nm where absorption is independent of silver concentration [67]. The OD at 260

nm was determined to be OD
3.49ml/mg
260nm , again for a 1 cm sample, from the equation

OD260 = OD269 ∗ A260/A269 using a silver-free sample of fd. To confirm the concen-

tration of the silver intercalated within the virus the difference between the actual

absorption at 269 nm and the predicted absorption at 269 nm as calculated from the

absorption at 260 nm, or A269 −A260 ∗ 3.84/3.49, was first calculated. This difference

was plotted as a function of fd concentration to approximate the absorption due to

silver at cfd = 0.238 mg/ml which has been measured previously [67]. The values of

m determined from absorption measurements agreed with the amount of silver added

initially to the solution. Typically, any silver excluded from within the virus particles

is removed from solution before the silver concentration is measured. Consequently

we assume that there are no extra silver ions in solution and that the absorption

change measured is due only to intercalated silver ions.

In all instances samples of different virus concentrations and different buffer-

ing solutions were added to 0.7µm diameter glass capillaries (Charles Supper Co.),

gently centrifuged to pull the sample to one end of the capillary, sealed within the

glass, and then allowed to equilibrate for more than three days. After equilibration

the samples were observed microscopically under crossed polarizers. From the “fin-

gerprint” texture characteristic of cholesteric phases, measurements of the cholesteric

pitch were made, as illustrated in Fig. 4.5. The pitch P of the cholesteric phase is

defined by the distance between rods of the same orientation rotated by 360o. Under

crossed polarizers the length of the cholesteric pitch spans two bright and two dark

lines, regions where the rods are parallel, or perpendicular to the plane of observation,

respectively, as indicated in the Fig.4.5. The pitch was measured in multiple locations

throughout the sample to get a measure of the variability.
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Figure 4.5: “Fingerprint” texture of a cholesteric phase of fd virus, as observed by
optical microscopy between crossed polarizers after a few days of equilibration fol-
lowing the preparation of the sample. Picture was taken of a sample contained in
a cylindrical capillary, where planar anchoring of the liquid crystal to the glass sur-
face occurs. Dark lines correspond to regions where the rods are perpendicular to
the plane of observation and bright lines correspond to regions where rods are in the
observation plane.

4.4 Results

4.4.1 The cholesteric pitch of M13 and fd suspensions as a

function of ionic strength

To study the surface charge dependence of the cholesteric pitch we first measured the

variation of the cholesteric pitch of M13 virus suspensions with concentration and

ionic strength at pH 8.2 and compared it to similar measurements made previously

for fd suspensions [35]. These measurements are presented Fig. 4.6. At a constant

concentration, both M13 and fd exhibit increasing values of the cholesteric pitch with

increasing ionic strength. Motivated by previous theories [77, 78], the evolution of

the pitch of the cholesteric phase with concentration was fit to the form P = a + c−b,

where P is the measured pitch and c is the concentration. Surprisingly, M13 exhibits

the same scaling exponent b≈1.4 independent of ionic strength, while fd exhibits a

scaling exponent which increases with increasing ionic strength, b = 1.5 to 1.8 [35].

Furthermore, because b remains constant we can measure the increase in pitch with

increasing ionic strength to be P ∝ afit ∝ I0.3.
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The measured values of the pitch are close to previous theories for semiflexible

hard rods with a threaded screw-like structure where the exponent was predicted to be

1.66 [77] and 2.0 [78]. However these theories do not predict the strong ionic strength

(and in the following section, surface charge) dependence observed. The increase

in pitch with ionic strength can be qualitatively understood by a straightforward

electrostatics argument. First, we have shown with x-ray scattering experiments

that the interparticle distance (dinter) is roughly independent of ionic strength in the

cholesteric (nematic) range [42]. Second, electrostatic interactions, and therefore Deff

decrease with increasing ionic strength. Third, charged rods have a lower energy when

they are perpendicular to each rather than when they are parallel; this electrostatic

twisting increases with increasing electrostatic interactions. Therefore at a given

concentration of virus i.e. at a given interparticle distance dinter, the cholesteric angle

between adjacent rods tends to decrease with increasing ionic strength, subsequently

increasing the pitch as observed in Fig 4.6.

Why does the scaling exponent of the concentration dependence of the cholesteric

pitch vary with ionic strength for fd suspensions but remain constant for M13 suspen-

sions? M13 and fd differ only by their surface charge. It is possible that this surface

charge difference is responsible for the difference in ionic strength dependence of the

cholesteric pitch, however, the results presented in the following section indicate that

the cause of this strange difference between M13 and fd pitch is more subtle. We will

discuss the implications of these results further in the following two sections.

4.4.2 The cholesteric pitch of M13 and fd suspensions as a

function of solution pH

To systematically investigate the relationship between the viral surface charge and the

cholesteric pitch we measured the concentration dependence of the pitch of M13 and

fd suspensions as a function of pH. Decreasing the pH of the virus solution decreases
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Figure 4.6: Concentration dependence of cholesteric pitch of suspensions of (a) M13
and (b) fd for (♦)110 mM, (•) 60 mM, and (�) 15 mM ionic strength pH 8.2. For
M13 b = −1.4 for all ionic strengths. The inset in (a) displays the coefficient a for
M13 suspensions, which increases with ionic strength.
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the viral surface charge [34]. In Fig. 4.7 we plot the cholesteric pitch for M13 and fd

suspensions measured at pH 8.2 and pH 5.2 at low and high ionic strength. The pH

dependence of the pitch of M13 suspensions at high ionic strength is not presented

because at pH 5.2 the samples appeared completely nematic, implying the pitch was

larger than measurable in the 0.7 mm capillaries. With decreasing pH (decreasing

surface charge), the cholesteric pitch of both M13 and fd suspensions increases (a

increases). Additionally, the scaling exponent b is roughly independent of pH (in-

dependent of surface charge) for both M13 and fd suspension. These measurements

show that the cholesteric pitch, depends on both the pH (viral surface charge) and

ionic strength of the solution.

The results in Fig. 4.7 provide us with some interesting insight into the cor-

relation between electrostatic interactions and cholesteric pitch. First, the strong pH

dependence of the pitch indicates that subtle changes in electrostatic repulsion created

by changing viral surface charge have a large effect on macroscopic chiral properties.

Recall that for highly charged particles, like these viruses, the electrostatic interac-

tions, typically described by Deff, are predicted to be insensitive to surface charge

differences due to condensation of the virus counterions and subsequent effective sur-

face charge renormalization [58]. This insensitivity to surface charge is apparent in

the properties of the isotropic-cholesteric phase transition which is well described by

the charge independent Deff, as presented in Chapter 2 (see for example Figs. 2.7 and

2.9). However, even near the isotropic-cholesteric transition, the cholesteric pitch can

differ by up to 40% between samples at pH 5.2 and at pH 8.2. Due to the inherent

twisting nature of the cholesteric phase, small changes in electrostatic repulsion be-

tween adjacent rods as a result of a change in surface charge, creates small changes

in the nearest-neighbor twisting. These small changes are amplified over many rods

spanning the length of the cholesteric pitch resulting in a measurable change in the

cholesteric pitch. Subsequently, the cholesteric pitch is highly susceptible to small
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Figure 4.7: Concentration dependence of cholesteric pitch at pH 8.2 and 5.2 for (a)
M13 at 15 mM ionic strength, (b) fd at 15 mM ionic strength and (c) fd at 110 mM
ionic strength. At pH 8.2 the virus is in a Tris-HCl buffer, and at pH 5.2 the virus
is in a Sodium-Acetate, Acetic Acid buffer. At pH 8.2 M13 has a surface charge of 7
e−/nm and fd has a surface charge of 10 e−/nm. At pH 5.2 M13 has a surface charge
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changes in surface charge. An increase in pH, which increases the surface charge,

increases electrostatic repulsion resulting in a smaller pitch as measured.

Second, the results in Fig. 4.7 indicate that it may be possible to separate the

ionic strength and surface charge dependence of the cholesteric pitch. Specifically, at

a constant ionic strength, decreasing pH increases the coefficient a in the equation

P = ac−b. Similarly, independent of pH, ionic strength alone determines the scaling

exponent b. This suggests that the two chiral interparticle interactions which con-

tribute to the formation of the cholesteric pitch, the intrinsic chiral structure of the

rod, and the electrostatic twist h act independently. As h depends predominantly on

ionic strength, and only weakly depends on surface charge, we can deduce that the

ionic strength dependence of b is influenced predominantly by electrostatic twisting.

This agrees with the measurements for both fd and M13, but the ionic strength in-

dependence of b for M13 suspensions is still not explained by this relationship. Also,

this suggests that changes in the microscopic chiral structure of the rods, caused by

changing the solution pH, influence the macroscopic pitch (by shifting a). This is

plausible as changing pH indeed changes the microscopic chiral structure by changing

configuration of charges on the surface of the virus.

Third, the observation of a nematic phase in M13 suspensions at high ionic

strength and low pH suggests that strong electrostatic interactions between the helical

virus rods are required for the realization of a macroscopic cholesteric pitch. We note

that experimentally this is the condition of smallest electrostatic interactions. This

is somewhat contradictory to the previously mentioned recent measurements of the

cholesteric pitch of fd coated with polymer [38] which exhibit a cholesteric phase

even at 100 mM ionic strength, even though their isotropic-nematic phase transition

is independent of ionic strength (independent of electrostatic interactions). These

two results suggest that the electrostatic interactions from the surface charge of the

polymer coated fd (10e−/nm) is somehow strong enough to induce macroscopic chiral
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structure even in the presence of a sterically stabilizing polymer coating, but are not

strong enough to form a cholesteric phase for M13 at low pH.

4.4.3 Comparison of M13 and fd suspension measurements

In the previous section we found that by changing the viral surface charge via the so-

lution pH, the cholesteric pitch shifted by a constant amount (a changed, b remained

constant), independent of virus concentration. We now present the surface charge

dependence of the cholesteric pitch as measured by comparing M13 (7e−/nm) to fd

(10 e−/nm) at pH 8.2 as a function of concentration and ionic strength. In Fig. 4.8 we

compare measurements of the pitch of M13 and fd suspensions for three different ionic

strengths. Immediately we see that the change in the cholesteric pitch as a function

of surface charge depends on the virus concentration, in contrast to the pH mea-

surements. Specifically, at low concentrations the M13 and fd suspensions have very

similar values for the pitch. This is consistent with the agreement between M13 and fd

coexistence concentrations (Chapter 2). However, with increasing concentration, the

disagreement between M13 and fd measurements increases significantly, particularly

at high ionic strength. The increasing difference between M13 and fd measurements

originates from the difference in scaling exponents (b = 1.5 − 1.8 for fd and b = 1.4

for M13). We note that the pitch of the fd suspensions is consistently smaller than

the pitch of the M13 suspensions at high concentrations, which is consistent with

the fd having a higher surface charge. Whereas the agreement between fd and M13

measurements at low concentration suggests charge insensitivity, the disagreement of

the pitch measurements at high concentrations suggests the opposite.

Because the charge dependence of the cholesteric pitch as measured in Fig. 4.8

differs quite significantly from the charge dependence measured as a function of pH

(Fig. 4.7) we hypothesize that there is another variable which is causing the difference.

To further investigate the conflicting measurements of the charge dependence of the
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cholesteric pitch we compare the cholesteric pitch measurements from M13 and fd

suspensions when both virus have the same surface charge. In Fig. 4.9 both M13

(pH 8.2) and fd (pH 5.2) have a measured surface charge of 7 e−/nm. Surprisingly,

M13 and fd have measurably different values of the cholesteric pitch at both 15 mM

and 110 mM ionic strength even though they have the same surface charge. As

M13 and fd only differ by their surface charge configuration we propose that it is

indeed this subtle structural difference between the two viruses which leads to the

different cholesteric behavior. This structural difference could also explain why the

scaling exponent b changes with ionic strength for fd, but remains constant for M13

as illustrated in Fig. 4.8. Similar surprising results are observed in measurements of

the nematic-smectic phase transition of M13 and fd suspensions where both M13 and

fd had a surface charge of 7e−/nm and yet their phase transition concentrations were

measurably different, as shown in Chapter 3. Observing a difference in cholesteric

pitch behavior between M13 and fd suspensions strengthens the theoretical suggestion

that the surface charge configuration directly influences the macroscopic expression

of chirality [69].

4.4.4 Measurements of the cholesteric pitch as a function of

DNA/coat-protein interactions

In Fig. 4.10 we present measurements of the cholesteric pitch of fd as a function

of concentration with silver ions added at concentrations of m = 0,m = 0.5 and

m = 1. Recall that the silver ions are thought to intercalate between the single

stranded DNA base pairs within the virus particles [67, 68]. Approximately one silver

molecule will form a bridge between two nucleic acids on opposing strands, and as

mentioned previously, we assume there is no extra silver in solution. This is confirmed

by the measurement of an isotropic-cholesteric phase transition concentration which is

independent of m. Free ions would alter the solution ionic strength and subsequently

79



virus concentration [mg/ml]a.

b.

ch
ol

es
te

ric
 p

itc
h 

[µ
 m

]
 

I  = 15 mM

8030

30
M13 pH 8.2

         b  = 1.41

 

100

100

 

 

 

 

fd   pH 5.2
         b = 1.51

100

100
 fd pH 5.2

          b=1.85 

I=110 mM

40

 

 

 M13 pH 8.2
          b=1.4ch

ol
es

te
ric

 p
itc

h 
[µ

m
]

virus concentration [mg/ml]

Figure 4.9: Concentration dependence of cholesteric pitch of (�) M13 and (◦) fd at
(a) 15 mM and (b) 110 mM ionic strength. M13 is at pH8.2 in a Tris-HCl buffer,
and fd is at pH 5.2 in a Sodium-Acetate Acetic Acid buffer. Both M13 and fd have
a surface charge of 7e−/nm.

80



shift the isotropic-cholesteric phase transition concentration (or the cholesteric pitch).

Even with large variation of the pitch within each sample (large error bars), we observe

in Fig. 4.10 that the intercalation of the silver and subsequent bridging between the

DNA strands increases the cholesteric pitch, particularly at m = 1. The scaling

exponent of the pitch with concentration also increases with increasing silver ions. A

further confirmation that the silver ions are not in solution is that the change in pitch

at constant concentration due to adding AgNO3 is much larger than the corresponding

change in pitch with added NaCl at the same concentration (and smaller increase in

ionic strength). For example, at 30 mg/ml adding m = 1 AgNO3 (8 mM) increases

the pitch by 60 µm, whereas adding 40 mM NaCl increases the pitch by only 35 µm.

At high concentrations, the cholesteric pitch becomes independent of concentration

due to pre-smectic unwinding of the pitch [65]at some minimum value which increases

with increasing m.

We have previously proposed that these chiral viruses have a macromolecular

helicity associated with them. One possible explanation for the measured change in

the cholesteric pitch with the addition of silver ions is that the fd rods are changing

their helical properties. This change in helical properties would arise from a change in

viral DNA configuration due to the intercalation of the silver ions into single stranded

DNA. Because the DNA and viral coat proteins are rigidly coupled [72], changes in

DNA configuration could be translated to changes in the whole virus structure. We

note that the addition of silver to single stranded DNA solutions has been shown to

have only a small effect on the DNA configuration [68]. This is also true for the virus

configuration [68]. However, as mentioned before, small changes in the interactions

between adjacent particles can be amplified over many rods in the cholesteric phase,

resulting in measurable pitch differences.
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4.5 Discussion

The measurements of the pitch of M13 and fd suspensions as a function of pH, ionic

strength and intercalated silver ions present us with many surprising results. We can

conclude with reasonable confidence that the chirality of the nematic phase, as shown

in the cholesteric pitch, is strongly coupled to both the ionic strength of the solution

and surface charge of the rods. In fact, the scaling exponent b in the relationship

between pitch and virus concentration P = ac−b, depends only on the ionic strength

of the solution for fd suspensions (Fig. 4.7). Additionally, because of the coupling

of nearest-neighbor interactions in the cholesteric phase, we find that the cholesteric

pitch is extremely sensitive to differences in viral surface charge (Fig. 4.7 and Fig.

4.8) even in a regime where the surface charge is predicted to be well screened by

counterion condensation and added salt ions. For both fd and M13, the offset a of

the pitch curve depends strongly on the pH of the solution (viral surface charge), at

a constant ionic strength (Fig. 4.7). Oddly, M13 has a scaling exponent b which is

independent of ionic strength (Fig. 4.6). As a result, M13 and fd exhibit different

phase behavior, even when they are known to have the same surface charge: fd at pH

82



5.2 and M13 at pH 8.2 (Fig. 4.9). This difference in cholesteric pitch between fd and

M13 suggests that perhaps the cholesteric pitch is quite sensitive to the viral surface

charge configuration, in agreement with theoretical predictions [69]. This is in strong

contrast to the surface charge independent measurements of the isotropic-cholesteric

coexistence concentrations (Chapter 2).

The appearance of a nematic phase in M13 suspensions in the limit of low pH

and high ionic strength suggests that there is a transition from a cholesteric phase

to a nematic phase for rods with small interparticle electrostatic interactions. It has

been suggested that fd and M13 have some macroscopic “corkscrew” like curling asso-

ciated with them which allows the chiral information of the virus to be incorporated,

even through a polymer layer [38], into the interparticle interactions. The lack of a

cholesteric pitch for M13 at low pH and high electrostatic screening suggests that per-

haps this curling, if it is real, depends on electrostatics. Measurements of the pitch of

M13 suspensions at low pH for intermediate values of the ionic strength would more

clearly determine whether the M13 suspensions are indeed nematic or just have a

very large pitch. Furthermore, measurements of the pitch of polymer coated fd and

M13 as a function of pH would help to determine the role of electrostatics versus the

proposed curling in the pitch of polymer coated rods.

Finally, the change in cholesteric pitch due to the intercalation of silver ions

within the fd virus DNA confirms the intrinsic coupling between the DNA and the

coat proteins which in turn influences the cholesteric phase, perhaps via the proposed

curling mechanism. Comparisons of these results to measurements of the pitch of

other phages with known macroscopic helicity, like X phage (Fig. 4.1) [71], under

similar conditions of added silver ions should reveal more about the relationship be-

tween the internal chirality of the virus and the transmission of that chirality to the

bulk nematic phase. Similarly studying the cholesteric phase of mutants of the fd

virus which have altered DNA/protein interactions, obtained by mutation of amino
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acid residues near the C-terminal from positive to neutral and vice-versa, can provide

further insight into the relationship between the DNA-coat protein interactions and

the chirality of the cholesteric phase. Finally, we suggest measurements of M13 sus-

pensions in the presence of the silver ion to determine if the difference between M13

and fd cholesterics is related to their internal structure.
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Chapter 5

Measurements of the orientational

distribution function of the

nematic phase of fdvirus

suspensions via x-ray diffraction

5.1 Introduction

In Chapter 1, we described the theory developed by Onsager describing the free en-

ergy of a system of hard-rods at the second virial level. All theoretical predictions

for the properties of this phase transition, such as the coexistence concentrations and

the nematic order parameter, depend on the functional form of the orientational dis-

tribution of the rods in the nematic phase [1]. Onsager chose one test function and

in a later review paper Odijk showed that qualitatively similar results for the prop-

erties of the phase transition can be found by choosing a Gaussian test function [21].

The exact form of the orientational distribution function that satisfies the Onsager

theory can be obtained via series expansion [79, 41, 7] or by direct iterative methods
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[15, 80]. But experimentally determining the orientational distribution function of

the nematic phase of a colloidal rod system is the most sensitive test of whether a

system is described by Onsager’s theory.

In this chapter we present measurements of the orientational distribution func-

tion and nematic order parameter of fdvirus via x-ray diffraction. We explore the

behavior of the nematic phase of fdvirus, investigating the concentration and ionic

strength dependance of the spatial and orientational ordering measured from both

interparticle and intraparticle diffraction data. We present measurements of the ori-

entational ordering of the nematic phase in coexistence with the isotropic phase as

a function of ionic strength and compare the results with the predictions for semi-

flexible rods. Previously, measurements of the orientational distribution function of

a nematic phase have been made either from form factor scatter as in work done by

Oldenbourg et. al. on TMV [81] and work done by Groot et. al. and Kassapidou

et. al. on persistence lengthed DNA fragments [82, 83] or from structure factor scat-

ter as in work done by Davidson et. al. [84]. Using fdas our model rod allows us

to measure the orientational distribution function from both intraparticle scattering

and interparticle interference scattering. This permits us to experimentally resolve

the question of whether or not correlations between angular and spatial order present

in interparticle scatter influence the measurement of the order parameter. By measur-

ing the birefringence of each sample we also determined the saturation birefringence

of fd. This permits measurements of the order parameter to be made using birefrin-

gence methods, which involve much simpler and inexpensive techniques than x-ray

diffraction.

This Chapter is organized in the following manner. In section 5.2 we describe

the virus system and the experimental methods. In section 5.3 qualitative observa-

tions about the diffraction data are made. This is followed by an extensive description

of the analysis technique used to extract the measured orientational distribution func-
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tion from the x-ray diffraction data in section 5.4. Quantitative measurements of the

nematic spatial ordering and orientational ordering are presented in section 5.5. This

section includes first a subsection describing the measured spatial ordering and then

subsections presenting the measured orientational distribution function and the order

parameter of the nematic suspensions of fd. Section 5.6 summarizes the significant

results of this paper.

5.2 Materials and Methods

The fdvirus was prepared using standard biological protocols found in Ref. [36] and

described in detail in Appendix A. The purified virus was extensively dialyzed against

a 20 mM Tris-HCl buffer at pH 8.2 and the ionic strength was adjusted by adding

NaCl. To observe the effect of charge on the nematic phase, samples were prepared

at different concentrations and ionic strengths. The fd concentration was measured

with a UV spectrometer by absorption at 269 nm with an absorption coefficient of

3.84 cm2 mg−1.

X-ray diffraction was done at the SAXS station on beamline 8-ID at the Ad-

vanced Photon Source at Argonne National Lab. The beam flux is 2×1010 photons/s

for a 50× 50µm beam with a photon energy of 7.664 KeV (λ=1.617 Å). The samples

were a suspension of monodisperse fd in the cholesteric phase, sealed in ∼ 0.7 mm di-

ameter quartz x-ray capillaries. Cholesteric samples were unwound and aligned in a 2

T permanent magnet (SAM-2 Hummingbird Instruments, Arlington, MA 02474)[48],

forming a single domain nematic phase parallel to the long axis of the capillary and

the magnetic field, which we will call ẑ. The free energy difference between the

cholesteric and nematic phases is negligible, and the theory of the phase behavior

of the isotropic to nematic transition can be applied equally well to the isotropic to

cholesteric transition observed in fd [30]. The magnetic field does not have a signifi-
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cant effect on the ordering of the nematic phase [49, 39, 50]. Samples had to remain

in the magnetic field for a minimum of 15 minutes at low concentrations and a max-

imum of about 8 hours at the highest concentrations. The strength of the magnetic

field limited the maximum concentration at which we could unwind the cholesteric

phase into a mono-domain nematic to about 100 mg/ml [65].

To view the liquid crystal with a polarizing microscope, samples were placed

in an index matching water bath to correct optical distortions produced by the cylin-

drical capillary. This was done while the samples were within the magnet in order to

maintain the sample as a mono-domain nematic. Alignment of the nematic sample

was checked with the polarizing microscope, and using a 3λ Berek compensator, its

optical retardance was measured. By measuring the optical retardance R and the

sample thickness within the capillary d we can calculate the sample birefringence

∆n = R/d. Birefringence is measured because it is a simple way to determine the

nematic ordering of a sample as it is equal to the nematic order parameter S times

a constant ∆nsat intrinsic to the sample material [85]. In this system, ∆nsat is the

saturation birefringence of perfectly aligned fd, the value of which we have measured

and report in section 5.5. Details of the origin of the birefringence of anisotropic

particles are outlined in appendix 5.7. The magnet and sample were then mounted

in a vacuum chamber such that the sample was in the beam line, and the magnetic

field was perpendicular to the incoming beam.

When the solutions of fd were exposed to x-rays for extended time, disclination

lines that matched the pattern traced by the beam could be seen with a polarizing

microscope. Since our samples were exposed for varied times, a series of x-ray diffrac-

tion patterns from the samples were collected with increasing x-ray exposure time

to quantify sample damage and its effects on the scattering pattern. The polarizing

microscope revealed sample changes after ∼ 6 s of exposure, but the angular spread

of the diffraction peaks was not affected until exposure times increased above 10 s, at
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which point the angular interference peak scatter broadened significantly. The effect

of exposure for < 10 s on the calculation of the order parameter was not measurable.

Data was collected for the interparticle interference scatter by averaging ten 10 s

exposures taken at different 50 × 50µm sections. To observe the much less intense

intraparticle scatter, the sample was continuously moved through the 50 × 50µm

beam allowing for a total exposure of 120 s. A single long exposure was used to

image intraparticle scatter as it resulted in less noise than multiple short exposures

because readout noise on the CCD was higher than the dark current. Readout noise

and solvent scatter were subtracted from data images during analysis, but over the

q-range which was analyzed this background scatter was very uniform and could be

approximated as a constant.

5.3 Observations

The two dimensional scattered intensity of low angle interparticle and high angle

intraparticle interference peaks are shown in Fig. 5.1 for concentrations spanning the

range over which fdis nematic at 10 mM ionic strength. The angular spread of both

types of scatter broadens with decreasing fdconcentration or increasing ionic strength,

corresponding to an increase in disorientation of the rods. The low angle structure

factor peak exhibits a typical “bow-tie” pattern as shown in Fig. 5.1a, characteristic of

interparticle interference [86]. The maximum of the scattering vector qr of this intense

structure factor peak is inversely proportional to the average interparticle separation,

and the radial width of the peak is inversely proportional to the correlation length

of the interacting rods. We note briefly that the observation of a structure factor

peak in our system of fdand in other lyotropic liquid crystal systems [82, 81, 84]

contradicts theoretical predictions by van der Schoot and coworkers which predict

that the angular dispersion of nematic rods should destroy spatial order [87, 88].
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Figure 5.1: Contour plots of scattering as a function of scattering vector ~q[Å−1] from
nematic fddue to (a) interparticle scatter and (b) intraparticle scatter; the zeroth and
±first layer lines are shown in (b). The interparticle scatter shown in (a) is hidden
behind the beamstop in (b) which is located on the left side of the images. From
top to bottom the concentration of the samples are 93 mg/ml, 33 mg/ml, and 15.5
mg/ml. Samples shown are at an ionic strength of 10 mM (20mM Tris buffer), pH 8.2.
The magnetic field and virus orientation are perpendicular to the scatter as shown in
the schematic. Ψ is the angle from the equator on the detector film. Note the scales
are different in (a) and (b).

At larger scattering angle, the zeroth and ±first fdlayer lines are visible as shown

in Fig. 5.1b. These intraparticle peaks are much less intense than the interparticle

interference peaks and are the result of single particle scatter arising from the helical

packing of the viral proteins. The layer lines occur at intervals along the ẑ direction

proportional to the reciprocal of the axial repeat of the helical protein coat, which

is 33Å [89]. Because of discrepancy in both intensities and scattering angle between

the interparticle and intraparticle scatter, we were unable to image both the high and

low angle scatter simultaneously.

Because of the short ranged positional order in the nematic phase these in-
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traparticle interference peaks should be independent of interparticle correlations. We

confirmed this hypothesis by observing that the location of the peaks does not change

with concentration as do the interparticle peaks. We also compared our data to pub-

lished fiber diffraction results for M13 [45, 90]. M13 is also a filamentous bacterio-

phage, which differs from fdby only one amino acid per coat protein: their structures

are otherwise identical and virtually indistinguishable by x-ray fiber diffraction [76].

Upon comparing published fiber diffraction data with our data from nematic fd, we

observed that they were similar, but that the fiber diffraction patterns had Bragg

peaks due to the hexagonal packing of the virus in the fiber which were absent in our

nematic diffraction data. We also noticed that the horizontal location of the single

particle peaks in the fiber diffraction was 4% larger than the location of our solu-

tion diffraction peaks, indicating that the fiber diffraction was done on virus which

had a smaller diameter than those in our nematic samples. The fibers are partially

dehydrated, so it is not surprising that they become compressed. The layer line spac-

ing, however, was not altered, indicating that no stretching of the virus occurs in

the fibers. From these observations we concluded that the high angle scatter from

the nematic fdwas independent of interparticle correlations. Detailed descriptions of

the analysis of both the interparticle and intraparticle diffraction continues in the

following sections.

5.4 X-ray Diffraction Analysis

5.4.1 Interparticle versus Intraparticle Interference

In x-ray diffraction, the scattered intensity consists of two parts, intraparticle scatter

F (~q) and interparticle scatter S(~q). The intensity can be written as a product of the
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two types of scatter

I(~q) = NF (~q)S(~q, f(~q)) (5.1)

where ~q = 4π sin Θ
2
/λ is the three dimensional reciprocal vector in cylindrical coordi-

nates ~q = (qr, qz, φ). Θ is the angle between the incident and reflected x-ray beams of

wavelength λ. In a uniaxial nematic, qr is perpendicular to the nematic director and

the scattered intensity is independent of the azimuthal angle φ about the director. If

the system is oriented such that the nematic director is in the ẑ direction, ~q can be

described by ~q = (qr, qz). The intraparticle interference, or form factor F (~q), contains

information about the structure of the individual particles. F (~q) can also be written

as < f(~q)2 > where f(~q) is the fourier transform of the electron density of a parti-

cle and the average is over all the particles and their orientations. The interparticle

interference, or structure factor S(~q), contains information about the positional and

orientational correlations between particles. The structure factor depends on the po-

sitions of the centers of gravity of two scatterers ~Ri, ~Rj and their relative orientations

[91]:

S(~q) = 1 +
1

NF (~q)
<

N
∑

i6=j

ei~q( ~Ri− ~Rj)fi(~q)fj(~q) > (5.2)

The orientation of the particles is included in f(~q) and the average <> is over all

particles and their orientations. For scatterers of isotropic shape, fi(~q) = fj(~q) and

the structure factor and the form factor decouple, but for anisotropic scatterers,

fi(~q) 6= fj(~q) unless the particle orientations are the same. Therefore, in contrast

to scatter from spheres, the structure factor S(~q) of rods can not, in general, be

decoupled from its anisotropic form factor F (~q).

In a nematic system, however, there is no long ranged translational order. As

a result, S(~q) approaches unity in the limit of high ~q, and if S(~q) = 1 the scattered
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intensity is due only to the intraparticle interference diffraction and I(~q) = F (~q). In

this regime the angular distribution of the scattered intensity is a function only of the

single particle orientational distribution function. Because of the crystalline internal

structure of viruses such as fdand Tobacco Mosaic Virus (TMV), x-ray diffraction

produces a complex pattern of intraparticle scatter at high ~q which can be used to

measure the single particle orientational distribution function of the viruses [81].

At low ~q the scattered intensity is dominated by S(~q), and the angular distri-

bution of the interparticle interference scatter is influenced by the angular and spatial

correlations between neighboring rods. When intraparticle interference scattering is

absent or too weak to interpret, as in thermotropic liquid crystal systems [92], or

the system of lyotropic vanadium pentoxide (V2O5) [84], x-ray investigations of the

nematic orientational distribution rely on measuring the angular distribution from

interparticle interference scattering. In this case one does not calculate the single

particle orientational distribution function, but instead the coupled fluctuations of

neighboring rods; this is predicted to overestimate the value of the nematic order

parameter for highly ordered samples [92, 93].

5.4.2 Method for determining the orientational distribution

function from diffraction images

Because of the short ranged positional order of the nematic phase, the high angle

scattered intensity should be independent of interparticle correlations S(qr, qz) = 1.

We have demonstrated above that this is true for fd. In this case, the intraparticle

scattered intensity of a system of rods is related to the orientation of those rods in

the following manner [81, 94]:

I(qr, qz) =< Is(qr, qz) >=

∫

Φ(Ω)Is(qr[Ω], qz[Ω])dΩ (5.3)
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Where Ω is the solid angle (θ, φ) a rod makes with respect to the nematic director θ

and azimuthally with respect to the incident beam φ. Because fdis axially symmetric

Φ(Ω) simplifies to Φ(θ). Is(qr, qz) is the axially symmetric three dimensional form

factor f(~q)2 of a single rod. Φ(θ) is the orientational distribution function (ODF) of

the rods. Because the form of the ODF is not known exactly, three test functions

were used:

Φ(θ) = A exp− θ2

2α2 (0 ≤ θ ≤ π/2)

= A exp− (π−θ)2

2α2 (π/2 ≤ θ ≤ π) , (5.4)

Φ(θ) = A exp− (sin θ)2

2α2 (0 ≤ θ ≤ π) , (5.5)

Φ(θ) = α cosh(α cos θ)
4π sinh α

(0 ≤ θ ≤ π) , (5.6)

where α sets the width of each of the peaked functions, and A is the normalization

constant such that
∫

Φ(θ) sin(θ)dθdφ = 1. Eq. 5.6 is normalized. The first ODF is the

Gaussian used by Odijk [21], the second is the function used by Oldenbourg et al. [81]

in their study of diffraction from nematic TMV, and the third was defined by Onsager.

The second moment of the orientational distribution function, or the nematic order

parameter, S (Eq. 5.5.3) was determined for the orientational distribution functions

which best described the diffraction patterns.

Intraparticle interference analysis method

Previously Oldenbourg et. al. measured the ODF from the intraparticle interference

scatter of TMV by simplifying Eq. 5.3 to a one dimensional integral at a constant

qr [81]. This one dimensional method could not be used for intraparticle fdscatter

because fdhas a protein coat with a pitch much larger than that of TMV, 33Å versus

23Å respectively, resulting in layer line overlap at low concentrations. Instead, the

scatter from intraparticle interference was analyzed by comparing it to a simulated
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scatter created from the evaluation of Eq. 5.3 using a three dimensional model for

the single rod form factor and a trial ODF.

A single long rod Fourier transforms as a disk of thickness 2π/L oriented

perpendicular to the long axis of the rod[95]. Because of the helical periodic structure

along the long axis of fd, the Fourier transform of a single fdconsists of a series of

disks separated by a distance proportional to the reciprocal of the period [96]. This

is shown schematically in Fig. 5.2a. The radial intensity along these disks is a

summation of Bessel functions whose exact form depends on the structure of the rod.

When projected onto a screen these disks are visible as layer lines. The images shown

in Figure 5.7b show the zeroth and ± first layer lines.

For our model, the radial intensities of the disks were approximated by [94]

Is(qr, qz) = Im(qr, qz)
√

2παqr. (5.7)

√
2παqr is the disorientation correction term and Im is the scattered intensities along

the middle of the zeroth and ± first layer lines of our most aligned nematic sample,

S = 0.96 and Gaussian α = 0.11 as determined by the interparticle interference

peak. For a small amount of disorientation of rods, the radial intensity decreases as

1/qr. The effect of the disorientation is illustrated in Fig. 5.2b. This approximation

method was developed by Holmes and Leigh, and is valid if the sample from which

the Im is taken was well aligned [94]. The layer lines are located at qz = 0,±0.33Å,

respectively.

In order to model diffraction from a nematic phase of fd, this single particle

scattered intensity is multiplied by a test ODF and integrated over all possible angles

of orientation, as in Eq. 5.3. The intersection of the resulting three dimensional

nematic form factor and the Ewald sphere is then “projected” onto a two dimensional

“screen” and a final two dimensional image is created, as shown in Fig. 5.2a. The
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shell thickness of the Ewald sphere was chosen to equal the energy uncertainty of the

experimental beam ∆E/E = 5 ± 1 × 10−4. The “screen” image is then convolved

with the Gaussian point spread function of the experimental x-ray beam on the CCD

camera which was approximated as exp[−r2/2σ2] with σ = 0.0063 Å−1, which is

slightly larger (6 pixels at 0.00105 Å−1/pixel) than the photon spread quoted by the

CCD camera manufacturers (4 pixels). A series of two dimensional images were made

for different orientational distribution functions with different amounts of disorder,

examples can be seen in Fig. 5.7b.

The intraparticle interference data that fell on the detector in the range of

qr = 0.19−0.33 Å−1, which encompasses the lowest qr peak on each of the three layer

lines visible in the interference pattern, was fitted to the model diffraction images.

For each diffraction pattern, an α was found for each trial distribution function which

minimized a computed chi-squared value

χ2 =
∑

i

((Idatai
− B) + CImodeli)

2 (5.8)

where B and C are fitting parameters and i sums over the pixels in the scattered

image. B was calculated once for each scattered image, and was not adjusted when

comparing different ODF’s.

Interparticle interference analysis method

To measure the orientational distribution function from the interparticle peak, the

method of Oldenbourg et al. was used. Because we measure the angular spread of

only one diffraction peak, Eq. 5.3 simplifies to a one dimensional integral at constant

qr:

I(Ψ) =

∫

Φ(θ)Is(ω) sin ωdω (5.9)
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where I(Ψ) is the angular intensity distribution along an arc drawn at constant radius,

Ψ is measured from the equator on the detector film, Φ(θ) is the angular distribution

function of the rods and ω is the angle between the rod and the incoming beam. Ψ,

θ and ω are related by cos θ = cos Ψ sin ω. Even though it was originally used for

analyzing intraparticle scatter, this equation is identical to that used for analyzing

thermotropic interparticle scatter, except that Oldenbourg’s method includes a term

which accounts for the length of the rod by defining the single rod scattering as

Is(ω) = 1/ sin ω, for small θ, where ω is the angle between the rod axis and the

x-ray beam as illustrated in Fig. 5.2c. This 1/ sin ω proportionality comes from the

understanding that the Fourier transform of a rod of finite length is a ring with a

finite thickness, and as ω decreases 1/ sin ω increases and more of the disk intersects

the Ewald sphere and is subsequently projected onto the detector screen.

Analysis done on interparticle interference from thermotropic liquid crystals

typically defines Is(ω) = 1 [92, 93, 97]. It has been previously shown through calcu-

lations that neglecting the angular width when calculating the order parameter from

interparticle interference scatter results in inaccurate values for the nematic order

parameter for S > 0.8 [92]. However, in our analysis we observed that changing Is

from 1/ sin ω to one in the interparticle interference scatter analysis did not have a

significant effect on the calculated value of the nematic order parameter, nor did the

χ2 values reveal any information as to which Is better describes the data. We chose

to include the effect of rod length in our interparticle scatter analysis to be consistent

with our intraparticle scatter analysis, which requires a knowledge of the rod length.
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Figure 5.2: (a)Schematic of the Fourier space of a single rod tilted at a slight angle. (b)
Schematic showing how the intensity along the center of the layer lines decreases as qr

when there is a small amount of angular disorder. Three rod axes (vertical) are labeled
1,2,3 along with their corresponding contribution to layer lines 0,1,2 (horizontal) as
shown. (c) Schematic showing effect of the thickness of the form factor disks on
the scatter with changing ω. The right hand image in (c) is an enlargement of the
equatorial intersection of the Ewald sphere and Is.

Figure 5.3: (a) Equatorial intensity profile, I(qr), and (b) equatorial structure factor,
S(qr), for three representative samples at 10 mM ionic strength pH 8.2. Smaller inset
graph is the binned cylindrically averaged electron density ρ used to calculate the
equatorial form factor shown as a dashed line. The deviation of the structure factor
from one at high qr is due to both background noise in I(qr), which hides the actual
form factor, and a loss of accuracy in the model form factor at high qr.
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5.5 Results

5.5.1 Nematic spatial ordering

The location of the maximum, qm, of the first interference peak and its radial width,

∆qm, were measured along the equator, qz = 0, in order to obtain information about

the spatial ordering of the system. Because we are only analyzing data along the

equator, these properties can be determined by dividing the equatorial form factor,

F (qr, 0), from the scattered intensity peaks, I(qr, 0), and then by fitting the remaining

structure factor peak, S(qr, 0), to a gaussian S(qr, 0) = e−(qm−qr)2/2(∆qm)2 as done in

Ref. [98] . I(qr, 0) and S(qr, 0) are shown in Fig. 5.3 for three different samples.

The equatorial form factor scatter was approximated by the Fourier transform of the

known equatorial projection of the cylindrically averaged electron density of fd[99].

The electron density was approximated by binning the radial electron density into 10

sections as illustrated in the inset of Fig. 5.3a. The location of the equatorial peaks

produced by the Fourier transform of the electron density agree with the equatorial

form factor data obtained at higher angle, but the increase in S(qr, 0) at high qr shown

in Fig. 5.3 indicates that this approximation is only qualitatively correct at high qr

and that the presence of background noise in the interparticle diffraction data hides

any high qr form factor information. At high concentrations the scattered intensity

is much stronger than the readout noise and as a result we are able to analyze the

structure factor data to higher qr than at low concentrations.

The qm and ∆qm measured are plotted as a function of concentration for two

different ionic strengths in Fig. 5.4a. With increasing concentration c, the average rod

separation decreases as c−1/2 (qm ∝ c1/2) as expected for both isotropic and nematic

suspensions of rods [91, 82]. At a given concentration the rod separation remains

constant and the variance increases with decreasing ionic strength. The electrostatic

repulsion present between the rods causes the rods to maintain the maximum sep-
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aration possible, but a smaller effective diameter at high ionic strength allows for

more fluctuations. The number of rods per correlation length qm/∆qm is plotted as a

function of concentration in Fig. 5.4b. The concentration dependance of qm/∆qm is

much more significant at 10 mM ionic strength, than at 110 mM, indicating that at

high ionic strength the rods are less correlated.

It is interesting to note that the second interference peak is much weaker than

the first interference peak, indicating a large Debye-Waller factor. This is in contrast

to charged 3D spherical and 2D disk systems which show a much stronger second,

and even third interference peak [100, 101]. The structure factor of nematic fdalso

contrasts that of nematic end-to-end aggregated TMV, a very rigid rod, which has

a structure factor closely resembling that of the 2D disk systems [98]. One way to

interpret the large and sharp first peak in the structure factor of fdis that flexible

nematic rods have long range spatial correlations similar to a dense fluid of disks.

However the near absence of secondary peaks in the structure factor implies that

fdparticles have a greater degree of positional disorder about their average position

than do disks. Perhaps the flexibility of fdaccounts for this dramatic difference in

spatial organization.

5.5.2 Experimental determination of the nematic orienta-

tional distribution function

By examining the χ2 values obtained from orientational analysis (Section 5.4) of the

inter- and intra-particle scatter, and the residues (Idata-Ifit) from the interparticle

scatter orientational analysis we determined that analysis of x-ray diffraction data

does not yield a unique orientational distribution function. The Gaussian and the

Onsager distribution function each fit the intensity data equally well when comparing

residues and χ2 values from each of the two functions. However, we were able to

eliminate Oldenbourg’s distribution function from the possible ODF forms because
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Figure 5.4: (a) The concentration dependance of the maximum qm of the interparticle
interference peak. The average rod separation is a distance of 2π/qm Å. The equation
of the curve fitted to the combined data sets is qm = 0.004c1/2. The inset graph
shows concentration dependance of the variance of the interference peaks ∆qm. (b)
The concentration dependance of qm/∆qm, the number of rods per correlation length.
Squares (�) are at 10 mM and triangles (H) are at 110 mM ionic strength pH 8.2.
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it did not accurately model the tails of the diffraction data at low concentration.

This insensitivity of x-ray diffraction to the exact form of the ODF was predicted by

Hamley who showed that x-ray patterns are insensitive to higher order terms in the

spherical harmonic expansion of the orientational distribution function and therefore

only an approximation to the full orientational distribution function can be found

[102].

To demonstrate this assertion, the scattered interparticle intensity at a con-

stant radius of qr = 0.07 ± 0.001 Å−1 is plotted in Fig. 5.5a with the best-fit model

intensities for each of the three ODFs. Ψ is the angle from the equator on the detector

film as illustrated in Fig. 5.1a. The actual best-fit orientational distribution functions

calculated from these interparticle angular scans are shown in Fig. 5.6. The residues

calculated from the interparticle and intraparticle interference results for the three

samples are illustrated in Figs. 5.5b and 5.7c, respectively. The intraparticle scatter

residues shown are for the scattered intensity shown in 5.7a minus the model images

shown in Fig. 5.7b created with the Gaussian ODF. The intraparticle model scat-

ter produced relatively uniform residues indicating that it was a qualitatively good

model. In two dimensions (Fig. 5.7c), we were unable to distinguish differences be-

tween residue plots of ODFs of the same width, therefore residue analysis was limited

to the interparticle scatter (Fig. 5.5b).

At high concentration small systematic disagreements between the best-fit

models and the data are most visible in the residue plots in Figs. 5.5b and 5.7c,

but each of the three models and their respective ODFs are nearly indistinguishable.

Except at low concentration, the best-fit model intensities obtained from the three

distribution functions can not be distinguished from one another both by analyzing

residue plots and by comparing minimum χ2 values computed from the fitting routine.

At low concentration the systematic disagreements between the data and the fits are

lost in the noise, but disagreements in fits from different ODFs become visible. The
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Figure 5.5: (a) Angular intensity scan at qr=0.07 ± 0.001Å−1 from the three data
scatter shown in Fig. 5.1a with best-fit curves calculated from the three trial ODF.
Solid fit line represents fit of both the Gaussian and Onsager ODF’s, dotted line is
the fit of Oldenbourg’s ODF. (b) Residue (Idata -Ifit) plot. Ψ is illustrated in Fig.
5.1a.
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Figure 5.6: Orientational distribution functions calculated from the interparticle an-
gular intensity scan at constant radius qr=0.07 ± 0.001Å−1 shown in Fig. 5.5b.
Gaussian (thin solid line) , Oldenbourg (dotted line) and Onsager (thick solid line)
ODF are shown. Order parameters shown are calculated from each ODF. From top to
bottom the concentration of the samples are 93 mg/ml, 33 mg/ml, and 15.5 mg/ml.
The ionic strength of the samples is 10 mM, pH 8.2.
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Figure 5.7: (a) Contour plots from Fig. 5.1b of scattering from nematic fdsamples
due to intraparticle interference. Bottom scatter is at 15.5 mg/ml and top is at 93
mg/ml. Samples were at 10 mM ionic strength pH 8.2. (b) Simulated intraparticle
scatter using a Gaussian ODF which best fit the intraparticle scatter shown in (a).
(c) Residue (Idata − Ifit)/Ifit plot. Maximum residues in (c) are ±10%. The axis of
the plots are labeled in Å−1.

best fit model intensities from the Gaussian and Onsager ODFs are indistinguishable,

but the residues from the Oldenbourg ODF show disagreement, and the fits are

systematically higher than the background scatter at high angle Ψ. The calculated

Oldenbourg ODF also looks significantly different from the calculated Gaussian and

Onsager ODFs. At the isotropic-nematic transition the χ2 values computed from the

Oldenbourg ODF were also consistently higher. From these qualitative observations

we argue that the distribution function used by Oldenbourg et al. does not describe

our diffraction data as well as the Gaussian or the Onsager distribution function at low

concentrations. The Gaussian and the Onsager orientational distribution functions

fit the diffraction data equally well.

Because of small differences in the trial orientational distribution functions (as

illustrated in Fig. 5.6), best-fit ODFs vary slightly in their width, and subsequently

returned slightly different order parameters. But, the order parameters calculated

from the best-fit Gaussian and Onsager ODFs were in agreement with one another

for a given sample within the experimental uncertainty of ∆S/S < 6%. Order pa-
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rameters calculated with the Oldenbourg ODF were in common agreement at high

concentrations, where model scatter agreed with the data. The nematic order pa-

rameter calculated at multiple qr across interparticle peak also remained relatively

constant, ∆S/S ≤ 4%. Because we can not distinguish between the Gaussian and

the Onsager model scatter, the order parameters to be presented henceforth are an

average of the values calculated from only the Gaussian and the Onsager ODF, and

the uncertainty on the values given are a combination of experimental error and

uncertainty due to variation in order parameters from two trial ODFs.

5.5.3 Concentration and ionic strength dependence of the

nematic order parameter

The concentration dependance of the nematic order parameters was measured from

both the interparticle and intraparticle peaks and the resulting values are graphed in

Fig. 5.8. In Fig. 5.9 the order parameter of the nematic phase in coexistence with

the isotropic phase is plotted for five different ionic strengths as a function of concen-

tration. The coexistence concentrations are an increasing function of ionic strength.

Our analysis shows that the order parameters calculated from the interparticle and

intraparticle scatter are consistent with one another both as a function of concentra-

tion and of ionic strength, indicating that correlations in the interparticle peak do not

visibly change measured nematic order parameters. Fig. 5.8a shows data obtained at

an ionic strength of 10 mM and Fig. 5.8b shows data obtained at an ionic strength of

110 mM, pH 8.2. With increasing concentration, the order parameter increases until

it saturates near S = 1, and at constant concentration, the nematic order parameter

decreases with increasing ionic strength. At low concentrations, the scattered inten-

sity is spread over a large area due to the broad orientational distribution function,

which leads to a large decrease in the signal to noise ratio, increasing the variation in

the calculated order parameters to a maximum of ∆S/S ≤ 10%. The solid lined theo-
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Figure 5.8: Concentration dependence of the nematic order parameter. (a) is at 10
mM, and (b) is at 110 mM ionic strength and pH 8.2. Squares (�) are from the
interparticle interference peak, and open circles (◦) are results from the intraparticle
peak. The solid lines shown are for a scaled particle theory for charged semi-flexible
rods described in Chapter 1. Dotted lines are theoretical curves for charged rigid rods
in the Onsager model [80].
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retical curves shown in Fig. 5.8 were computed from the scaled-particle theory which

was described previously and includes semi-flexibility in the orientational entropy and

electrostatic interactions by way of Onsager’s effective diameter. For comparison, we

also include as a dotted line the concentration dependence of the nematic order pa-

rameter from Onsager’s theory for charged rigid rods at the second virial level as

calculated by Lee[80]. Onsager’s rigid rod theory is only valid at low concentrations

near the isotropic-nematic transition for which the second virial approximation holds,

whereas the scaled particle theory, which takes into account third and all higher virial

coefficients in an approximate way, allows for a more adequate prediction of data at

higher concentrations. The Onsager ODF was used in calculating each of these the-

oretical curves. The rigid rod theory does not agree with our data indicating that

though our rods are fairly rigid, flexibility significantly changes the concentration de-

pendence of the nematic order parameter. However, our results qualitatively agree

with the scaled particle theory at low ionic strength, and quantitatively agree at high

ionic strength. Deviation of the scaled particle theory from experimental results at

low ionic strength is most likely due to using the effective diameter approximation

to incorporate electrostatic interactions between the particles. This approximation is

also valid only at low concentrations for which the second virial approximation holds.

The order parameters calculated from the x-ray diffraction data were also com-

pared to birefringence measurements for the whole range of concentrations and these

results are plotted in Fig. 5.10. Birefringence was measured by the technique de-

scribed in Section 5.2. We expect ∆n/c = S∆nsat/c where ∆n is the sample birefrin-

gence and ∆nsat is the birefringence of perfectly aligned fd[85, 49]. We observed that

the x-ray order parameter measurements of S were indeed linear with the birefringence

measurements ∆n/c with a zero intercept. From this relationship, the saturation bire-

fringence per unit concentration was measured as ∆nsat/c = 3.8 × 10−5 ± 0.3 × 10−5

ml/mg using data from samples at five different ionic strengths. Previously, ∆nsat
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Figure 5.9: Concentration dependence of the order parameter of the nematic phase
co-existing with the isotropic phase as determined from the intraparticle peak (open
circles ◦) and the interparticle peak (solid squares �). Increasing coexistence con-
centration is due to increasing ionic strength [30]. The solid line is a linear fit to the
combined sets of data and is presented as a guide to the eye.

was measured by Torbet et. al. to be ∆nsat/c = 6 × 10−5 ml/mg. This value was

calculated by assuming S = 1 for solutions of fdat 16 mg/ml in 10 mM Tris-HCL

buffer at pH 7.5 in a 2-4 T magnetic field [49]. At 16 mg/ml we would expect the

nematic order parameter to be S ∼ 0.75 not S = 1, which would push the previously

measured ∆nsat to a higher value even farther away from our measured value. We

have no explanation why the previously published value is inconsistent with ours.

5.5.4 Comparison of nematic order parameter at coexistence

with theoretical predictions

Theoretical models suggest that semi-flexibility acts to significantly lower the nematic

order parameter at coexistence. For fd, a relatively rigid polymer with L/p = 0.4,

the nematic order parameter at coexistence is predicted to be S = 0.55, which is

significantly smaller than predicted for rigid rods, S = 0.79 [23]. Previous measure-

ments of the isotropic and nematic coexistence concentrations of fdare well known to

agree well with numerical results from Chen for L/p = 0.4 [30]. This order parameter
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Figure 5.10: Comparison of measured birefringence ∆n/c to the deduced x-ray order
parameter S. Open shapes are from intraparticle interference peak measurements.
Closed shapes are from interparticle interference measurements. The equation of the
fitted line is ∆n/c = (3.8 ± 0.3)S − (0.11 ± 0.19) where ∆n/c is in units of 10−5

ml/mg.

is predicted to remain constant independent of ionic strength, but in Figs. 5.9 and

5.11, a weak dependance of the order parameter with ionic strength is seen. In Fig.

5.11, the ionic strength dependance of the nematic order parameter at coexistence is

plotted as deduced from both x-ray diffraction and birefringence measurements. The

change in ionic strength from 5 mM to 110 mM corresponds to an L/Deff for the rods

changing from ∼ 40 to ∼ 85. As the effective aspect ratio for approaches the long rod

limit, L/Deff > 100, the coexistence order parameter decreases, approaching the theo-

retically predicted value of S = 0.55, as calculated by Chen for long semi-flexible rods

with a length to persistence length ratio, L/p = 0.4 [23]. Even though the persistence

length of fdvirus is more than twice its contour length, and thus can be considered

fairly rigid, all of our co-existing samples had a nematic order parameter significantly

lower than the Onsager prediction of S = 0.79 as measured by both diffraction and

birefringence.

To explain the ionic strength dependence of the order parameter at the isotropic-

nematic transition we turn to electrostatic interactions. Stroobants et al., have shown
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Figure 5.11: Ionic strength dependance of the order parameter of the nematic phase
co-existing with the isotropic phase as calculated by x-ray diffraction measurements
(solid squares �) and birefringence measurements (open triangles △). X-ray points
are an average of co-existence order parameters measured from inter- and intraparticle
scatter at the same ionic strength. Solid line shows the order parameter predicted by
scaled particle theory for charged semi-flexible rods as in Fig. 5.8.

theoretically that there is an additional electrostatic twisting factor which acts to mis-

align adjacent particles and decrease the nematic order parameter at coexistence [57].

This effect scales as h = κ−1/Deff where κ−1 is the Debye screening length. The effect

of h on the coexistence concentrations of the system is predicted to be small [57, 30],

as the nematic order parameter is predicted to increase 2.4% when decreasing ionic

strength from 110 mM to 5 mM, whereas we measure an increase of about 15%. De-

creasing the ionic strength of the solution is also predicted to increase the nematic

order parameter by way of increasing the electrostatic persistence length [51]. How-

ever this effect is also predicted to be small as the effective electrostatic persistence

length of fd(2.203 µm at 10 mM ionic strength) is less than one percent larger than

the bare persistence length( 2.2 µm). Nevertheless, the observed trend of increasing

order parameter with decreasing ionic strength suggests that electrostatics is signifi-

cantly affecting the nematic order parameter. It is also important to note that below

about 10 mM, the concentration of the virus may begin to have an effect on the ionic
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strength of the solution in that the concentration of the virus counterions may act

to increase the ionic strength. Overall, we expect and observe better agreement with

the theoretical predictions for the nematic order parameter at high ionic strength.

5.6 Conclusions

To summarize, we have observed, as predicted by Hamley [102], that the method of

using x-ray diffraction to calculate the orientational distribution function is insensitive

to the details of the form of distribution function used. Nevertheless, we were able to

rule out the function used by Oldenbourg et al. [81] because we could qualitatively

see that models created using this function did not fit the data equally well at low

concentration and at high angle Ψ from the equator on the detector. The Onsager

and Gaussian trial angular distribution functions fit the angular distribution of both

the intraparticle and interparticle diffraction peaks equally well and returned similar

values for the nematic order parameter. The concentration dependence of the nematic

order parameter at high ionic strength, or large L/Deff, as determined from both the

interparticle and intraparticle scatter agrees with that predicted by a scaled particle

theory of charged semi-flexible rods. At low ionic strength, theoretical predictions

qualitatively reproduce the concentration dependance of the order parameter. Similar

agreement of the concentration dependence of nematic ordering to Onsager’s theory

has been measured for other semi-flexible molecules [82, 83, 40]. This similarity

demonstrates the universality of Onsager’s theory and its applicability to charged

semi-flexible systems.

The nematic order parameters derived from both interparticle and intraparti-

cle scatter return similar results, implying that it is sufficient to use the easier, one

dimensional analysis of the interparticle interference peak to calculate nematic order

parameters as has been done for many years for thermotropic liquid crystals. It has
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also been shown that the relationship between the birefringence and the nematic or-

der parameter as calculated by x-ray diffraction is linear. From this relationship the

saturation birefringence of fdwas calculated. Subsequently, the order parameter can

also be obtained simply by measuring the birefringence of a sample of nematic fdand

rescaling it by the saturation birefringence. We note that the birefringence measure-

ments were less reproducible than diffraction measurements, as can be observed by

the large variance in the data points throughout the entire range of data shown in

Fig. 5.10.

The spatial ordering of nematic fdwas also explored. The structure factor had

a single large peak and a much diminished second peak in contrast to experiments

with TMV, a rigid rod [98].

At high ionic strength, or large effective aspect ratio, we observed that the

order parameter of the nematic phase coexisting with the isotropic phase was S ∼ 0.6,

close to the theoretically predicted value for semi-flexible rods and significantly lower

than the theoretical value of S = 0.79 for rigid rods. Agreement is very good with

scaled particle theory predictions for the order parameter S = 0.61. With decreasing

ionic strength however, a weak systematic increase in the nematic coexistence order

parameter was found. This is consistent with both a decrease in the twist parameter

κ−1/Deff and an increase in the electrostatic persistence length, though these effects

are predicted to be seven times smaller than observed. In order to fully understand

the interactions which are producing the nematic phase diagrams, particularly at

lower ionic strength where L/Deff is small, new theories and simulations need to be

developed which include a more complete picture of the complicated electrostatic

interactions.
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5.7 Appendix: Birefringence Calculation

The birefringence of an aligned nematic phase oriented perpendicular the incident

light is directly related to the second moment of the orientational distribution func-

tion. The following is a derivation of this relationship [103].

A light beam is directed along the y-axis through a magnetically aligned sample

with a polarization in the x − z plane. The polarization per unit volume, ~P , can be

related to birefringence by the following steps:

~P =
N

V
~p = Nα~E = χ~E =

(n2 − 1) ~E

4π
(5.10)

where ~p is the dipole moment of a rod,N
V

is the number of rods per unit volume,α

is the polarizability of a rod, χ is the susceptibility of the bulk solution of rods, and

n is the index of refraction, which is related to χ by n2 = ǫ = 1 + 4πχ, for uniform

χ. χ and α are both 3x3 matrices. Because the light is directed in the y direction,

the polarizations of interest are Px and Pz. The total birefringence of the sample,

∆n = nz − nx, for small deviations between nz and nx is derived by:

n2
z − n2

x ≈ (nz − nx)(nz + nx) ≈ (nz − nx)2∆n (5.11)

For a system of rods with a distribution f(Ω), the index of refraction can be written

as:

∆n =
4πN

2nV

∫

f(Ω)(αzz − αxx)dΩ (5.12)

where αzz and αxx are from the α matrix. The index of refraction (ni) in a given

direction only depends on the component of the polarizability(Pi) in the direction of

the field(Ei).

To determine αzz and αxx the α matrix is determined for an arbitrary orien-
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tation of a rod. In the rod frame, the polarizability is as follows

α =













α⊥ 0 0

0 α⊥ 0

0 0 α‖













(5.13)

where α⊥ is the polarizability perpendicular to the rods long axis, and α‖ is the

polarizability of the rod parallel to its long axis. To calculate polarizability of a rod

oriented at angles θ, φ in the lab frame, the rotation matrix needed is:

R =













cos φ cos θ sin φ − sin θ cos φ

− sin φ cos θ cos φ sin φ sin θ

sin θ 0 cos θ













(5.14)

this comes from rotating the rod coordinate system first by θ about the xrod-axis, then

by φ about the zlab axis. α in the lab frame is obtained by performing the matrix

multiplication [R][α][R]−1. The resulting values for αxx and αzz are:

αzz = α⊥ sin2 θ + α‖ cos2 θ (5.15)

αxx = α⊥ cos2 φ cos2 θ + α⊥ sin2 φ + α‖ sin2 θ cos2 φ (5.16)

These values can then be used in Eq. 5.12. After assuming that f(Ω) is cylindrically

symmetric and depends only on θ, and doing some algebra the following equation is

obtained:

∆n =
4πN

2nV
(α‖ − α⊥)

∫

2π
1

2
(3 cos2 θ − 1)d(cos θ) (5.17)

the integral is exactly the nematic order parameter, S. Rewriting the equation with

this knowledge gives,

∆n =
4πN

2nV
(α‖ − α⊥)S (5.18)
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if we define 4πN
2nV

(α‖ − α⊥) to be the birefringence per density then S = ∆n/∆nsat.
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Chapter 6

Nematic phase transitions in

mixtures of thin and thick colloidal

rods

In this Chapter, we present the first experimental measurements of the isotropic and

nematic phases of mixtures of thin, charged semiflexible fd virus, and thick, fd-PEG

created by covalently grafting poly-(ethylene glycol) to the surface of fd, rods. The

fd-PEG is sterically stabilized and its phase behavior is independent of ionic strength.

The fd is charged, therefore by varying the ionic strength of a mixture of fd and fd-

PEG, only the effective diameter of the bare fd rods changes, subsequently varying the

effective diameter ratio (d = Dfd-PEG/Dfd) from 3.7 to 1. In solution, binary mixtures

of fd and fd-PEG are shown to exhibit isotropic-nematic, isotropic-nematic-nematic

and nematic-nematic coexisting phases with increasing concentration. We measure

the binary phase diagrams as a function of composition, total concentration, and ionic

strength. We find a lower critical point in the nematic-nematic coexistence which has

not been observed previously. These experimental results are qualitatively described

with a rescaled Onsager-type theory for the phase behavior of binary rod mixtures.
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Measurements of the stability of nematic-nematic coexistence of bidisperse

mixtures of rods of different diameter and length are also presented in an appendix

at the end of this Chapter.

6.1 Introduction

The entropy driven phase transition of monodisperse suspensions of purely repulsive

rods from an isotropic to an aligned nematic phase has been extensively studied the-

oretically [1], in simulations [25] and in experiments [14, 40] over the past 50 years.

Binary mixtures of hard particles of different aspect ratios have an even richer phase

diagram. Theoretical studies of binary mixtures of hard rods predict that in addition

to isotropic-nematic (I-N) coexistence, isotropic-nematic-nematic (I-N-N), isotropic-

isotropic (I-I) and nematic-nematic (N-N) coexistence are stable when the length or

diameter ratio of the particles is large enough [6, 104, 8, 10, 105, 12]. Experimentally,

however, only I-N, I-N-N and N-N coexistence have been observed, and only in binary

length mixtures [40, 106, 107, 108]. Because of polydispersity, viscosity and/or weak

attractions, past experiments have been constrained to studies near the I-N transition

[40, 106, 107]. Consequently, the location and stability of N-N coexistence is still a

topic of much controversy. The phase behavior of binary hard rod mixtures was re-

cently predicted to include N-N coexistence constrained by an upper critical point at

rod concentrations above and I-N-N three phase region for rods of large size difference

[109, 8, 110, 105]. However it has also been predicted that N-N coexistence may be

stable in the absence of an I-N-N coexistence region, by way of a lower critical point

bounded N-N region [105]. In this Chapter we present experimental measurements of

the phase behavior of bidisperse mixtures of thin and thick rods of equal length and

multiple diameter ratios to very high nematic concentrations. These rods are strongly

repulsive and highly monodisperse. With phase diagrams well into the nematic region
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we experimentally answer the question of the evolution of nematic-nematic coexis-

tence in bidisperse mixtures [8, 110, 105]. We compare these results to the theoretical

predictions for bidisperse rod phase behavior [105].

The origin of liquid crystal phase formation in a bidisperse rod mixture is

closely related to monodisperse hard rod theory, which was originally developed by

Onsager [1]. Onsager showed that the decrease in orientational entropy present in an

aligned nematic phase is more than compensated for by an increase in the excluded

volume entropy of the rods. Onsager also extended his second virial theory for the

free energy of hard-rigid rods to binary mixtures [1]. The binary phase behavior at

the limit of the second virial coefficient (Onsager’s theory) has subsequently been

determined numerically for mixtures of different diameter [8], and different length

[110]. We note that many other studies of binary rod phase behavior have been

published [111, 10, 104, 12], however these studies use an analytical trial function

to describe the orientational distribution of the nematic rods. Minimizing the free

energy numerically has the advantage that the orientational distribution function

used, though not analytical, is exact. For monodisperse rod suspensions the difference

in predicted phase behavior between these two methods is small [112]. However,

in binary rod suspensions using an approximate orientational distribution function

predicts qualitatively different phase behavior from that predicted when the same free

energy is solved numerically [110, 109].

The description of the I-N transition at the level of the second virial expansion

of the free energy is quantitatively accurate only for particles of infinite aspect ratio

[1]. In this Chapter, we experimentally study the phase behavior of binary mixtures

of rods of finite aspect ratios. Correspondingly, to compare our experimental results

with theoretical predictions, we adopt a Parsons-Lee free energy, as used by Varga et.

al. [113, 114, 105] which can be thought of as an interpolation between the Carnahan-

Starling free energy for hard spheres and the Onsager free energy for long, hard rods,
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yielding the following expression:

βF

N
= const +

2
∑

i=1

xi(ln(ρ) + ln(xi) + σ(fi)) +

βFHS
exc

NvHS

2
∑

i=1

2
∑

j=1

∫ ∫

xixjvij(Ω1, Ω2)fi(Ω1)fj(Ω2)dΩ1dΩ2

In this equation β = 1/kBT (T is the temperature and kB is Boltzmann’s constant),

ρ = (N1 + N2)/V is the total number density, xi and fi are, respectively, the mole

fraction and orientational distribution function of particle i. The term σ is the single

particle orientational entropy term, vij is the excluded volume between particles i

and j, and Ω is the orientational unit vector (polar and azimuthal angles) [105]. In

the second term, βFHS
exc/NvHS = (4η − 3η2)/8(x1v1 + x2v2)(1 − η)2, where FHS

exc and

vHS are the residual free energy and volume of an equivalent hard sphere system,

η = ρ(x1v1 + x2v2) is the packing fraction, and v1 and v2 are the volumes of particles

1 and 2. Parsons-Lee scaling is appropriate for studying phase transitions between

isotropic and nematic phases, but not phases of higher order (smectic, columnar) as no

positional inhomogeneity is incorporated into the free energy. The theoretical phase

diagrams presented here are calculated numerically from this free energy functional

using techniques previously described [115, 105].

6.2 Experimental System

Experimentally, our system consists of mixtures of two well characterized systems,

suspensions of the charged semiflexible fd virus [30] and fd virus irreversibly coated

with the neutral polymer poly(ethylene glycol) (PEG) [37, 38]. The bare fd virus will

serve as our thin rods, while the polymer coated fd (fd-PEG) will be our thick rods.

Both pure fd and pure fd-PEG suspensions exhibit an isotropic-cholesteric transition.

Because the free energy difference between the cholesteric and nematic phases is
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small, comparison with nematic theories is appropriate [39]. Properties of the bare

fd include its length L = 880 nm, diameter D = 6.6 nm, surface charge of 10 e−/nm

at pH 8.2 and molecular weight Mw = 1.64 × 107 [14]. The virus has a persistence

length, defined as the tangent-tangent correlation length along a polymer, of P =2.2

µm. The fd virus was grown and purified following standard biological protocols

[116]. The fd rods are charged, thus to compare fd phase behavior with hard rod

predictions the electrostatic interactions are accounted for by rescaling the bare rod

diameter D to a larger effective diameter Deff, calculated from Onsager’s second virial

coefficient, which increases with decreasing ionic strength [1, 16]. Over a wide range

of ionic strengths, monodisperse suspensions of fd are known to undergo a phase

transition from an isotropic phase to a nematic phase which is accurately described

by Onsager’s theory for semiflexible rods with diameter Deff [30], as illustrated by the

squares in Fig. 6.1. The relationship between the isotropic coexistence concentrations

(ci) and the effective diameter can be calculated from Onsager’s theory and is equal to

ci[mg/ml]= 222/Deff[nm] for semiflexible rods with L/P = 0.4[37, 23]. This implies

that the interaction between the bare fdis additive. However, because Deff is not an

actual hard diameter, the interaction between bare fd and fd-PEG is non-additive, as

shown in the inset of Fig.6.1.

Our thick rods were created by attaching a 20,000 molecular weight [g/mol]

amino-reactive PEG (SSA-PEG20K, Shearwater Polymer Corp.) to the exposed

amino termini of the viral coat proteins. Monodisperse suspensions of these fd-PEG

rods have been investigated [37] and it has been shown that the dense polymer coat-

ing of approximately 200±30 PEG20K molecules per fd [38] acts as a steric stabilizer

above an ionic strength of 2 mM. In this regime, fd-PEG exhibits an ionic strength

independent isotropic-nematic phase transition (Fig. 6.1). The effective diameter of

the thick rods (virus+polymer) is calculated from the monodisperse isotropic coexis-

tence concentrations, resulting in a value of Dthick from 25 to 40 nm, depending on
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a.

b. c.

d.

e.

f.

Figure 6.1: (Color Online) Isotropic-nematic phase boundary as a function of ionic
strength for pure fd (squares) and pure fd-PEG (20,000 Mw)(triangles). The data
is taken from previous work [30, 37]. The theoretical relationship between the I-N
coexistence concentrations (ci) and the effective diameter ci[mg/ml]= 222/Deff[nm]
is shown by the solid line, as calculated from Onsager’s theory for semiflexible rods
with L/P = 0.4 [23, 37]. The concentration measured is the bare fd concentration,
the mass of the PEG is not considered. The illustrations show end-on pictures of
(a)fd at high ionic strength,(b) fdat low ionic strength and (c) and fd-PEG. The inset
illustrates the distance of closest approach for (d) two fd rods, (e) two fd-PEG rods,
and (f) fd and fd-PEG. Interactions are additive in (d) and (e), non-additive in (f).

the reaction conditions. Dthick was determined for each fd-PEG reaction and rods

with different Dthick were used separately.

6.3 Observation of bulk phase separation

To determine the binary phase diagram of fd and fd-PEG mixtures samples were

prepared at multiple virus compositions and concentrations. Virus suspensions were

dialyzed against 20mM Tris-HCl buffer at pH 8.15 with NaCl added to vary ionic

strength such that the diameter ratio Dthick/Dthin ≡ d varied from 1 < d < 3.7. To

hasten phase separation, samples were occasionally centrifuged at 3300g [m/s2]. We

verified that centrifugation did not alter the coexistence concentrations, a concern

raised by recent theory [117]. Bulk phase separation typically occurs on the order

of days to weeks. Phase separation yields either an isotropic phase (I) coexisting
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Figure 6.2: (Color Online) Phase separation of mixtures of fd and fd-PEG (20,000
Mw PEG) at 110mM ionic strength (d = 3.7) as viewed under crossed polarizers.
The isotropic phase is dark and the nematic phase is birefringent. Yellow color in the
nematic phases is due to the dye on the thick rods. The location of the samples on
the phase diagram is represented schematically in (a). (b) I-N coexistence. (c) Highly
fractionated I-N coexistence. In (c) a fd-PEG-rich nematic phase floats above the fd-
rich isotropic phase, even though the volume fraction of rods is higher in the nematic,
due to the difference in mass density between the two phases. The mass density
difference arises in part because of the difference in single particle densities ρ = 1.35
for fd and ρ = 1.007 for fd-PEG. (d) I-N-N triphasic region. (e) Schematic represen-
tation of the fractionation of thick and thin rods in the I-N-N triphasic region. (f)
Nematic-nematic demixing just above the triphasic region. (g) Highly concentrated
N-N coexistence showing strong fractionation of the thick (yellow, fd-PEG) and thin
(white, fd) rods. (h) Differential interference contrast microscopy image of low density
fd-PEG-rich nematic tactoids in coexistence with high density fd-rich nematic bulk
phase.
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with a nematic (N) phase, I-N-N three-phase coexistence, or N-N coexistence. This

confirms the theoretical predictions for the stable coexisting phases [8, 105]. Fig.

6.2 depicts these coexisting phases as viewed under crossed polarizers. Because of

our unique system N-N coexistence is very stable to high concentrations (see Fig.

6.2f,g). After equilibration, the concentrations of fd and fd-PEG in coexisting phases

were measured by absorption spectrophotometry. The optical density (A) of fd is

A269nm
3.84ml/mg for samples 1 cm thick. To independently measure the thin and thick rods

in the coexisting phases, fd-PEG was also labeled with fluorescein isothiocyanate

(FITC) dye molecules which have an optical density of A495nm
68000L/mol.

Samples which did not bulk phase separate were observed using fluorescence

and polarization microscopy. If in coexistence, droplets of one phase in another can

easily be seen, however microscopic coexistence did not necessarily result in bulk phase

separation even after many months. Fig. 6.2h shows a representative differential

interference contrast (DIC) image of nematic-nematic coexistence, which did bulk

phase separate after a few days. Strong difference in concentration is indicated by a

large difference in intensity between the two nematic phases in the DIC image.

6.4 Results

In Fig. 6.3 we present a characteristic phase diagram of an fd and fd-PEG mixture

at high ionic strength. At low concentrations of fd and fd-PEG the system is in an

isotropic phase. With increasing concentration of either rod the system will exhibit

isotropic-nematic coexistence. If the mixture is predominantly one type of rod (thin-

rich or thick-rich), only an I-N transition will occur. The I-N transition of thin

or thick rich samples the suspension will remain completely nematic to very high

concentrations. With roughly equal amounts of fd and fd-PEG the system will exhibit

I-N-N coexistence above the I-N transition. Additionally, in this region of equal
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Figure 6.3: Phase diagram of mixtures of fd and fd-PEG (20 000 Mw PEG) at 110
mM ionic strength (d = 3.7). Coexisting phases are indicated by dashed lines. Solid
lines are a guide to the eye indicating the phase boundaries.

ratios of fd and fd-PEG the composition of the isotropic and nematic phases is highly

fractionated. The thick rods partition into the nematic phase while the thin rods

remain in the isotropic phase. This partitioning is due to the fact that the thick rods

prefer alignment because of their comparatively large excluded volume interactions

[8]. The degree of fractionation in a coexisting sample can easily be determined

by the slope of the tie line. If there is no fractionation, equal ratios of thin and

thick rods will be in each of the coexisting phases and the tie lines will intersect

the origin of the graph. A fractionated sample will have different ratios of the two

particles in each of the two phases and the tie lines will not intercept the origin. At

higher concentrations N-N coexistence is stable from the region of I-N-N coexistence

to arbitrarily high concentrations. Partitioning of fd and fd-PEG is very strong the

N-N region, as well as in the I-N region.

In Fig. 6.4 we present the experimental phase diagrams of the bidisperse

mixture of fd and fd-PEG at four ionic strengths such that 1.1 < d < 3.0. At large

diameter ratios, d > 3.0 in Fig. 6.4a, large fractionation is seen in the isotropic-

nematic coexistence region, followed by a triangular I-N-N three phase region and
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Figure 6.4: (Color Online) Phase diagrams of suspensions of fd-PEG (20,000 Mw

PEG) mixed with fd at (a) 60 mM, (b) 50 mM, (c) 30 mM and (d) 5 mM ionic
strength pH 8.2. Above d = 3.0 I-N, I-N-N, and N-N coexistence is observed (a).
Below d = 3.0 N-N coexistence exists above a single phase nematic and the I-N-N
triphasic region is absent(b,c). Below d ≈ 2.0 only I-N coexistence is observable (d).
The legend for all four diagrams is in (d). Dark lines are guides to the eye representing
the phase boundaries of the two nematic phases and the isotropic phase. Dashed lines
indicate coexisting samples, and open squares are single phase nematic samples as
determined by fluorescence microscopy.
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N-N coexistence with increasing concentration. Almost complete partitioning of the

thick and thin rods is observed in the N-N coexistence region. The I-N-N coexistence

region becomes smaller as d decreases, and pinches off such that below about d = 3.0

the triphasic region vanishes. Between d = 3.0 and d ∼ 2.0 there is a continued

presence of N-N coexistence at high concentrations, even in the absence of a well

defined I-N-N triangle, suggesting a lower critical point bounded N-N region. The

partitioning of thick rods into the nematic phase coexisting with the isotropic phase

also decreases significantly without I-N-N coexistence, as indicated by the shortening

of tie lines which do not radiate from the origin in Fig. 6.4b,c. Below a diameter

ratio of approximately d = 2.0 only a single nematic phase is observed and all tie

lines radiate from the origin (no partitioning).

6.5 Comparison to Theory

For comparison with our experimental results we present the phase behavior predicted

by numerically solving the free energy functional from Parsons-Lee theory [105] in

Fig. 6.5. The actual calculations for the Parsons-Lee theoretical phase behavior

were performed in collaboration with S. Varga. We also present the phase behavior

predicted from the second virial theory in Fig. 6.6, as determined by van Roij et. al.

[8]. From Parsons-Lee scaling of the free energy, four distinct types of phase diagrams

(indicated by the Greek symbols) are predicted as a function of the diameter ratio

and the length of the thick rods. Fig. 6.5b-f displays the qualitative evolution of the

phase behavior as a function of d for L/Dthick = 4 and 24 (experimental L/Dthick).

The I-I region (δ) is not probed experimentally and is not discussed here. For very

small d, Region α, an isotropic to homogenous nematic transition is predicted at

low concentrations and a N-N coexistence region bounded by a lower critical point

is predicted high concentrations ( Fig. 6.5b,d). For long thick rods, L/Dthick & 7,
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increasing d increases the N-N stability and upon entering Region β, I-N-N coexistence

capped by an upper critical point bounded N-N coexistence region is predicted in

addition to the lower critical point bounded N-N region(Fig. 6.5e). With increasing

d these critical points coalesce forming a single N-N coexistence region (Region γ,

Fig. 6.5f). For short thick rods, L/Dthick . 7, Region β is bypassed, and the lower

critical point bounded N-N region coalesces with the I-N transition creating an I-N-N

coexistence region (Region γ, Fig. 6.5c).

The phase diagram in Region γ is qualitatively similar to that predicted by

the second virial theory [8] for d > 4.3 (Fig. 6.6a), and is experimentally observed

for d ≥ 3 (Fig. 6.4a). Surprisingly, the phase diagrams in regions α and β, are not

predicted in the second virial limit (L/D− > ∞) [8]. Upper critical point bounded

N-N coexistence is predicted at the second virial limit for 3.8 < d < 4.3 (Fig. 6.6c),

similar to Fig. 6.5e, but lower critical point bounded N-N coexistence is not [8], as it

is unstable in favor of a nematic-smectic or nematic-columnar transition [118]. The

stability of the N-N demixing with respect to nematic-smectic or nematic-columnar

transitions was not included in the Parsons-Lee theory. Additionally, Fig. 6.6d is

qualitatively similar to Fig. 6.5b and d at low concentrations, but again does not

predict the N-N coexistence at high concentrations. However, it is precisely this

lower critical point bounded N-N coexistence which is experimentally measured in

Figs. 6.4b and 6.4c for 3 > d > 2. Simply by extrapolating between the Onsager limit

(L/D → ∞) and the Carnahan-Starling sphere limit (L/D → 1) [113], Parsons-Lee

scaling [105] qualitatively reproduces the experimental phase diagram for 3 > d > 2

whereas the second virial limit (L/D → ∞) alone does not.

Though our experimental rods have an L/Dthick = 24 we do not observe a

lower critical point at intermediate d, as predicted, but instead the experimental phase

behavior qualitatively follows the phase behavior predicted for short rods, L/Dthick .

7. It has been shown via simulations that the excluded volume of a flexible rod
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Figure 6.5: Characterization of the Parsons-Lee theoretical phase diagrams for rods
of equal length and varying diameters. (a) Characterization of stable phase diagrams
as a function of 1/d and L/Dthick. With increasing d, N-N coexistence becomes
increasingly stable at lower concentrations (lower pressures). I-N-N coexistence occurs
below the uppermost line. Coalescence of the upper and lower critical points occurs
below the dashed line, and I-I-N coexistence becomes stable below the lower line. For
L/Dthick < 7, the lower critical point joins with the I-N coexistence at the uppermost
solid line. The theoretical phase diagrams calculated using Parsons Lee scaling are
shown for L/Dthick = 4 for d = 3.5 (b) and d = 3.7 (c), and for L/Dthick = 24
(experimental aspect ratio) for d = 4.4 (d), d = 5 (e), and d = 5.2 (f). Phase
diagrams are presented as a function of reduced concentration ci = viNi/V . The
three phase coexistence region is indicated by the grey triangle.
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Figure 6.6: Theoretical phase diagrams in the Onsager limit as calculated by van
Roij et. al [8] for mixtures of thin and thick rods with (a) d = 5 (b) d = 4, (c)
d = 3.9 and (d) d = 3. Concentrations are presented in units of ρiL

2
i Di. At high

concentrations the nematic-nematic coexistence is bounded by an upper critical point
for 3.8 < d < 4.3.

is equivalent to the excluded volume of a shorter-thicker rod [119]. Thus it is not

entirely unexpected that our experimental results for mixtures of semiflexible rods

are similar to theoretical predictions for short rigid rods. Looking further at the

qualitative agreement between experiment and theory we find that the experimental

I-N-N coexistence is stable to much lower diameter ratios, d ∼ 2, than predicted.

The non-additivity of the thin-thick interparticle interaction can account for some

of this discrepancy as this results in an effectively smaller thin-rod diameter (larger

d). For d < 2, N-N coexistence is no longer experimentally observed, though it is

theoretically predicted in Varga’s theory. This is because the N-N coexistence region

moves to increasingly high concentrations as d decreases. Eventually the nematic-

smectic transition will precede the N-N phase separation, and thus N-N coexistence

will not be observed experimentally.
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6.6 Conclusions

We have presented quantitative measurements of the phase behavior of mixtures of

semiflexible thin (fd) and thick rods (fd-PEG) and have shown that isotropic-nematic,

isotropic-nematic-nematic and nematic-nematic phase separation occurs in these sus-

pensions with increasing concentration. Onsager’s second virial theory for hard-rigid

rods qualitatively reproduces the main features seen in our experimental bidisperse

mixtures at large diameter ratios, but does not accurately capture the evolution of

nematic-nematic coexistence with decreasing diameter ratio. Using the Parsons-Lee

scaling of the free energy for hard-rigid-rods [105], we proposed an evolution of the

bidisperse phase diagram with changing diameter ratio which indeed qualitatively

describes the observed binary phase behavior. We have shown theoretically that an

isotropic-nematic-nematic coexistence region is not required for the existence of a sta-

ble nematic-nematic coexistence region, in agreement with experimental observations.

The existence of an upper critical point, which is predicted for very long rods by both

theories, has not yet been observed. Our experimental results for long semiflexible

rods most similarly follow Varga’s theory for very short rods, where no upper critical

point is predicted. Perhaps mixtures of longer, more rigid rods, will exhibit this upper

critical point. We now have an experimental system in which we can systematically

vary the diameter and length ratios from 1 < d < 5 and 1 < l < 3, respectively

inviting further studies into the presence of an upper critical point bounded nematic-

nematic region in bidisperse mixtures, as well as investigation into tri-disperse and

quantitatively polydisperse rod mixtures.
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6.7 Appendix: Mixtures of rods of different lengths

and diameters

To further our understanding of the N-N coexistence region we investigated the sta-

bility of nematic-nematic coexistence in suspensions of rods of different diameters

and lengths. These measurements were made to find the limits of diameter ratio d

and length ratio l below which nematic-nematic coexistence was not experimentally

measurable as a preliminary screening for investigation into the presence of an upper

critical point bounded nematic-nematic coexistence region.

As mentioned in Chapter 2 we have the ability to create virus mutants of mul-

tiple lengths [37]. These length mutants are identical in structure to M13 virus, but

vary in contour length and correspondingly, molecular weight (M) by M = MwtL/Lwt

[37, 44]. Note that M13 virus is identical to fd virus accept for one amino acid per

coat protein; the asp12 in fd is converted to asn12 in M13. The two particles otherwise

share same length, diameter, persistence length and molecular weight. The length of

the M13 virus particles is varied using the well established phagemid technique de-

scribed in Chapter 2. For this experiment we use four M13 virus particles of lengths

0.39µm, 0.64µm, 0.88µm and 1.2µm.

As in the fd mixtures, bare virus will be our thin rods and virus coated with

PEG will be our thick rods (both of arbitrary length ratio). The diameter ratio of

the thin and thick rods was varied by varying the ionic strength of the solution, and

subsequently the electrostatic effective diameter of the thin rods. To create a steri-

cally stabilized thick rod, we again use an SSA-PEG20K to bind to the amine groups

which are accessible on the virus surface. However, compared to fd, M13 contains an

additional amine group (the functional group of the asparagine (asn) is an amine)

to which our SSA-PEG20K can bind. Subsequently, approximately 600 PEG20K are

attached to each M13, compared to 200 for fd, as determined by measurements of the
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L [µm] ρi [mg/ml] beffci Deff [nm]
1.2 4.5 ±0.1 5.6 40
0.88 4.6 ±0.1 5.0 49
0.64 6.2 ±0.1 4.5 45
0.39 8.2 ±0.1 4.0 49

Table 6.1: Table of measured isotropic coexistence concentrations (ρi) and calculated
effective diameters Deff for M13-PEG virus of varying length L. The values for beffci

were obtained numerically by Chen [23] for semiflexible rods with a persistence length
of 2.2 µm.

differential index of refraction dn/dc as previously described [38]. The effect of this

high number of bound PEG molecules is easily observable in the isotropic-nematic

coexistence concentrations of the monodisperse M13-PEG and mutant-PEG suspen-

sions which are presented in Table 6.1. From the isotropic coexistence concentrations

in Table 6.1 the effective diameter of these rods was calculated to be Dthick = 46 ±4

nm using the equation beffci = π
4
DeffL

2Ni/V = 25.4ρi[mg/ml]L[µm]Deff[µm], where

ρi is the measured isotropic coexistence concentration in [mg/ml] and beffci is the

predicted isotropic coexistence concentration for semiflexible rods with a persistence

length P = 2.2µm as determined by Chen [23].

In Fig. 6.7 we present a plot which shows the length and diameter ratio of

binary mixtures of rods which either do or do not exhibit nematic-nematic coexistence.

Nematic-nematic coexistence was either observed in bulk, or when the diameter ratio

was small, microscopically. The mixture was determined to be single phase if nematic-

nematic coexistence was not observed, even at very high concentrations. If nematic-

nematic coexistence was not observed at high concentrations we suggest that the N-N

lower critical point, as predicted by the Parsons-Lee theory, was at concentrations

above which the mixed samples could be concentrated by centrifugation at 200 000

g.

We plot our experimental results with Hemmer’s theoretical prediction for

N-N stability [104]. We note that the theoretical nematic-nematic stability was de-
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Figure 6.7: Stability of two phase nematic coexistence for rods of different diameters
and lengths. The data at l = 1 is from the fd+fd-PEG mixtures. The data for d = 1
was taken using mixtures of bare M13 mutants to assure equal diameters. The open
circles are where two nematic phase were observed in coexistence. The solid squares
indicate that only one nematic phase was observed. We assume that for diameter
ratios smaller than those which exhibited a single phase nematic point, a single phase
nematic is also present. Solid line is the theoretical stability of the two phases as
predicted by Hemmer [104].

termined using a Gaussian trial angular distribution function at the second virial

limit of the free energy [104]. As has been shown previously [110], the use of a trial

distribution function instead of numerically determining the distribution function can

significantly change the predicted phase behavior. Additionally, we have shown above

that the second virial approximation does not include the lower critical point bounded

nematic-nematic coexistence region. Unfortunately, the N-N coexistence measured in

our system is most likely bounded by a lower critical point as shown in Fig. 6.4,. Con-

sequently, comparison with Hemmer’s stability analysis can only be qualitative. As

a result, it is not surprising that our experimental measurements of N-N coexistence

extend to a much larger range of d and l than predicted.
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Chapter 7

Nematic-Smectic transition of

rod-sphere colloidal copolymers

7.1 Introduction

In the history of studying hard-particle phase behavior, both rods and spheres alike

have been extensively studied. It has been shown that hard-rods can undergo a phase

transition from an isotropic to a nematic phase by increasing the particle concentra-

tion [1]. Similarly hard-spheres undergo a liquid to crystal transition with increasing

concentration [13]. In this chapter we theoretically explore the stability of the smectic

phase of suspensions of hard-rods on which one end a hard-sphere is attached. These

“lollipop” shaped particles are the hard-particle analogs of molecular amphiphiles.

It has been shown previously that in mixtures of rods and unattached spheres, the

spheres intercalate between the smectic layers, significantly increasing the stability

of the smectic phase [120]. Additionally, theoretical models of rod-coil copolymer

melts show that the presence of a coil on the end of a rod has a stabilizing effect on

the smectic phase [121]. Using a model of parallel hard rod-sphere copolymers we

investigate the stabilizing nature of spherical ends in a rodlike suspension.
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Experimentally, colloidal particles have become the most reliable medium for

studying sterically driven phase transitions as their phase behavior accurately re-

produces hard-particle predictions. The challenge, however is to create rod-sphere

shaped colloidal particles. In this Chapter, in addition to theoretically exploring the

nematic-smectic phase behavior of ideal hard-lollipop particles, we present evidence

of the feasibility of the creation of colloidal lollipop particles composed of a genetically

functionalized filamentous M13 virus, for the rod component, and a functionalized

polymer for the sphere component. M13 virus is known to exhibit liquid crystal phase

behavior which agrees well with hard-rod predictions [14], and thus is an ideal choice

for the rod-component. It is also easily end-modified. By successfully and anisotrop-

ically labelling the M13 virus with a fluorescent tag, we give evidence that synthesis

of colloidal block-copolymer particles is possible.

7.2 Stability analysis of nematic-smectic A phase

transition of hard rod-sphere particles

We performed a stability analysis of the smectic phase of rod-sphere particles using a

similar technique to that done for suspensions of rod-sphere mixtures [120] and binary

rod mixtures [122, 123, 124]. The theory we use is based on the second virial expansion

of the free energy. We note that the second virial expansion of the free energy is an

approximation, however it has been shown that it qualitatively describes the phase

behavior observed in simulations of mixtures of rods and un-attached spheres [120].

Our theoretical system consisted of a bidisperse mixture of aligned spherocylinder-

spheres. For parallel aligned rod-spheres there are only two configurations “up” and

“down”, and thus we can treat this as a mixture of two distinct particles. The

general equation for the free energy of a bidisperse liquid at the limit of the second
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virial coefficient is

βF =
∑

i=1,2

∫

ρilnρidr1Λ
3 − 1/2

∑

i=1,2

∑

j=1,2

∫

ρi(r1)ρj(r2)fi,j(r1, r2)dr1dr2 (7.1)

where ρ1 is the density of “up” facing lollipops and ρ2 is the density of “down” facing

lollipops. The function fi,j(r1, r2) is the Mayer function for the hard spherocylinder-

sphere particle which is equal to -1 if two particles touch and zero otherwise. The

free energy can be broken down into four terms based on interparticle interactions

F = F11 + F22 + F12 + F21 (7.2)

The Mayer functions for each of the four sets of interparticle interactions are f11, f22,

f12, and f21. The Mayer functions are presented here, with H equal to a Heavyside

function:

f11 =


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


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−L(D + d)/2 < z < −L

−H[((D + d)/2)2 − (r2)]
√

(D2 − ((D + d)/2)2) − L < z < 0

−H[D2 − (r2 + z2)] −
√

(D2 − ((D + d)/2)2) < z

z <
√

(D2 − ((D + d)/2)2)

(7.3)
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(7.4)

In the above equations we use cylindrical coordinates (r, φ, z). Through symmetry

f11 = f22, and f12 = f21. We defined the location of the center of the sphere to be also

at the center of the spherical cap of the spherocylinder, thus when the diameter D of

the sphere approaches the diameter d of the spherocylinder the sphere vanishes from

the equations and we return to the simple spherocylinder problem. In this model L

is the length from the center of the sphere to the opposite end of the cylinder, and

thus the length of the “rod part” is equal to Lrod = (L−D/2), and the total particle

length is L + D/2 + d/2. Fig. 7.1 illustrates the shape of the rod-sphere particles.

To calculate the free energy in the nematic and smectic phases Eq. 7.1 is

expanded to second order in density. Since we are interested in one dimensional

layering we look at sinusoidal perturbations about a uniform density (nematic phase),

or:

ρ1(z) = Xρ0(1 + a1 cos(kz)) (7.5)

ρ2(z) = (1 − X)ρ0(1 + a2 cos(kz)) (7.6)

where ρ0 = (N1 + N2)/V is the uniform density of the nematic phase of “up” and
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Figure 7.1: Diagram of a rod-sphere particle.

“down” particles and V is the system volume. The variable X denotes the fraction

N1/(N1 + N2) of up particles. In this calculation we assume that the “up” (1) and

“down” (2) rods have the same wavelength. The difference in free energy between

the smectic phase and the nematic phase is

dF = F (ρ1, ρ2) − F (Xρ0, (1 − X)ρ0) (7.7)

To examine the stability of the smectic phase we rewrite dF combining equa-

tions 7.1-7.7 as dF = ãSa where S is a two dimensional stability matrix and ã = (a1

a2). This relationship can be written in terms of the free energy as:

det |ãSa| =

∣

∣

∣

∣

∣

∣

∣

F11 − F11(a1 = 0) F12 − F12(a1 = 0, a2 = 0)

F21 − F21(a1 = 0, a2 = 0) F22 − F22(a2 = 0)

∣

∣

∣

∣

∣

∣

∣

(7.8)

When increasing concentration from the nematic phase the smectic phase becomes

stable when the determinant

det |S| = 0. (7.9)
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Figure 7.2: Smectic phase stability for equal numbers of up and down molecules,
X = 0.5. Lrod/d = 100 in (a) and 10 in (b). Solid line is the volume fraction of
smectic phase stability φs, dashed line is the volume fraction due to the rod φrod

and the dotted line indicates the volume fraction due to the spheres φsphere. With
increasing D/d the sphere increasingly contributes to the volume fraction eventually
stabilizing the nematic phase over the smectic phase.

To determine the stability diagram from the determinant, we slowly increase φs =

ρ(πD3/6 + π(L − D/2)d2/4 + πd3/12) for a given aspect ratio L/d and sphere to

rod diameter ratio D/d. At a certain value of φs this determinant will equal zero at

a non zero wave vector ks. The lowest density for which Eq. 7.9 is satisfied is the

density at which the smectic phase is stable [122]. To solve for both ks and φs we

used d(det |S|)/dk = 0 as our second equation. This equation is appropriate as the

determinant of S is a smoothly varying function with one minimum.
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7.3 Stability Results

For our stability analysis we determined the volume fraction at which the smectic

phase become stable and the corresponding layer spacing for hard lollipops with rod

aspect ratios of Lrod/d = 100 and 10, and for varying sphere to rod diameters (D/d).

The smectic layer spacing λ remains essentially constant with changing Lrod/d, D/d

and X and is equal to λs = 2π/ks = 1.4(L + D/2 + d/2).

In Fig. 7.2 we plot the minimum volume fraction at which the smectic phase

of rod-sphere particles becomes stable φs as a function of the sphere to rod diameter

ratio, D/d for an equal number of up and down particles, X = 0.5. We also plot the

relative volume fractions of the rod and sphere components of the system in order

to better understand the contribution of the rod and sphere to the smectic stability.

We note that the volume fraction of rod-sections φrod = ρvrod is proportional to the

number concentration of rod-sphere particles independent of D/d where vrod is the

volume of the rod section of the lollipop. We find that with increasing D/d, the volume

fraction of rods and therefore number of rod-sphere particles needed to stabilize the

smectic phase continuously decreases. However, only for small values of D/d does the

total volume fraction decrease. As D continues to increase relative to d, the volume

fraction of a stable smectic phase first reaches a minimum φmin at a diameter ratio D∗

and then begins to increase again. Comparing the stability curves for Lrod/d = 100

and Lrod/d = 10 in Fig. 7.2 a and b, respectively, we find that as Lrod/d decreases

D∗ decreases and φmin increases. This suggests that a smectic phase of long lollipops

with small spheres is much more stable than a smectic phases a system of shorter

lollipops with a sphere of the same size. When the spheres are increasingly large the

volume fraction of particles needed to have a stable smectic phase exceeds the volume

fraction needed for simple rod-shaped particles φs > 0.57. In this region the spheres

are the dominant contribution to the volume fraction. When φs > 0.57, the large

spheres have stabilized the nematic phase in favor of the smectic phase.
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Figure 7.3: Smectic phase stability as a function of the ratio of sphere diameter to rod
diameter, D/d, and the ratio of up and down lollipops, X, for hard lollipop particles
with Lrod/d = 100. Different lines indicate different ratios of up and down molecules.

In Fig. 7.3 we show that changing the ratio of up and down facing particles

has a significant effect on the stability of the smectic phase. At high D/d the nematic

phase quickly becomes more stable than the smectic phase when the system is rich

in up or down particles. Having a system of lollipops which is predominately up or

down is highly unfavorable entropically as the excluded volume between like-oriented

particles is much larger than the excluded volume between up and down particles.

Experimentally, lollipops would most likely be evenly distributed in steeply peaked

orientational distributions about both the “up” and “down” directions.

These results are consistent with the stability analysis of the lamellar (smectic

phase with spheres intercalated between the layers) phase of mixtures of rods and

spheres [120] which predicts that in a mixture of rods and spheres, the smectic phase

becomes increasingly stable with increasing sphere diameter until a certain diameter

ratio( D∗ ∼ 10 for Lrod/d = 100) at which point the large sphere size similarly begins

to destabilize the smectic transition [120]. The value of D∗ for rod-sphere mixtures

also decreases with Lrod/d. For very large spheres, the rod-sphere mixtures demix

creating a rod-rich phase and a sphere-rich phase. This however, is not possible

in our lollipop particle system, as the rod and sphere are rigidly connected. We
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note that is possible, however, for the “up” and “down” lollipops to demix. This

was also investigated. Demixing is defined to occur when the wavelength of the

layer approaches infinity, alternately when ks → 0. We find that for the condition

ks = 0, there are no stable phase transition concentrations, indicating that there

is no demixing of “up” and “down” lollipops. As demixing is not an option, the

lollipop particles in this stability analysis will prefer a nematic phase if the sphere is

large as the packing of lollipops with large spheres into smectic layers is very costly

entropically.

7.4 Bio-chemical synthesis of colloidal rod-sphere

particles

Experimentally, we propose to create colloidal rod-sphere copolymers using a single

semiflexible rodlike bacteriophage, M13-C7C, as the rod component and a coiled

water soluble polymer as our sphere component. This rod-component phage is grown

from the New England Biolabs Ph.D.-C7C Phage display peptide library kit (New

England Biolabs, Beverly MA). Its physical characteristics include its length L ∼ 1µm

diameter d = 6.6 nm and persistence length P = 2.2 µm. M13-C7C is nearly identical

to M13 virus in structure except for an alteration in the minor coat protein P3 located

on the infective end of the virus. Altering the P3 protein allows for the creation of

unique binding sites located on only one end of the M13 virus. A schematic of an

M13-C7C virus is shown in Fig. 7.4. The P3 protein in M13-C7C has an additional

13 amino acids inserted before its terminal amine: Gly-Gly-Gly-Ser-Cys-X-X-X-X-

X-X-X-Cys-NH2, where the X’s are seven random amino acids. The use of the C7C

peptide sequence is ideal because it contains an accessible disulfide bridge formed by

the sulfur molecules in each of the two Cysteines (Cys). This allows us to bind any

sulfur-reactive polymer to the P3 proteins on M13. Using the C7C library instead of
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Figure 7.4: Schematic diagram of M13 phage, with enlargement of the P3 terminal
amino acids showing the C7C arrangement and disulfide bridge.

a linear amino acid library is necessary as it has been shown that an odd number of

Cysteines in the P3 protein renders the phage non-infective.

To produce the M13-C7C phage we followed the protocol in the Ph.D.-C7CTM

Phage Display Peptide Library Kit Instruction Manual (v2.8) from New England

Biolabs(Beverly MA), making the changes indicated in the Appendix. The resulting

phage are then sequenced to ensure the presence of the peptide insert. Typically, the

correct sequence is obtained for one out of three Liters grown. Contamination of the

C7C-phage solution by any wild-type virus (like fd or M13) results in rapid growth

of the wild-type phage and minimal growth of the C7C-phage. Because the peptide

expression is on the P3 protein, which is also responsible for viral infection, M13-C7C

grows at a rate much slower than the wild-type. Typical yield for one Liter of media

is about 5-10 mg M13-C7C.

Accessibility and reactivity of the disulfide bridge was tested by multiple meth-

ods culminating in the use of a Fluorescein-5-Maleimide fluorescent dye molecule as

our sulfur-label. To bind the Fluorescein-Maleimide to the M13-C7C phages, the

phage was dialyzed to a 50 mM Tris buffer at pH 7.2. Maleimide binds to sulfurs,

but also has non-specific amine binding at higher pH. Since all of the coat proteins
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along the length of the phage have terminal amines, we wanted to minimize the

possibility of non-specific binding by working at pH 7.2. After dialysis, the disulfide-

bridge is reduced using a molar excess of TCEP (tris(2-carboxyethy)phosphine) and

Fluorescein-5-Maleimide dissolved in Dimethylformamide (DMF) is added to a ≈1

mg/ml solution of M13-C7C. Measurements of the fluorescent dye binding by ab-

sorption spectrophotometry techniques was not possible as the concentration of dye

molecules (not more than 10 per virus) was below the resolution of the spectropho-

tometer. Confirmation of the reaction was achieved by observing the smectic phase of

the M13-C7C rods under fluorescence microscopy. Fluorescent dye is present between

the smectic layers, but not within the layers as can be seen in Fig. 7.5. For comparison

a differential interference contrast image of the same smectic sample. Had there been

non-specific binding of the Fluorescein-5-Maleimide along the length of the phage, the

fluorescence image would show uniform fluorescence and not the modulation shown

in Fig. 7.5.

To create the rod-sphere copolymers, we initially used a Maleimide function-

alized 20,000 molecular weight poly(ethylene glycol), or PEG20K-Maleimide. The

reaction process is the same as described above for attaching Fluorescein-5-Maleimide

to the Cysteines. The formula relating the molecular weight of PEG to its radius of

gyration(Rg) is Rg = 0.215(MW ).583Å[125]. The diameter of the PEG20K sphere is

calculated to be ∼14 nm, about twice the bare diameter of the rods. Again using

the smectic layers as a technique for detection of these spheres, we predict that the

layer spacing should increase by about ∼ 14 nm, which is about 1.5%. Unfortu-

nately, detection of a 1.5% layer spacing difference is nearly impossible as a single

smectic layer spans only about 11 pixels on our CCD camera (Retiga EXi QImag-

ing). Consequently we were unable to resolve the effects of the polymer binding on

the smectic layer spacing. In the future addition of larger polymers would allow for

better resolution of any changes in layer spacing.
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0.0  Distance (mm)                0.0070.0  Distance (mm)                0.007

Figure 7.5: Left: DIC image of smectic layers of M13-C7C-Fluorescein suspension.
Right: Fluorescence image of smectic layers of M13-C7C-Fluorescein suspension.
Graphs below images represent respectively, the density and fluorescence modula-
tion perpendicular to the smectic layers as indicated by the line drawn on the images.
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7.5 Discussion

We have shown theoretically that attaching a small hard sphere to one end of a hard

rod significantly increases the stability of a smectic phase of parallel hard rod-sphere

copolymers. However, with increasing sphere size the smectic phase becomes increas-

ingly unstable such that above a critical sphere size, which depends on rod length

(D/d > 15 for Lrod/D = 100) the smectic phase is actually less stable with spheres

than without. We note that previous studies of similar systems, rod-coil di-block

copolymer melts (φ = 1), have shown that for large polymer fractions (equivalent to

large spheres in our model) the copolymers favor a smectic C phase, in which the

rod part of the copolymer is tilted at an angle θ with respect to the smectic layers

[126, 121, 127, 128], over a smectic phase of rods exactly perpendicular to the layers

(Smectic A). Smectic C phases have been seen in simulations of di-block copolymer

melts (φ = 1) [129] and of polymer-nanorod copolymers (φ < 1) [130]. In both these

simulations the rigid-rod segment was approximately equal in length to the polymer

segment. Theoretical analysis of the smectic C phase stability for colloidal particles,

beyond our current simple stability analysis, may reveal a stable smectic C phase,

perhaps in the region of the stability diagram where φs begins to increase and the

smectic A becomes increasingly unstable, at large sphere diameters (large D/d).

Experimentally, we have only begun the process of creating rod-sphere col-

loidal particles. There is a wealth of polymeric material which can be functionalized

to attach to the Cysteine functionalized M13 virus. DNA, for example can be func-

tionalized with an amine containing nucleic acid. A simple crosslinker could bind

the virus to the DNA creating a simple technique to vary the size of the “sphere”

component. It is also possible to chemically modify polystyrene spheres to bind to

M13-C7C. Experiments to perfect both these chemical reactions are currently under-

way. Once we have these colloidal copolymers, we can compare their experimental

phase behavior to the predictions presented above. The two most obvious parameters
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to tune would be the diameter of the sphere (or rod), or the associative properties of

the sphere (or rod). Changing the diameter of the sphere (changing the length of the

polymer) can alter the stability of the smectic phase by changing the nematic-smectic

transition concentration. By tuning the repulsive or attractive properties of the two

independent parts, (perhaps by suspending the copolymer in a solution in which the

“spherical” polymer is in a bad solvent), it may be possible to create colloidal micelles

in the extreme limit, or to simply tune the stability of the smectic phase. Addition-

ally, having end-functionalized virus allows for the creation of hard particles of many

other shapes, rod-rod dimers, rod-polymer-rod tri-block copolymers, and even star

shaped particles where many rods bind to one small sphere.
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Appendix A

Growth of fd and Other Mutant

Viruses

In this appendix we present a condensed protocol of the molecular biological and

chemical protocols commonly used to produce the materials discussed in this the-

sis. Protocols included in this appendix include the procedures to grow large and

small amounts of fd, M3, M13K07, phagemid virus of different length, and M13-C7C

from a phage display library. Protocols are also included for dialysis, agarose gel

electrophoresis, and chemical modification the virus. Extensive descriptions of these

protocols are available in Molecular Cloning [36], and the Phage Display Peptide

Library Kit Instruction Manual (v2.8) from New England Biolabs.
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A.1 Preparation wild-type bacteriophage M13, fd,

M13K07(from Maniatis[36])

A.1.1 Recipes for LB Media and Agar Plates

LB Media (from Maniatis p. A1)

1. Add to 950ml filtered H2O:

10 g bacto-tryptone

5 g bacto-yeast

7.5 g NaCl

2. Dissolve solutes by stirring. After dissolved, adjust volume to 1 L with more

filtered water.

3. Sterilize by autoclaving for 20 minutes.

Preparation of Agar Plates(from Maniatis p. A4)

1. Prepare LB media and add the following agar before autoclaving:

15 g/L bacto-agar (for plates)

2. Sterilize by autoclaving for 20 minutes.

3. Let solution cool after autoclaving, and then pour media solution into ∼20 sterile

plates/L. After plates have cooled, invert them to prevent condensation from dripping

on hardened agar.

4. Let plates sit out overnight. This will allow time for any plates that have been

accidentally contaminated to begin to grow impurities. Discard any impure plates,

and store the remaining plates inverted at 4oC. Plates are good for 1-2 months.
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Preparation of Stock Supply of Top Agar

1. Prepare LB media and add the following agar:

7 g/L bacto-agar (for top-agar)

2. Heat the solution until Agar is completely dissolved, then place 3 ml of the solution

in a series of test-tubes.(For an easy way to heat and dissolve agar autoclave the

solution for 20 min. Note, that you will still need to autoclave the solution again

after placing solution into test tubes)

3. Sterilize by autoclaving test-tubes for 20 minutes.

4. After the agar solution has cooled, the test tubes can be stored indefinitely in the

refrigerator.

A.1.2 Step 1: Plating Bacteria: JM101 or XL1-Blue

Bulk bacteria JM101 and XL1-Blue are located in the deep freezer in the basement

of Rosenstiel. JM101 grows quickly and is good for making batches of wild-type virus

fd M13, and M13K07. XL1-Blue grows slower but when growing mutant virus strains

the level of polydispersity is less. If all of the plates of bacteria within the lab are old

(ie. single colony does not grow in 3mL sterile LB media when incubated overnight

at 37oC) or infected, new plates of bacteria must be streaked.

1 Prepare Plates of LB media A.1.1.

2. Using sterile wooden sticks, touch bulk frozen bacteria. Gently streak this bacteria

onto sterile plate in a zig-zag motion, filling ∼1/3 of the plate. Using a different sterile

stick, zig-zag through the first set of streaks into the second 1/3 of the plate. Zig-zag

through the second set of streaks with a new sterile stick to fill the third 1/3 of the

plate. Make 2 or 3 new plates.

3. Incubate overnight at 37oC. These plates are good for about a month, after which

the percent of living cells decreases rapidly. Be sure to label plates with date and

type of bacteria. To prevent evaporation seal the edges of the plates with parafilm.
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A.1.3 Step 2: Plating Virus-Infected Bacteria (JM101 or

XL1-Blue infected with fd, M13 or M13K07)

If there is no fresh stock solution of virus (M13, fd or M13K07) (Preparation of this

stock solution is described in A.1.4). The technique described in this section will

provide you with plaques of bacteria which have been infected with the virus you

added. These plaques can then be used for amplification (ie. in creation of the stock

solution described in (A.1.4)). If a fresh stock solution exists it can be used for large

scale virus growth or new plates and new infecting batches of virus can be made using

this technique. If there is no stock solution at all it must be obtained from an outside

source.

1.(AM) Grow a Small Quantity of Bacteria in Solution

1. Prepare 1-2 test tubes of 3 mL of sterile LB media.(Flame mouth of LB container

before pipetting liquid from bulk. Flame vial mouth before and after LB is added, to

ensure sterility.)

2. Inoculate each test tube with a colony of bacteria from previously prepared plates

(section A.1.2) by touching the colony with a sterile wooden stick. Swirl tip of infected

stick in the test tube briefly, then flame mouth of the test tube and recap.

3. Incubate in an agitator at 37oC for 6-10 hours until turbid.

2. Titrate Existing Virus Solution

If bulk solution of wild-type virus as described in A.1.4 exists prepare a series of

tenfold dilutions of the bacteriophage to 10−11 of the original concentration. Dilute

100µl of the stock solution with 900 µl H2O, mix and repeat dilution. You should

end up with a series of solutions of concentrations 10−1, 10−2...10−11. Use these one

of these for each plate. If this bulk solution does not exist or is too old to trust

titrate from stock located in freezer (stock labeled in pfu’s, titrate down to ∼1 pfu).

∗pfu=Plaque forming unit.

3. (PM) Mix Bacteria and Virus in Top Agar and Plate
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1. Prepare top agar fresh in test-tubes(A.1.1), or thaw pre-made test tubes of agar

in beaker of water which is brought to boil. Keep agar warm (45-50o C) in tempera-

ture controlled environment (typically a heating block with a test-tube holding rack

installed).

2. Into one test-tube of melted top agar add 100 µl of a virus solution and 300

µl of the bacteria solution. Gently swirl mixture, and then quickly pour mixture

onto media plates which have been brought to room temperature. Repeat this for

each of the different concentrations of titrated virus. Be sure to flame all test tubes

every time they are opened and closed. The only exception being after you add the

last component to the top agar do not flame the test tube. Occasionally flaming

immediately before you pour the top agar onto the plates will kill the bacteria as you

pour out the agar because the glass is still too hot.

3. Incubate plates overnight. Keep plates containing small single plaques. These

plates should contain ∼1 pfu. The plaques of virus infected bacteria are used when

making large quantities of virus.

A.1.4 Step 3: Small Scale Amplification, Making the ”In-

fecting Batch” of Virus from a Plaque

1. Take 50 ml of sterile LB and inoculate it with 1 or 2 plaques of bacteria infected

with the virus from plates made in section A.1.3. This is usually done by stabbing

plaque with a glass pipette tip which has been sterilized by dipping in alcohol and

flaming and then releasing the clump of infected media into the LB.

2.Agitate in an incubator at 37oC overnight.

3.Remove turbid solution of infected bacteria from incubator and pour into sterile

centrifuging vial. Spin at 3300 g (4000 rpm in Sorvall RT-7 with RT-750 rotor) for

> 30 minutes.

4. Pour supernate of virus solution into sterile vial with purple lid. Refrigerate at
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4oC until needed for use.

A.1.5 Step 4, Day 1: Large Scale Wild-type Virus (fd, M13

or M13K07) Amplification

Day 1 AM: Prepare a Small Quantity of Bacteria in Solution

1. Prepare 1 test tube of 3 mL of sterile LB media for each of the 3 L of LB media

you plan to infect.(Flame mouth of LB container before pipetting liquid from bulk.

Flame vial mouth before and after LB is added, to ensure sterility.)

2. Inoculate each test tube with a colony of bacteria from previously prepared plates

(section A.1.2) by touching the colony with a sterile wooden stick. Be careful not to

breathe on the open plates. Swirl tip of infected stick in the test tube briefly, then

flame mouth of the test tube and recap.

3. Incubate in an agitator at 37oC for 6-10 hours until turbid.

4. Prepare 3 liters of sterile LB media(A.1.1) for each test tube of bacteria you are

growing. Placing ∼700ml in in a 2L flask.

Day 1 PM: Infect X liters of LB 1. Infect each 2L flask with ∼ 0.7ml of bacteria.

Incubate and agitate until slightly turbid,∼3 hours.

2. After 3 hours, add 0.5ml infecting batch virus as prepared in A.1.4 to each 2L flask

and incubate for another 6-10 hours, or overnight.

A.1.6 Step 5, Day 2: Purification of Virus

1. Pour turbid solution of bacteria and virus into large centrifuge jars. Centrifuge at

3300 g for >30min. Keep supernate.

2. Add 20 g/L PEG 8000 and 20 g/L NaCl to the supernate. The solution should

become slightly turbid as it is mixed. This is due to the condensation of the virus

particles from the depletion by the PEG. Respin this solution at 4000 rpm (3300 g)
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for another 30-45 minutes.

3. On the bottom of the centrifuge jars should be thick concentrated virus and

polymer mixture. Dissolve it with ∼3 ml of distilled H2O. Pipette off as much virus

solution as possible and transfer it to the ∼ 50 ml Sorvall centrifuge containers (round

bottom, purple lid).

4. Yield at this stage should be approximately 10-100mg/L depending on the freshness

of the bacteria and virus solutions used.

5. To continue purification, spin concentrated virus solution at ∼20000 g (13000 rpm

in Sorvall centrifuges on 3rd floor Rosenstiel) for > 45 minutes. Keep supernate, and

check for virus in supernate by spectrophotometry. If virus is not present in large

quantities sediment should be diluted and spun again. Otherwise the sediment can

be discarded.

6. Spin virus solution again at 13000 rpm (20000 g) for > 45 minutes.

7. Spin virus at ∼250000 g for 3 hours (50000 rpm LE 80 or LE 70 Beckmann

centrifuge using Ti 70.1 rotor). Carefully discard supernate (which should contain

only polymer and other unwanted contaminants). Dilute virus with buffer or wa-

ter(approximately 500 µl), and let resuspend overnight (vortex thoroughly to aid in

resuspension).

8. At this point in the purification process virus should be dialized against a buffer

(see A.4.1) before continuing on to the final step.

9. Spin virus down again at ∼250000 g for >2 hours, and remove the supernate

afterwards. Add just enough buffer to resuspend virus to concentration of a smectic

(∼ 200µl).
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A.2 Mutant Virus Preparation (Production of Lit-

mus or PGTN28 phagemid)

In order to grow viruses of different lengths other than the wild-type virus, it is

necessary to approach the virus preparation with a different method. First, a stock

solution of the helper phage (M13K07) must be made. Second, the plasmid DNA

which will later be made into a complete virus has to be introduced into the bacteria by

shocking the cells. The plasmids are chosen to contain a resistance to both ampicillin

and kanamycin. This helps to ensure that only the bacteria containing the plasmids

reproduce when they are allowed to grow. After the plasmids are in the bacteria’s

DNA, the helper phage is introduced. The helper phage will create the protein coat

for the plasmid DNA, creating a new virus containing only the new plasmid DNA.

The resulting virus is our new“mutant virus.”

A.2.1 Solution Recipes

-LB Media: Mix 1L distilled H2O, 10 g bacto-tryptone, 5 g bacto-yeast, 7.5 g NaCl.

Sterilize by autoclaving for 20 minutes.

-LB Plates: 1L distilled H2O, 10 g bacto-tryptone, 5 g bacto-yeast, 7.5 g NaCl, 15 g/L

bacto-agar. Sterilize by autoclaving for 20 minutes. After autoclaving, pour warm

media solution into ∼20 sterile plates/L. After plates have cooled, invert and let sit

out overnight to check for accidental contamination. Discard any impure plates, and

store the remaining plates inverted at 4oC. Plates are good for 1-2 months.

-CaCl2 buffer: 60 mM CaCl2

15% glycerol

10 mM pipes + NaOH to PH 7

filter into sterilized jar and store at 4oC.

-Ampicillin Stock: 5 mg/ml Ampicillin in H2O for plates, 50 mg/ml Ampicillin in
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H2O for growth in liquid media.

-Kanamycin Stock: 25 mg/ml Kanamycin in H2O

A.2.2 Step 1: Prepare Competent Cells of XL1-Blue(from

Maniatis p. 1.83)

1. Take 100 ml sterile LB and inoculate with XLI-Blue bacteria by touching a colony

from a plate as prepared in A.1.2.

2. Incubate ∼6 hours at 37oC. Then transfer liquid into 50 ml sterile centrifuge

containers.

3. Ice solution for 10 minutes . Spin down bacteria at 3300 g (4000 rpm with Sorvall

RT 7 centrifuge) for 10-15 min at 4oC. Decant liquid (pour off) and invert containers

for 1 minute.

4. Resuspend bacteria in 10 ml of CaCl2 buffer.

5. Recentrifuge at 3300 g for 10 minutes at 4oC. Decant liquid and invert containers

for another minute.

6. Add 2 ml ice cold CaCl2 buffer for each 100 ml of original solution.

7. Dispense solution of cells into 10 0.5 ml sterile microcentrifuge tubes. Freeze at

−70oC.

A.2.3 Step 2: Insert Plasmid into Competent Cells and Plate

(from Maniatis p. 1.82)

1. Obtain a microcentrifuge tube with 200 µL of competent cell solution (A.2.2) from

storage and keep it on ice. Add 50ng/10µl (= 1 µl DNA/10 µl water) of plasmid

DNA to each tube. Mix by gently swirling. Store on ice for 30 minutes.

2. Transfer tubes to a rack in a circulating water bath that was preheated to 42oC.

Leave tubes in for exactly 90 seconds.
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3. Transfer tubes to an ice bath for 2 minutes.

4. Add 800 µl sterile LB medium to each tube. Incubate in a water bath at 37 oC

for 45 minutes.

5. Coat 6 LB+agar plates (A.1.1)with 30 µl Ampicillin stock (150µg total) by using

a sterile bent glass rod. A drop of ampicillin is spread over the plate by rotating the

glass rod around on the surface of the plate. Rod is sterilized by dipping in alcohol

and then flaming. Be sure to cool rod before placing on plate.

6. Transfer 10, 20, 50, 100, 150, or 200 µl infected competent cells onto one of each

of the 6 ampicillin treated plates, respectively, by the same method above. Let the

plates sit at room temperature for ∼15 minutes to let the liquid absorb into the plate.

Then invert and incubate plates for 12-16 hours at 37oC (not more than 20 hours or

ampicillin resistance increases). Plaques that form are ampicillin resistant. Chose the

plates where you can see individual plaques.

A.2.4 Step 3: Prepare Helper Phage M13K07

1. Prepare plates of XLI-Blue bacteria infected with the M13K07 helper phage as

described in A.1.3.

2. Prepare a stock solution of M13K07 as described in A.1.4.

A.2.5 Step 4: Large Scale Mutant Production

Day 1 AM: Prepare a Small Amount of Plasmid Containing Bacteria

1. Prepare 1 test tubes of 3mL of sterile LB media and 100µ g/ml Ampicillin

(=6µl/3ml) for each of the 3L of LB media you plan to infect.(Flame mouth of

LB container before pipetting liquid from bulk. Flame vial mouth before and after

LB is added, to ensure sterility.)

2. Inoculate each test tube with a colony of XL1-Blue containing the plasmid

from previously prepared plates (section A.2.3) by touching the colony with a sterile
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wooden stick. Swirl tip of infected stick in the test tube briefly, then flame mouth of

the test tube and recap.

3. Incubate in an agitator at 37oC for >8 hours until growth is saturated.

4. Prepare 3 liters of sterile LB media(A.1.1) for each test tube of bacteria you are

growing. Placing ∼ 700ml in in a 2 L flask.

Day 1 PM: Infect X Liters of LB.

1.Infect each liter with ∼ 1.0ml of plasmid-containing XL1-Blue prepared above, 1 ml

Ampicillin stock (50 mg/ml) and 1 ml M13K07 solution prepared in A.2.4. Incubate

and agitate 1 hour.

2. After 1 hour Add 3 ml kanamycin stock and incubate for another 14-18 hours.

Day 2 AM: Purify the Virus Suspension

Follow section A.1.6.

A.3 Preparation of P3 Phage-Display M13-C7C

virus

M13-C7C is a M13-structured virus which has been modified to display 9 extra amino

acids on the end of the P3 infective protein. It is available from New England Biolabs

as the C7C Phage Display Peptide Library. The “7” refers to a random sequence of

7 amino acids. These can be specifically selected for using phage display techniques,

however as we are only interested in the Cysteines surrounding the random amino

acids this protocol is for simple amplification of any phage from the supplied library.

A.3.1 Solution Recipes

-LB Media: 1L distilled H2O, 10g bacto-tryptone, 5g bacto-yeast, 7.5g NaCl. Auto-

clave for 20 minutes.
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-LB Plates: LB Media, 15g/L Bacto-agar. Autoclave for 20 minutes. After autoclav-

ing, pour warm media solution into ∼20 sterile plates/L. After plates have cooled,

invert and let sit out overnight to check for accidental contamination. Discard any

impure plates, and store the remaining plates inverted at 4oC. Plates are good for 1-2

months.

-LB-TET solution: LB with 1mL/L Tetracycline added after autoclaving.

-LB-TET plates: LB Media, 15g/L Bacto-Agar, Autoclave. When warm, add 1mL/L

Tetracycline stock (20mg/mL in ethanol, stored at -20oC). Pour cool solution into

∼20 sterile plates/L. After plates have cooled, invert and let sit out overnight to

check for accidental contamination. Store inverted at 4oC.

-Top Agar: LB Media, 7g/L bacto-agar. Heat the solution until Agar is completely

dissolved, then place 3ml of the solution in a series of test-tubes. Sterilize by auto-

claving test-tubes for 20 minutes. Store in the refrigerator.

-Xgal solution: 20mg/mL Xgal in Dimethylformamide (DMF). Store in -20oC freezer.

(∗ Xgal= 5-bromo-4-chloro-3-indolyl-bD-galactoside)

-IPTG solution: 200mg/mL IPTG in dH2O; sterilize by passing IPTG through

0.22 mm filter. Aliquot to 1 ml, store -20oC freezer. (∗ IPTG= Isopropyl-beta-

D-thiogalactopyranoside)

-Sodium acetate buffer: 3M, pH 5.2

Glassware should be washed, rinsed, rinsed with ethanol, dried and then autoclaved

before use!

A.3.2 Step 1: Grow ER2738 on LB-TET or LB plates

1. Prepare Plates of LB media.(LB-TET plates are recommended by New England

Biolabs but we have found that this produces an abnormally large amount of impure

plates and foreign growth. Growth of ER2738 on plain LB plates has shown to

drastically reduce foreign grown making the plates much more stable for long periods
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of time)

2. Using sterile wooden sticks, touch bulk frozen bacteria ER2738. Gently streak

this bacteria onto sterile plate in a zig-zag motion, filling ∼1/3 of the plate. Using

a different sterile stick, zig-zag through the first set of streaks into the second 1/3 of

the plate. Zig-zag through 2nd third to fill the third 1/3 of the plate. Make 2 or 3

new plates.

3. Incubate overnight at 37oC. These plates are good for about a month. Be sure to

label plates with date and type of bacteria.

A.3.3 Step 2: Plating M13-C7C-Infected Bacteria

1.(AM) Grow a Small Quantity of Bacteria in Solution

1. Prepare 1-2 test tubes of 3mL of sterile LB media.(Flame mouth of LB container

before pipetting liquid from bulk. Flame vial mouth before and after LB is added, to

ensure sterility.)

2. Inoculate each test tube with a colony of ER2738 from previously prepared plates

(section A.3.2) by touching the colony with a sterile wooden stick. Swirl tip of infected

stick in the test tube briefly, then flame mouth of the test tube and recap.

3. Incubate in an agitator at 37oC for 6-8 hours until turbid.

2. Titration of M13-C7C library

Prepare tenfold dilution series of M13-C7C in LB; Initial library concentration =

1x1013. Dilute to 1x103 and plate as desired, though only concentrations ¡ 1x106

produce individual plaques suitable for amplification.

3. (PM) Mix and Plate ER2738 and M13-C7C

1. Prepare top agar fresh in test-tubes(A.1.1), or thaw pre-made test tubes of agar in

beaker of water which is brought to boil. Keep agar warm (45-50oC) in temperature

controlled environment.

2. To each top agar, add 100 µL ER2738 culture (grown for 6 - 8 hrs), 10 µL virus
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dilution, 40 µL Xgal, 4 µL IPTG. Be certain to pre-warm the plates. Mix by swirling.

Pour top agar onto plate. After top agar has solidified incubate overnight (18 hrs

MAXIMUM), then refrigerate. Useful plates have clearly defined blue plaques that

are not in contact with each other.

A.3.4 Step 2: Small Scale Amplification of M13-C7C Plaque

(“Infecting Batch”)

1.(Day 1 PM) Grow a Small Quantity of Bacteria in Solution

Prepare 1-2 test tubes of 3 mL of sterile LB media. Inoculate each test tube with

a colony of ER2738 from previously prepared plates (A.3.2) by touching the colony

with a sterile wooden stick. Swirl tip of infected stick in the test tube briefly, then

flame mouth of the test tube and recap. Incubate overnight.

2. (Day 2 AM) Prepare 20 ml Infecting Batch

Use 20 mL sterile LB media, and add 200 µL (overnight) ER2738 culture and 1 blue

plaque from the plate. Incubate 5 hours on the shaker. Centrifuge at 4000 rpm for

30 min to sediment bacteria. Keep supernate by decanting into a fresh tube.

A.3.5 Step 3: DNA sequencing

1. Before bulk amplification, the virus solution must be DNA sequenced to ensure that

it is C7C. To precipitate the DNA, take 400 µL of each plaque amplification solution.

Add 200 µL phenol(toxic!), vortex for 1 minute, and centrifuge for 10 min. Pipette

the aqueous layer to a fresh microcentrifuge tube. Add 400 µL chloroform(toxic!) to

the aqueous layer, vortex for 1 minute, and centrifuge for 10 min. Pipette aqueous

layer to a new centrifuge tube. Add 40 µL sodium acetate buffer. Add 1200 µL

cold ethanol, vortex 1 minute. Place in freezer 20 min. to precipitate DNA, then

centrifuge 20 min. to pellet DNA. Pipette off supernate, and allow to dry overnight
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in the hood. Resuspend the following day in 20 µL dH2O.

2. To measure concentration and purity, absorption must be measured. Dilute 3 µL

of DNA with 400 µL dH2O. Measure absorption at 260 nm and 280 nm; A260/A280

must be greater than 1.5 to obtain a useful sequence. If A260 = 1, then [solution]

= 50 µg/mL. Determine concentration of stock DNA solution by multiplying [di-

luted solution] by (400/3). For sequencing we Fed-Ex our DNA samples to Elim

Biopharmaceuticals and follow their recommended sample preparation protocol. For

sequencing, approximately 1 µg of DNA is required, along with 8 pmols of primer

(from NEB, -96gIIIp), in a final volume of 15 µL.

3. Upon receiving the sequence, compare it to the NEB C7C kit booklet page 12; the

region between restriction sites Eag I and Kpn I must exist for the sequence to be

correct. Ensure that the sequence is being read in the proper direction!

Purity of M13-C7C by Agarose Gel Electrophoresis

Prepare gel for electrophoresis as in A.4.2. To run the DNA, dilute 2 µL of DNA

solution to 20 µL, and add 4 µL of loading buffer for thick lane comb. If using the

thin lane comb, dilute the DNA 1:10, and add 2 µL of loading buffer. Run and stain

gel as described in A.4.2.

The band of M13-C7C should be slightly higher than the band for M13, as the size

difference is very small, but M13-C7C is longer and should run slower. It is best to

run M13, Fd, and a known sample of M13-C7C as standards for comparison.

A.3.6 Step 4: Large Scale Amplification of M13-C7C to 700mL

Day 1 PM: Grow a Small Quantity of Bacteria in Solution

Prepare 1-2 test tubes of 3 mL of sterile LB media. Inoculate each test tube with

a colony of ER2738 from previously prepared plates (A.3.2) by touching the colony

with a sterile wooden stick. Swirl tip of infected stick in the test tube briefly, then

flame mouth of the test tube and recap. Incubate overnight.
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Day 2 AM: Amplification

Once a stock solution known to contain M13-C7C is obtained, bulk amplification

can begin. Prepare 700 mL of sterile LB media and add 10 mL (overnight) ER2738

solution with 500 µL virus solution. Incubate 5 hours on the shaker. Do not incubate

longer as the probability of wild-type viral growth increases with time.

Day 2 PM: Purification

Follow the same purification steps in A.1.6, but be sure to keep all virus samples

separate ( from each 700 mL growth), as there is no guarantee that the virus in each

growth is the same (wild type or M13-C7C mutant). After virus is centrifuged at

∼20000 g (13000 rpm), and the majority of the bacteria has been removed by precip-

itation, the viral DNA should be sequenced again (A.3.5). Contamination of

the M13-C7C solution by miniscule amounts of wild type M13 or fd is quite common

and happens 2/3 of the time. The growth of these wild type phages is exponentially

faster as the P3 (infecting protein) is not damaged. If the M13-C7C virus has grown

the yield will not be very large, perhaps 20 mg/700 mL at best.

A.4 Other Techniques for Manipulating Viruses

and Virus Suspensions

A.4.1 Dialysis of Virus

1. Prepare buffer to dialyze virus against. Example: To make a 1.01 M Tris-NaCl

buffer:

Add 1 M NaCl and 20 mL of 1 M Trisma to 950 ml H20 and stir until dissolved.

Adjust pH to 8.15 with 1 N HCl. Ionic strength is 1.01 M (1 M from NaCl and 10

mM from 20 mM Tris).

2. Using snake skin 10000 MWCO (from Pierce), fill about 4 inches of snake skin
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with virus solution which is in the isotropic phase. Make sure bottom is closed with

dialysis clip. Leaving room at top of snake skin for air (∼1/2 inch), close snake skin.

3. Put dialysis bag in 300-500 ml buffer and stir for at least 3 hours. Pour off

buffer and fill beaker with fresh buffer. Repeat two or three times, until dialysis is

completed.

A.4.2 Agarose Gel Electrophoresis

Solutions:

6x Loading Buffer: 0.25% bromophenol blue and 40% (w/v) sucrose in water.

EDTA: 186.1 Disodium EDTA· 2H2O in 800 ml H2O. Adjust pH to 8.0 with NaOH

(∼ 20 g NaOH pellets).

TAE Buffer (50x): 242 g Tris Base, 57.1 ml glacial acetic acid, 100 ml 0.5 M EDTA

(pH 8.0)

Staining Solution: 45% Water, 45% Methanol, 10% glacial acetic acid and 1 g/L

Coomassie blue dye

Destaining Solution: 45% Water 45%Methanol and 10% glacial acetic acid

Protein Gel Electrophoresis, Maniatis Ch 6.

1. For concentrated virus (greater than 0.5 mg/ml) prepare 20 µl virus at 0.5-0.25

mg/ml (less than 20 µg/20 µl virus put into gel well). If virus is more dilute precipitate

virus first using technique in A.4.3. Add 4 µl 6x loading buffer to 20 µL aliquot of

virus.

2. Prepare 1 L H2O + 20 ml/L TAE buffer solution (1x).

3. Dissolve 0.8 g Agarose (1.0 g for less viscous fingering) in 100 ml of solution

prepared above by heating.

4. Tape sides of plastic gel holder so that liquid doesn’t leak out, and insert comb.

5. Cool solution and pour into plastic gel holder. When gel is solid remove tape
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(accept maybe for a corner to keep gel from sliding) and comb. Put gel, in holder,

into electrophoresis machine and fill with the rest of the buffer solution.

6. Pipette 10-20 µl dye+virus solution into each hole in gel. Put If using the thin

lane comb, 7 µL per lane is sufficient.

Run electrophoresis for 4-6 hours, or until blue dye ran 2/3 of the length of the gel,

at 50 V.

7. To stain virus gel: Stain in 200 ml staining solution for <3 hours. Destain multiple

times, for up to 3-5 days using destaining solution for best resolution of the bands.

DNA Gel Electrophoresis (Maniatis p 4.29 and ch 6)

Cautions: Phenol, Chloroform and Ethidium bromide are toxic! Work in the hood,

wearing gloves. Dispose of waste in proper bins.

1. Prepare gel as above, only use 1.2 g Agarose (use 1 g when looking at longer virus).

2. Phenol-Cloroform extract DNA from 100 µl of fd at 3 mg/ml: Add 50 µl Phe-

nol (very toxic!), vortex for 1 minute. Centrifuge to separate solution. Transfer top

(aqueous part containing DNA) to new microcentrifuge tube. Add 100 µl Chloro-

form. Vortex for 1 minute. Centrifuge to separate solution. Transfer top to new

microcentrifuge tube.

You can use this to fill gel, or you can continue to purify the DNA with an ethanol

precipitation (see below). Best DNA bands come by using the DNA from 0.06 mg

virus per well.

3. Run for 4 h at 70-80 V until loading buffer band has migrated ∼ 2/3 of the gel

distance.

4. After electrophoresis is complete stain gel with 10 µl (5 µg/ml) Ethidium Bromide

(toxic!) in 200 ml H2O for 30-45 minutes. After staining is complete rinse gel in

water for 20 minutes and handle with gloves. DNA can be seen under UV light but

is seen best if gel is refrigerated overnight. If the background fluorescence is still high
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soak the gel in 1 mM MgSO4 for 20 minutes.

A.4.3 General Techniques for Precipitation and Purification

of Virus and Viral DNA

Solutions:

PEG-NaCl stock solution: 20 g PEG 8K and 2.5 M NaCl (14.6 g) to 100 mL H2O

(p. 4.29 in Maniatis).

Na-Acetate buffer: 3 M at pH 5.2 (adjust pH with Acetic Acid)

Virus Precipitation

Add 200 µl PEG-NaCl solution to 1ml dilute virus solution in microcentrifuge tube.

Vortex. Microcentrifuge at 14000 rpm (∼ 14000 g) for 20min. Pipette off liquid. Add

20 µl H2O to pellet and vortex until dissolved.

Phenol-Choroform Extraction of DNA

Cautions: Phenol, Chloroform and Ethidium bromide are toxic! Work in the hood,

wearing gloves. Dispose of waste in proper bins.

For 100 µl of fd at 1mg/ml add 50µl Phenol (very toxic!), vortex for 1 minute. Cen-

trifuge (max speed on microcentrifuge ∼ 14000 g) to separate solution. Transfer top

(aqueous part containing DNA) to new microcentrifuge tube. Add 100 µl Chloro-

form. Vortex for 1 minute. Centrifuge to separate solution. Transfer top to new

microcentrifuge tube.

Ethanol Precipitation of DNA

To DNA solution prepared above add 10% by volume Na-Acetate buffer. Then add 3x

this volume ice cold 100% Ethanol. Place the sample in the freezer for 20 min to allow

DNA precipitate to form. Centrifuge max power for 10-20 minutes in the table-top
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centrifuge. Remove the supernate. Dry the sample COMPLETELY in air/vacuum

(20 min-overnight). Resuspend in 20 µl H2O or TE buffer (use 100 µl if purifying for

electrophoresis). DNA concentration is measured at 260 nm 1. OD=50 µg/ml. Pure

DNA has Absorption260/Absorption280 > 1.8.

A.4.4 Coating Virus with Amine-binding PEG

Solutions:

Phosphate buffer: 100 mM NaCl,100 mM Na2HPO4(Sodium Phosphate, Di-Basic)

at pH 7.8 (adjust pH with HCL)

Procedure:

1. Dialyze virus in Phosphate buffer. Do not use Tris buffer as it contains reactive

amines.

2. add Polymer: 5,000 MW, SSA-PEG-5000, or 20,000 MW, SSA-PEG-20000 (stored

in freezer, highly reactive with H2O). Use an amount of PEG equal to approximately

2 polymers/ binding site (∼ 2 mg-peg/mg-fd for 5K PEG and 8 mg-peg/mg-fd for

20K PEG )(∼3000 sites/fd). Add polymer quickly to fd solution as it will quickly

bond with water and NOT with the virus. Let polymer mix with virus for about 1

hour.

3. While virus and PEG are reacting unused PEG should be vacuum dried. Release

vacuum by filling chamber with Argon gas. Seal PEG container while it is submerged

in the Argon gas, seal container with parafilm and dessicate in freezer.

4. Centrifuge virus+ polymer mixture twice at 55,000 rpm (300,000 g). Beware that

resulting pellet will be very soft if polymer is attached because the polymer prevents

tight pelleting.

A.4.5 Fluorescent Labelling of Virus Coat Proteins

Solutions:
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Boric acid buffer: 100 mM NaCl and 100 mM Boric Acid. Adjust to pH 9.5 with

NaOH.

Procedure:

1. Dialize virus in Boric acid buffer. If the virus was previously in a Tris buffer dialize

for a long time (∼24 h) to ensure complete exchange of Boric Acid buffer for Tris

buffer.

2. Dilute virus to ∼1 mg/ml or minimally to the isotropic phase.

3. For each mg of virus mix >0.65 mg FITC (such that there are ∼3-10 FITC

molecules per binding site (∼ 3000 binding sites/fd)) with DMSO (Dimethyl sulfox-

ide). The total volume of DMSO should be 10 percent of final volume of DMSO+

virus solution (ie 0.1 mL DMSO per 0.9 mL virus sol’n).

4. Add FITC-DMSO mixture to virus solution. Reach for approximately 1 hour.

5. After reaction is complete, dialyze virus against Tris buffer until solution outside

of dialysis bag is clear and no longer contains any unbound fluorescence polymers (∼

3-5 days and many buffer exchanges). After this, labeled virus can be centrifuged

2-3 times to remove residual FITC in solution. FITC is not soluble in water alone so

dialysis must be done in a buffer.
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