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Alan Turing, in “The Chemical Basis of Morphogenesis” [Turing AM
(1952) Philos Trans R Soc Lond 237(641):37–72], described how, in
circular arrays of identical biological cells, diffusion can interact
with chemical reactions to generate up to six periodic spatiotem-
poral chemical structures. Turing proposed that one of these
structures, a stationary pattern with a chemically determined
wavelength, is responsible for differentiation. We quantitatively
test Turing’s ideas in a cellular chemical system consisting of an
emulsion of aqueous droplets containing the Belousov–Zhabotinsky
oscillatory chemical reactants, dispersed in oil, and demonstrate
that reaction-diffusion processes lead to chemical differentia-
tion, which drives physical morphogenesis in chemical cells. We
observe five of the six structures predicted by Turing. In 2D hexago-
nal arrays, a seventh structure emerges, incompatible with Turing’s
original model, which we explain by modifying the theory to
include heterogeneity.

pattern formation | nonlinear dynamics | chemical oscillations |
chemical dynamics

The Turing model of morphogenesis offers an explanation for
how identical biological cells differentiate and change shape

(1). It is difficult to overstate the impact Turing’s model has had
on developmental biology and the broad field of reaction-diffu-
sion systems (2–9). The Turing model consists of two cases: The
first, applicable for a ring of continuous material, has been ex-
perimentally confirmed in chemical systems (10–14). The second
case, relevant to biology, consists of a ring of discrete cells, each
of which contains interacting chemical species that can diffuse to
neighboring cells through a chemical selective membrane. How-
ever, as the two theories for the cases are different, establishing
the Turing model for continuous systems does not prove that
the model holds when the chemistry is compartmentalized. Due
to challenges in microfabrication, the case of a ring of cells has
not previously been experimentally tested in chemical systems.
In biology, where networks of cells arise naturally, the Turing
model remains controversial because comparison of experi-
ment and theory is hampered by incomplete knowledge of the
morphogens involved in development, the rate constants of the
reactions, the mechanisms of intercellular coupling, and the role
of elasticity (5, 7, 15, 16).
We report an experimental reaction-diffusion system ideally

suited for testing Turing’s ideas in synthetic “cells” consisting of
microfluidically produced surfactant-stabilized emulsions (17, 18) in
which aqueous droplets containing the Belousov–Zhabotinsky (BZ)
oscillatory chemical reactants (19) are dispersed in oil. In con-
trast to biology, here the chemistry is understood, rate constants
are known, and interdrop coupling is purely diffusive. We ex-
plore a large set of parameters through control of concen-
trations, drop size, spacing, and spatial arrangement of the drops
in lines and rings in one dimension and hexagonal arrays in two
dimensions. Quantitative comparison of theory and experiment
reveals two surprises: A structure not predicted by Turing’s
analysis is observed, and we measure coupling strengths orders of
magnitude weaker than predicted. Nevertheless, in the majority

of cases, we find Turing’s model to be exceedingly accurate. Most
significantly, we experimentally establish Turing’s prediction that
interacting identical cells differentiate into chemically distinct
populations, which subsequently transform physically in size,
thereby demonstrating that these synthetic cells are pluripo-
tent and that abiotic materials can undergo morphogenesis via
the Turing mechanism. For one-dimensional arrays of drops,
we observe six distinct spatiotemporal patterns, all of which are
predicted by the Turing model. In closed-packed 2D arrays, we
observe an additional pattern, of a mixed spatial-temporal nature
that is incompatible with Turing’s original model. We develop
a theory, capable of describing this mixed pattern, which posits
that the pattern arises from nonlinearity coupled with slight
heterogeneity in cellular chemistry and/or coupling strength. As
our theory is generic, and heterogeneity is ubiquitous in nature,
we expect this pattern to occur in a wide range of reaction-
diffusion systems.
The BZ reaction (19), the metal ion-catalyzed oscillatory ox-

idation of an organic substrate, typically malonic acid (MA), by
acidic bromate, has become the prototype of nonlinear dynamics
in chemistry (20) and a preferred system for exploring the be-
havior of coupled nonlinear oscillators (21). Our system (Fig. 1
and Fig. S1) consists of a monodisperse emulsion of drops of
aqueous BZ solution, whose diameter ranges from 20 to 200 μm
dispersed in a continuous phase of oil (17, 18). The drops are
surfactant-stabilized to prevent coalescence (22) (SI Methods).
Chemical coupling between drops is mediated through a small
subset of less polar intermediates; primarily an inhibitory compo-
nent, bromine (Br2), and to a lesser degree, two excitatory com-
ponents, bromine dioxide ðBrO ·

2Þ and bromous acid (HBrO2),
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which diffuse from drop to drop through the intervening oil. Here,
because the inhibitory bromine strongly partitions into the oil,
whereas the excitatory bromous acid does so only weakly, it is
possible to satisfy the long-range inhibition and short-range exci-
tation condition needed for the stationary Turing instability
(6). Because the system is closed and the BZ reactants are not
replenished, the reaction lasts no more than about 100 oscil-
lations until the final uniform equilibrium state is approached.
However, the system evolves sufficiently slowly that it can
adiabatically exhibit the dynamical instabilities predicted by
Turing for open systems (17, 18, 23).
Stationary Turing patterns have been notoriously difficult to

produce experimentally, primarily because, for the activator–
inhibitor dynamics that typically provides the necessary feedback,
the inhibitor must diffuse significantly more rapidly than the
activator (6). This condition, which cannot be satisfied with small
molecules in homogeneous solution, was first fulfilled, 40 years
after Turing’s paper, in the chlorite–iodide–malonic acid (CIMA)
system, with the activator being complexed to starch, which slows
activator transport (11, 12). Stationary Turing states were also
observed in a BZ microemulsion consisting of reverse micelles
(24, 25). The activator, polar HBrO2, resides in the aqueous in-
terior of the micelle. The inhibitor, nonpolar Br2, permeates into
the oil phase. The transport of the micelles is much slower than
the transport of bromine; hence, the criterion for the stationary
Turing instability is met. The distinction between the micelles
used previously (24, 25) and the emulsions we study here (17, 18)
is that the micelles are in dynamic equilibrium; they merge and
split on a timescale much shorter than the period of a BZ oscil-
lation and a length scale much shorter than the wavelength of the
chemical wave. Therefore, on the timescale and length scale ap-
propriate for a continuum description of the reaction-diffusion
system, the BZ microemulsion can be considered to be homo-
geneous in composition. In this sense, the BZ microemulsion

and the CIMA–starch system share a continuum description.
The BZ emulsions studied here are fundamentally different,
in that they consist of discrete immobile chemical compart-
ments that never merge. The microfluidic emulsion system
presented here is spatially heterogeneous, whereas the micelle
and CIMA–starch systems are spatially homogeneous on the
relevant timescales.

Model
To quantitatively test the Turing model in discrete cells, it is
necessary to control the boundary and initial conditions for all of
the cells. We use mixed boundary conditions: Part of the surface
enclosing the cells under study consists of other cells in which the
chemical concentrations are held constant, and part is a glass
wall impenetrable to all chemicals and thereby imposes a no-flux
condition. Constant chemical boundaries were created by exploit-
ing the photosensitivity of the BZ catalyst, ruthenium-tris(2,2′-
bipyridyl) (Rubpy). Any drop illuminated by blue light is inhibited
from oscillating and held in the reduced steady state (SI Methods).
We produced 1D linear and 2D hexagonal arrays of drops by filling
cylindrical and rectangular capillaries, respectively, and used a
computer projector coupled to a light microscope to generate
patterned illumination (18) in which each drop could be in-
dependently illuminated. This flexible illumination system al-
lowed us to isolate either pairs of drops, or a ring of active drops
from a 2D array, as shown in Fig. 1 G and H and Fig. S2, with ex-
perimental conditions specified in Table S1. Initial conditions were
set by inhibiting all drops with light, as shown in Fig. S3, and then
disinhibiting individual selected cells by extinguishing their illumi-
nation at prescribed times, thereby allowing the chemical dynamics
to proceed. A green light source tuned to the ferroin absorbance
wavelength was used to observe, but not affect, the BZ reaction.
To construct a tractable model, Turing assumed cells were

chemically uniform, small objects and considered the membranes
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Fig. 1. Chemical states of linear and circular arrays of BZ drops. See Movies S2 and S3. (A–F) Cylindrical capillaries of 100-μm inner diameter filled with
a linear array of closely spaced droplets. (Upper) Space–time plots demonstrating the corresponding Turing cases (a–f) were generated by plotting the in-
tensity of a single line of pixels connecting the centers of adjacent drops as a function of time. (Lower) Cartoon above corresponding photograph of droplets.
Cartoon colors: blue, BZ drops in oxidized state; red, reduced state; cyan, oil. Chemical conditions: 300 mM bromate, 3 mM ferroin, 0.4 mM Rubpy, and 80 mM
sulfuric acid. Malonic acid (MA), NaBr, drop size, and spacing are specified in each case. Five of the six Turing solutions b–f are observed. (A) Stationary stable
oxidized state after initial transient; 10 mM MA, no NaBr, drop size of 130 μm, and oil gap of 20 μm. (B) Turing case b, (long-wavelength, oscillatory), ðqmin,ωÞ;
2.4 M MA, 10 mM NaBr, drop size of ∼230 μm, and oil gap of ∼100 μm. (C) Turing case c, (short-wavelength, stationary), ðqmax,0Þ; 20 mM MA, no NaBr, drop
size of ∼98 μm, and variable oil gap between 0 and 47 μm. (D) Turing case d, (intermediate-wavelength, stationary), (q,0); 40 mMMA, no NaBr, drop size of 95
μm, and oil gap of ∼0 μm (touching drops). (E) Turing case e, (intermediate-wavelength, oscillatory), (q,ω); 640 mMMA, 10 mM NaBr, drop size of 117 μm, and
oil gap of 3 μm. (F) Turing case f, (short-wavelength, oscillatory), ðqmax,ωÞ; 380 mMMA, 10 mM NaBr, drop size of 106 μm, and oil gap of 25 μm. (G and H) Odd
and even circular arrays. Turing case f. Rectangular capillaries with cross-section 0.1 mm × 2 mm filled with a 2D array of close-packed droplets from which
rings are created with optical isolation. (Left) Oscillatory drops are labeled; all other drops are illuminated with light (cross) and held nonoscillatory in the
reduced state. (Right) Space–time plot. Chemical conditions are as follows: 300 mM bromate, 3 mM ferroin, 80 mM sulfuric acid, 10 mM NaBr, 0.4 mM Rubpy,
640 mM MA; and drop size is ∼150 μm. (G) Five-membered ring. Drops oscillate in a pentagramal pattern. (H) Six-membered ring. Neighboring drops are π
radians out-of-phase.
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separating cells as chemically specific barriers to diffusion, ignoring
any chemical reaction or accumulation of chemicals in the mem-
brane. Turing’s resulting reaction-diffusion model consists of a ring
of point cells diffusively connected directly to nearest neighbors,
expressed as a set of equations each of the following form (1):

dci
dt

=FcðciÞ+Mcðci−1 + ci+1 − 2ciÞ; [1]

where ci is a vector containing the concentrations of the species
in the ith cell, Fc is a vector function describing the kinetics of
the c-species, and Mc is a diagonal matrix containing the coef-
ficients of diffusive transport ðμcÞ of the c-species between drops.
We describe the chemical kinetics, Fc, of the BZ chemistry with
a moel developed by Vanag and Epstein (26, 27) (VE model, SI
Methods) that considers four concentrations to vary in time: the
inhibitory components bromine (Br2) and bromide (Br−), the
oxidized form of the catalyst (ferriin), and the activator bromous
acid (HBrO2). The four VE reaction rates, Fc, contain the afore-
mentioned four variable chemical species, four more chemicals,
whose concentrations are approximated as constants in the
model, and nine known rate constants; Fc has zero adjustable
parameters. Turing did not specify how the coupling strength μc
varies with the physical-chemical parameters. To compare theory
with experiment, we supplement the Turing model by explicitly
calculating the coupling strength between drops in a capillary
using Turing’s assumptions noted above, with the caveat that
different results arise depending on the assumptions used to pro-
duce a geometric point model (27, 28):

μc =
2DcPcðb+ dÞ
d2ða+ bÞ

�
ln
�
b+ d
b

�
+
a− d
b+ d

ln
�
a− d
a

��
: [2]

See Fig. S1 and SI Methods for details of the calculation. Dc and
Pc are the diffusion and partition coefficients of the c-species in
the oil, a is the length of the BZ drop, b is the length of the oil
gap separating drops, and d is the diameter of the capillary. The
only parameter not measured in Eq. 2 is the partition coefficient
of HBrO2, Px.
To elucidate this model, Turing (1) used linear stability anal-

ysis (LSA) and identified six possible chemical structures in rings
of diffusively coupled identical cells. In LSA, one characterizes
how the steady-state concentrations, i.e., those for which dci=dt= 0,
respond to small perturbations. If all perturbations decay, then the
system is in a stable steady state. However, if any perturbations
grow with time, the steady state is unstable, and the fastest growing
perturbation is labeled a Turing instability. For a ring of N cells, the
requirement of periodicity restricts dimensionless wavevectors of
the perturbations to take on one of three possible values: qmin = 0,
qmax = 2πsmax=N, where for even numbered rings smax =N=2 and
for odd rings smax = ðN − 1Þ=2, and q= 2πs=N, where the integer s
ranges from 0< s< smax. For each possible q, the perturbation
growth can be either oscillatory with frequency ω> 0, or non-
oscillatory with ω= 0, giving a total of six possible instabilities.
Following Turing’s nomenclature, the six instabilities (a–f) are each
characterized by a wavevector and frequency, (q,ω), as follows:
Turing case (a), ðqmin; 0Þ; (b), ðqmin;ωÞ; (c), ðqmax; 0Þ; (d), (q,0); (e),
(q,ω); and (f), ðqmax;ωÞ.
The Turing model, by which we mean the nonlinear rate and

coupling equations (Eq. 1), incorporates two significant and un-
tested approximations: considering each cell as a point and
simplification of chemical transport by elimination of explicit
consideration of the intracellular medium (the oil in our experi-
ments). Furthermore, the use of LSA introduces an additional,
severe approximation. The power of the Turing model is that it
provides unambiguous physical mechanisms to explain chemical
dynamics and morphogenesis. However, as noted by Turing (1),

“This model will be a simplification and an idealization, and
consequently a falsification.” This raises the question, to what
degree do the Turing model and its LSA describe experiment?
The answer to this question is of importance to the broad field of
reaction-diffusion systems, as over a thousand papers have been
published that have built upon the Turing model, which, before
this work, has not been experimentally tested for networks of
diffusively coupled cells (4). Here, we address six fundamental
questions facing reaction-diffusion systems in general: (i) How
well does the simplified coupling term, μc, agree with experiment?
(ii) Are there more or fewer than the six predicted Turing linear
instabilities? (iii) How are the linear instabilities modified by
nonlinearities? (iv) Does the Turing model provide quantitative
and predictive understanding of experiment? (v) How do chem-
ical patterns depend on the dimensionality? (vi) Do cells se-
quentially undergo chemical and then physical morphogenesis?

Results
As a first experimental test of the Turing model, Eq. 1, for cells,
we measured the synchronization dynamics of two weakly in-
hibitory coupled drops at moderate MA concentrations, where
uncoupled drops oscillate and bromine can be considered as the
sole intercell transporter (18), i.e., Px = 0. We filled cylindrical
capillaries with drops, used light both to chemically isolate a pair
of adjacent drops and to set the initial phase difference between
the isolated drops, and measured the phase difference between
the two drops as a function of time, as shown in Fig. S1. Viewed
in transmission, the oxidized state appears bright, whereas the
reduced state appears dark. Ultimately, the drops synchronize
with a phase difference of π radians (18, 29). Fig. S1 and Movie
S1 present experimental synchronization rates as a function of
drop sizes (50–200 μm) and oil gaps (10–200 μm) for ∼ 100 drop
pairs; for these conditions, rates varied by a factor of 30. Ex-
cellent fits were obtained between the experimentally measured
synchronization rates and the full nonlinear solution of Eq. 1 if
we treated μc as a fitting parameter, which varied for each drop
size and oil gap. We also fit synchronization rates using the ex-
plicitly calculated coupling strength, Eq. 2. Although the func-
tional form of the coupling strength (Eq. 2) fit the time-
dependent synchronization data well for a wide range of oil gaps
and drop diameters, the combination of the Turing model (Eq.
1) with our explicit calculation of the interdrop coupling (Eq. 2),
overestimates the coupling strength by nearly two orders of
magnitude. That is, we replaced μc of Eq. 2 with fμc, and al-
though theory predicts f = 1, experimentally we find f = 0:0152.
Despite this discrepancy, the fact that only one phenomenolog-
ical parameter, f, is needed to reconcile theory and experiment
over a wide range of coupling strengths is an improvement over the
original Turing model, where a different phenomenological pa-
rameter, μc, is fitted for each drop diameter and oil gap. As a guide
to theorists motivated to improve our calculation of the coupling
strength, we note that the Turing model assumes a vanishing thin
membrane, whereas our experimental system has a finite-sized oil
gap. Our model of coupling strength, based on the assumptions of
the Turing model, neglects four factors, each of which reduces
coupling: nonuniformity in chemical gradients in the drop and the
oil, accumulation of chemicals in the oil, time taken to diffuse
across the oil, and chemical reactions within the oil.
Having established the Turing model is quantitatively valid for

a wide range of synchronization conditions with a single exper-
imentally determined constant in the coupling term, f = 0:0152,
we prepared a series of one-dimensional arrays of drops in rings
and lines and determined the long-term emergent chemical
states as a function of the two variables that most strongly control
interdrop behavior: MA concentration and coupling strength.
Coupling strength, μc, is conveniently tuned experimentally by
varying the drop size a and oil gap b using microfluidics. In
Fig. 1 A–F, we illustrate examples of six distinct patterns with
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the symmetry corresponding to Turing cases (a–f). Five of the
six patterns, Fig. 1 A and C–F, appear where predicted by
theory in Fig. 2B. Four of the six patterns are identified with
Turing cases (c, d, e, f). The fifth pattern has the same sym-
metry as Turing case (a). However, this pattern is predicted
be a stationary, stable state for MA concentrations below
1 mM and therefore does not arise from a Turing instability,
underscoring the point that observation of a chemical state with
a pattern corresponding to a Turing instability is insufficient evi-
dence to prove the state arises from a Turing mechanism (3, 6, 8,
30). Notably, the pattern with the symmetry of Turing case (b) is
observed in a region of parameter space not predicted by theory.
This is the sole discrepancy between theory and experiment, and we
suspect that it reflects a shortcoming of the VE model. See SI
Discussion for expanded analysis of each case andMovies S2 and S3
of the spatial-temporal patterns.
The behavior of finite rings depends on the number of drops,

N, in the ring as seen in Fig. 1 G and H and Movie S3 for two
rings with identical chemical composition, drop size, and spacing,
but with five and six drops, respectively. For these particular
chemical conditions and for N even, LSA predicts antiphase
oscillations, corresponding to Turing instability ( f) characterized
by the wavevector–frequency pair ðq max;ωÞ, as defined pre-
viously and in more detail in SI Text. Turing’s prediction is that
for N odd, no two drops will undergo an oxidation transition
simultaneously; there will be N beats per measure, whereas for N
even there will be two beats per measure. For a ring of five drops,

LSA predicts a waveform C5ðr; tÞ∝ expðið4πr=5−ωtÞÞ, with
r∈ ð0; 1; 2; 3; 4Þ the drop number. In this expression, the phase
is chosen such that a drop is oxidized when 4πr=5−ωt is equal
to a multiple of 2π. As time advances in increments of one-
fifth of a period, the oxidized state in Fig. 1G moves along the
ring in a pentagramal sequence from drops 0→ 3→ 1→ 4→ 2.
For the ring of six drops, C6ðr; tÞ∝ expðiðπr−ωtÞÞ, with
r∈ ð0; 1; 2; 3; 4; 5Þ. As shown in Fig. 1H, all even-numbered
drops oxidize simultaneously at the beginning of a period, and
one-half a period later, all odd-numbered drops oxidize. In
Fig. S4 and SI Methods, we present the LSA predictions for
rings with three, four, five, and six drops and the corresponding
experiments. For rings of drops, Turing’s LSA theory and our
experiments are in complete agreement.
Using published chemical rate constants of the VE model (26)

(Eq. S2 and Table S2), we calculate two state diagrams, one
using Turing’s LSA and the other the full nonlinear simulation
(NLS) of equations (Eq. 1) in one dimension, shown in Fig. 2.
These theory plots have no adjustable parameters, as the Turing
model treats the coupling strength, μc, as an independent vari-
able. However, to assign coupling strengths to experiment, we
explicitly calculate coupling strength using Eq. 2 to which we
introduce a fitting parameter by replacing μc of Eq. 2 with fμc.
We also fit the partition coefficient of the activator, Px. The best
agreement between the NLS and experiment was obtained for
Px = 0:05 and f = 0:14. With respect to the experimental state
diagram, the NLS overestimates coupling strength eightfold,
which is the same trend as in the case of the synchronization
experiments. In experiments and in the NLS at low MA, we find
a stable stationary state in which all of the drops are in-phase.
This has the same pattern as Turing state (a), but as noted pre-
viously, LSA reveals this state is stable and it cannot be considered
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phase difference, ϕi = θi − θ ref, where 0≤ϕ≤ π and θ ref is the phase of the
drop indicated with the white vertical arrow. Drops where ϕi < π=2 are green
and ϕi > π=2 are blue. Notice that every third drop is stationary, and every
oscillatory drop is out of phase with its immediate neighbors; two exceptions
are noted with orange arrows. See Movie S6. Chemical conditions: 300 mM
bromate, 3 mM ferroin, 0.4 mM Rubpy, 80 mM acid, 640 mMMA, and 10 mM
NaBr. Drop size is ∼70 μm.
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a Turing state, which arises from a homogeneous unstable state.
Both state diagrams predict that as coupling strength increases
above zero the same five Turing instabilities (b–f) appear with three
oscillatory (green hues) and two nonoscillatory (red hues). Theory
correctly predicted that for low MA concentration, arrays of large
drops would oscillate and that arrays of smaller, chemically iden-
tical drops, would be stationary. For 1D arrays of drops in capil-
laries, the linear and nonlinear theories predict the same basic
features, with two notable distinctions. First, nonlinearity strongly
suppresses the stationary states. Second, “cluster” states, distinctive
oscillating patterns consistent with Turing case (e) were experi-
mentally sought and observed only after calculations of the non-
linear state diagram indicated their existence; thus, the Turing
model is predictive. Further specific comparisons are included in SI
Discussion, Figs. S5 and S6, and Movies S4 and S5.
To investigate the effect of dimensionality on Turing insta-

bilities, we performed experiments on close-packed hexagonal
arrays of drops, reported as squares in Fig. 2. For conditions
intermediate between stationary and oscillatory Turing insta-
bilities, we observed a state, shown in Fig. 3 and Movie S6, that
consists of a lattice composed of triangles of drops in which one
drop is stationary and the other two oscillate with a phase dif-
ference of π, referred to as the s0π state (17). LSA requires all
drops to share the same temporal behavior, i.e., all stationary, or
all oscillatory; thus, the s0π state cannot arise from a linear in-
stability. However, it could be a nonlinear effect, but extensive
numerical exploration of the full nonlinear chemistry using both
the Turing and finite-element models on ordered hexagonal
arrays failed to produce the s0π state. The qualitative discrepancy
between theory and experiment suggests that a critical element is
missing from the Turing model. Therefore, we developed a theo-
retical model for the s0π state, valid in general for systems un-
dergoing a Hopf bifurcation, which requires additional conditions

to the Turing model; the drops must be physically or chemically
heterogeneous, with two drops that oscillate at a higher frequency
than the third and that synchronize out-of-phase when isolated.
Our analysis, elaborated in Fig. S7 and in SI Discussion, predicts
that as the coupling strength between the two higher frequency
oscillating drops and the third is increased, there is a transition to
a state in which the third drop is stabilized in the nonoscillatory
state, whereas the other two drops continue to oscillate out-
of-phase. We numerically confirmed our theory by introducing
heterogeneity into the Turing and finite-element models, which
then produced the s0π state. Experimentally, heterogeneity in drop
frequency is about 5%, which is less than the 20% required by our
simplified analytic theory; therefore, the s0π state bears more
scrutiny. Only recently has heterogeneity been considered theo-
retically in reaction-diffusion networks (4, 31–33); our experi-
mental work demonstrates the emergence of a mixed dynamical
state caused by a remarkably small amount of heterogeneity.
As the mechanism is generic, we expect it to apply to a large
class of reaction-diffusion systems. Furthermore, we note that,
in general, the experimental state diagram for 2D arrays of
drops does not map well onto the one-dimensional nonlinear
calculation, indicating that dimensionality plays a significant
role in pattern selection.
Turing, in “The Chemical Basis of Morphogenesis” (1), ar-

gued that, in case (d) (Fig. 1D), identical biological cells chem-
ically differentiate into active and inactive stationary states. He
further speculated that an activated gene could catalyze an in-
crease in the concentration of intracellular molecules, thereby
driving physical differentiation by increasing the osmotic pres-
sure in that cell, causing it to swell. In Fig. 4 and Movie S7, we
demonstrate precisely this sequence of chemical differentiation
followed by physical morphogenesis in a hexagonal packing of
identical drops prepared in the chemical state of Turing case (d).
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Fig. 4. Images and histograms of drops demonstrating morphogenesis plotted as fraction of original drop intensity and fraction of original drop volume.
Intensity is a function of the chemical state of the BZ catalyst; bright drops are oxidized, and dark drops reduced. The color-coded line tracks the center of
each peak as a function of time. (A and B) Initially, drops are homogenous in both intensity, or chemical state, and physical volume. (C and D) At intermediate
times, the drops undergo a Turing bifurcation, becoming heterogeneous in oxidation state, but remaining homogenous in volume, as seen by the differ-
entiation into lighter and darker drops of equal size. (E and F) At later times, drops are heterogeneous in both oxidation state and volume. The oxidized
(bright) drops shrink and reduced (dark) drops swell. See Movie S7. Chemical conditions (Table S3): 200 mMMA, 0.4 mM Rubpy, 0 mM NaBr, 80 mM H2SO4, 300
mM NaBrO3, 3 mM ferroin, 0.05 × 1-mm rectangular capillary, and initial drop size of ∼66 μm.
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The drops, produced microfluidically as spheres, are stored in
a rectangular capillary and are deformed into cylindrical disks
with the same height as the capillary. The intensity of each drop
is a monotonic function of the fraction of oxidized BZ catalyst it
contains. As shown in Fig. 4A, the drops are initially homoge-
neous in chemistry and drop size. After an initial induction time,
the drops undergo a transition from this unstable steady state to
Turing case (d), in which one out of three drops is in the reduced
(dark) state and two out of three are oxidized (bright), shown in
Fig. 4C. This chemical differentiation occurs with the drop size
remaining constant. The oxidized drops consume reagents faster
than the reduced drops. This creates an osmotic pressure im-
balance, causing water to flow from the oxidized to reduced drops,
creating a morphological transformation in which the initially ho-
mogeneous cells differentiate into two populations with distinct
chemical redox states and physical sizes, as shown in Fig. 4E.
Quantitative measurements of the volume changes are in agree-
ment with theory, as elaborated in SI Text.

Conclusion
Turing’s model predicts the circumstances under which initially
homogeneous diffusively coupled cells will spontaneously evolve
spatiotemporal chemical structures. However, only a small sub-
set of chemical reactions lead to the Turing instabilities; most
reactions remain stably homogeneous. In emulsions of the os-
cillatory BZ chemical reaction, tuning coupling strength and
chemical dynamics by changing drop size and MA concentration,
respectively, reveals seven distinct chemical structures, six of
which were predicted by theory. Turing’s model eliminates the

oil phase separating cells and treats the coupling strength as a
free parameter. We extended Turing’s model to explicitly cal-
culate the coupling strength. Experiments revealed that the ex-
tended model overestimated intercellular coupling by nearly two
orders of magnitude. One experimentally determined parameter
was introduced to reconcile theory and experiment for a wide
range of conditions; eliminating this one phenomenological pa-
rameter remains a theoretical challenge. LSA of the Turing
model captures most of the qualitative features of the observed
chemical pattern formation, thereby providing a mechanistic
explanation of pattern selection. However, the full nonlinear
model must be solved to achieve quantitative agreement between
experiment and theory. We observe one chemical pattern in-
consistent with the original Turing model and propose a generic
mechanism whereby slight heterogeneity in the cells leads to
a state of mixed dynamical and stationary character. The Turing
model is regarded as a metaphor for morphogenesis in biology,
useful for a conceptual framework and to guide modeling, but
not for prediction (7). In contrast, in this chemical system, we
demonstrated that the Turing model quantitatively explains
“materials morphogenesis” in which cellular compartments first
chemically and then physically differentiate, raising the possibility of
exploiting this form of reaction-diffusion chemistry for materials
science applications.
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SI Text
This document is intended as a source of supplementary in-
formation. Each section is intended to provide necessary details for
other researchers wishing to critically analyze our techniques or
replicate our findings. The document as a whole is not intended to
have a continuous narrative or further a specific argument.

SI Methods
Additional theoretical and experimental methods with back-
ground information used in the preparation of the main text are
included in this section.

Coupling Strength. A key assumption in the Turing model is that
cells are diffusively coupled, as characterized by the diffusive rate,
μc, where dci=dt= μcðci−1 + ci+1 − 2ciÞ, with ci the concentration
of a single chemical species in the ith cell. However, Turing did
not specify a form for the coupling term μ, so it is treated as a
fitting parameter in comparison of theory with experiment. We
supplement Turing’s model by calculating how the coupling term
depends on our system’s physical and chemical parameters.
Following Turing, our model consists of a ring of identical cells,

which are considered to be small enough so that diffusion makes
the concentration inside each cell uniform on a timescale that is
much shorter than any chemical reaction dynamics. To calculate
μc, we first consider a one-dimensional case, illustrated in Fig.
S1C. Consider two cells each with an aqueous dimension of
length a separated by an oil gap of length b such that the total
center to center distance is a+ b. Again, like Turing, we assume
that no chemical species accumulate in the oil phase. Conser-
vation of mass demands that ∂c=∂t=−∂J=∂x, where c is the
concentration and J is the concentration flux. Additionally,
Fick’s first law states that J = −D∇c. When discretized we have
the following:

Δc
Δt

= −
ΔJ
Δx

=
Ji−1;i − Ji;i+1

a
;

where we make the additional assumption that the concentration
is uniform within the aqueous phase, so the only fluxes are across
the oil gaps:

Ji−1;i =
DPc

b
ðci−1 − ciÞ  Ji;+1i =

DPc

b
ðci − ci+1Þ;

which, when substituted into our conservation of mass equation
yields the following:

Δc
Δt

=
DPc

ab
ðci−1 + ci+1 − 2ciÞ⇒ μc =

DPc

ab
;

where D is the diffusion constant in oil for chemical species c,
and Pc is the oil/water partition coefficient for species c. For
our analysis, we used the values D= 3× 10−9m2=s, Px = 0:05,
Py =Pz = 0, and Pu = 2:5.
The above result for μc was derived for cells on a line in

one dimension. Experimentally, our Belousov–Zhabotinsky (BZ)
drops confined in cylindrical capillaries resemble spherocylinders.
We can improve on the previous result by using the Derjaguin
approximation to calculate the diffusive flux between two spher-
ocylinders confined in a cylindrical capillary of diameter d. From
the geometry of Fig. S1D, we know that the gap β at any point is

β= b+ 2Δ, where ρ2 + ðr−ΔÞ2 = r2. We can solve for Δ and find
Δ= r±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ρ2

p
. As Δ→ 0 when r→∞ we can state the following:

Δ= r−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ρ2

p
:

Thus, we know β as a function of ρ is as follows:

β= b+ 2
�
r−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ρ2

p �
:

As a+ b is a constant, and from the geometry we can see that
α+ β is the same constant, we can write α as a function of ρ as
follows:

α= a− 2
�
r−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ρ2

p �
:

To apply the Derjaguin approximation, we calculate the average
flux in cylindrical coordinates from the following:

μc =
1
A

Z
θ

Z
ρ

μcðρÞρdρdθ;

which when the proper symmetries are applied becomes the
following:

μc =
2
r2

Z r

0

μcðρÞρdρ:

Using the form of μc derived above and replacing the drop width
a with αðρÞ and the gap size b with the gap βðρÞ, we have the
following:

μc =
2
r2

Z r

0

DPc

αðρÞβðρÞ ρdρ;

which in experimental units of d is the following:

μc =
8
d2

Z
d
2

0

DPc�
a− d+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
− ρ2

r ��
b+ d− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
− ρ2

r � ρdρ:

Solving the integral yields the following:

μc =
2DPcðb+ dÞ
d2ða+ bÞ

�
ln
�
b+ d
b

�
+
a− d
b+ d

ln
�
a− d
a

��
:

This model is valid for unconfined drops with a diameter greater
than, or equal to, the capillary diameter. When the drops are
spheres with a diameter equal to the capillary diameter, ða= dÞ:

μc =
2DPc

a2
ln
�
a+ b
b

�
:

In the weak coupling limit of spherical drops separated by a great
distance, a � b, the result simplifies further to the following:
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μc =
2DPc

ab
:

This last result is similar to the coupling strength in 1D; the factor
of 2 difference comes from the circular shape of the drop in the
capillary.
We cannot directly measure μc and so instead examine the

effect that coupling has on the dynamics of two weakly coupled
chemical oscillators. An individual BZ drop oscillates on a limit
cycle. If two oscillators are weakly coupled, then, to first order,
they remain on the limit cycle, but synchronize with a phase
difference of either 0 or π radians. In the limit of weak coupling,
the dynamics of the phase difference between two coupled drops
evolves exponentially with rate constant, z, proportional to the
coupling strength. To perform the corresponding experiments,
we fill cylindrical capillaries with drops and use light to chemi-
cally isolate a pair of adjacent drops (Fig. S1A). The phase dif-
ference between the two drops is measured as a function of time,
from which the rate of synchronization z is measured (Fig. S1E).
For each measured rate constant z, we calculate a theoretical
rate constant zth by integrating Eqs. 1 and 2. Measured and
calculated rate constants for a wide range of drop sizes and
separations are compared in Fig. S1 F and G. To compare ex-
perimentally measured synchronization rates to rates calculated
from the full nonlinear solution of Eqs. 1 and 2, given in the
main text, we introduced one adjustable parameter, f, in Eq. 2, by
replacing μc with fμc. Although the functional form of the cou-
pling strength (Eq. 2) fits the time-dependent synchronization
data well for a wide range of oil gaps and drop diameters, the
combination of the Turing model (Eq. 1) with our explicit cal-
culation of the interdrop coupling (Eq. 2), overestimates the
coupling strength by nearly two orders of magnitude; although
theory predicts f = 1, experimentally we find f = 0:0152.
On the one hand, our theory of coupling strength is not very

good, giving a deviation between theory and experiment of a
factor of 60. On the other hand, it is an improvement over
Turing’s model in which no functional form of μc is given, requiring
that μc must be experimentally determined for each combina-
tion of drop size and spacing. Our model requires making only
one measurement for an arbitrary drop size and spacing to
determine the coupling strength by measuring f. Once that
single fitting parameter is obtained, then fμc, with μc given by
Eq. 2, can be used to predict all other coupling strengths as
a function of drop size and spacing.

Experimental Apparatus. The emulsion is illuminated by two sour-
ces, a 510-nm filtered Köhler illumination setup for imaging and
a modified commercial data projector for photoinhibition. Im-
aging is done at 510 nm, as this wavelength does not interact
with the ruthenium-tris(2,2′-bipyridyl) (Rubpy), is opaque to
ferroin, and is transparent to ferriin. Thus, 510 nm is passive
imaging where the oxidation state of each drop is immediately
viewable by its transmission intensity. The commercial projector
is only modified to focus through the microscope objective; the
light source and color functionality are unaltered, as Rubpy is
sensitive to 450-nm light, which is within the projector’s RGB
“blue” output. Optical isolation is achieved by Matlab code
written by the group, which tracks each drop for movement and
places a dot of blue light over the center of every drop that is to
be inhibited. The size, intensity, and duty cycle of the illumi-
nation are determined by empirically establishing the minimum
inhibitory exposure for each experimental condition.

Drop Making. We generate our drops using flow focusing micro-
fluidic poly(dimethylsiloxane) chips designed and manufactured
by the group using standard methods. The BZ reactants are in-
troduced in two separate streams to prevent the reaction from

starting before on-chip mixing. One stream contains the catalysts
and bromate, whereas the other stream contains the acids and
bromide. The exact dimensions and flow rates vary based on the
desired drop size. The oil used is a commercially available fluo-
rocarbon oil (3M; HFE 7500) stabilized by a surfactant designed
by the Weitz Group at Harvard (obtained from RainDance
Technologies, the Weitz Laboratory, and RAN Biotechnologies).
The drops typically have a coefficient of size variation of about 1%.
When loaded into a rectangular capillary of height slightly less than
the drop diameter, the drops self-assemble into a closed-packed 2D
hexagonal lattice. See Table S1 for the chemical and physical pa-
rameters used for the experimental data presented in the main text.

Optical Isolation.We add the photosensitive catalyst Rubpy to the
BZ mix, which has the effect that, as long as blue light is shone on
the drops, they are held in the reduced steady state. Therefore,
light can be used to create constant chemical boundary conditions
for networks of nonilluminated drops. We use a computer pro-
jector coupled to a light microscope to generate patterned illu-
mination and isolate a ring of active drops from a 2D array as
shown in Fig. S2. In experiments, a duty cycle of 3 s on/7 s off is
used for optical inhibition. As the BZ oscillation frequency is at
least an order of magnitude less than the inhibition frequency, the
temporal variation in the light is effectively averaged. Data are
collected while the inhibitory light is off.
This method can also be used to probe the range of interaction

between drops. If all but drops 1 and 2 in Fig. S2 are illuminated,
these two adjacent drops synchronize, but if all but drops 1 and 3,
or all but drops 1 and 4 are illuminated, then the phase difference
between these drops increases linearly in time, demonstrating
that nearest neighbor drops are coupled, whereas next nearest
neighbors are uncoupled. Single drops, optically isolated from all
others, differ in frequency by less than 3%, as illustrated by the
fact that about 40 cycles are required for a phase difference of 2π
to develop between nonadjacent drops.

Initial Conditions. Another feature of adding the photosensitive
catalyst Rubpy to the BZ mix beyond the ability to set boundary
conditions is the ability to set the initial conditions. By exposing
the entire system to a bright pulse of light, we can “reset” the
phase of all of the oscillators to create an initial in-phase state as
seen experimentally in Fig. S3. Depending on the chemical
conditions of the system, this state may or may not be stable.

Data Analysis. Data are analyzed in real time during data acqui-
sition using Matlab code written by the group, which algorith-
mically detects each drop and calculates the average pixel value
for each drop in each frame. For each drop, a time series of pixel
values is used to determine the periodic peaks, which correspond
to the oxidation spikes of the BZ reaction. These spikes are
defined as phase zero, and the interspike interval is used to define
the period for that oscillation and to linearly define the phases
between each spike. The period and phase information can then
be used by the data acquisition code in determining which drops
are to be inhibited and when. Further postacquisition data
analysis is possible by calculating an order parameter for each
upright triangle of drops using the phases or phase differences.

Linear Stability Analysis. The linear stability analysis (LSA) for
a periodic ring of N cells is performed using the four-variable
Vanag–Epstein (VE) model. We begin with the reaction-diffu-
sion equation (Eq. 1) from the main text:

dcr
dt

=FcðcrÞ+Mcðcr−1 + cr+1 − 2crÞ; [S1]

where cr is a vector containing the concentrations of the chem-
ical species in the rth cell, Fc is a vector function describing the
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chemical kinetics of the c-species, and Mc is a diagonal matrix
containing the coefficients of diffusive transport ðμcÞ of the
c-species from drop to drop (2). For the VE model with four
concentrations, c= ðx; y; z; uÞ, and Fc is given as follows:

f1ðx; y; zÞ= − k1xy+ k2y− 2k3x2 + k4xðc0 − zÞ=ðc0 − z+ cminÞ
f2ðx; y; z; uÞ= − 3k1xy− 2k2y− k3x2 + k7u+ k9z

f3ðx; zÞ= 2k4xðc0 − zÞ=ðc0 − z+ cminÞ− k9z− k10
f4ðx; y; zÞ= 2k1xy+ k2y+ k3x2 − k7u;

[S2]

with the constants and variables defined in Table S2. The coupling
matrix is as follows:

Mc =

0
BB@

μx 0 0 0
0 μy 0 0
0 0 μz 0
0 0 0 μu

1
CCA; [S3]

with different coefficients, μc, to take into account the fact that
different species will partition to different extents between the
oil and aqueous phases. The first step in LSA is finding the
steady states, cs, by solving analytically, Fc = 0. Next, the chemical
rate equations (Eq. S2) are linearized about the steady state and
the dynamics of a small perturbation cr = cs + δcr is explored in
the linearized equations:

∂tδcr =Aδcr +Mcðδcr−1 + δcr+1 − 2δcrÞ; [S4]

with A= ∂f=∂c the Jacobian matrix of equations (Eq. S2) with
coefficients

aij =
∂fi
∂cj

�����
cs

: [S5]

To solve the linearized equations (Eq. S4), they are Fourier
transformed by setting the following:

δcr = δcqeσqteiqr; [S6]

with q= 2πs=N, where s∈ ½0; smax� is an integer with smax =N=2
for N even and smax = ðN − 1Þ=2 for N odd. This leads to the
following eigenvalue equation:

0=A− σqI − 4 sin2
q
2
Mc; [S7]

from which the eigenvalue σq is found as a function of q. If all
eigenvalues have negative real parts, there is a stable steady
state. If one or more eigenvalue has a positive real part, then
the steady state is unstable. The largest positive value of σq
represents the fastest growing mode, and its q is associated with
the corresponding Turing case. If σq is positive real, the Turing
instability is nonoscillatory, corresponding to a “stationary Tu-
ring instability”; if σq is complex with a positive real part, then
there is an “oscillatory Turing instability.” The eigenvalue σq was
found numerically using the parameters shown in Table S2 and
a fixed ratio of μx = μu=50 and μy = μz = 0. Using Mathematica,
we calculated the state diagram as a function of the bromine
coupling strength, μu, and malonic acid (MA) concentration m,
shown in Fig. 2 of the main text. There are no adjustable param-
eters in calculating the state diagram.
In more detail, when solving Fc = 0, we found six analytical

steady states, which were then converted to numerical steady states
and filtered to remove trivial and unphysical solutions. The re-
maining steady states (usually two, never more, occasionally only

one) were then categorized as reduced if zss ≈ cmin or oxidized if
zss ≈ c0. The analytical Jacobian matrix was then converted to
numerical Jacobian matrices using the parameters and steady-state
solutions. The numerical Jacobian matrices and diagonal diffusion
matrices were used to solve for the eigenvalues of each specified
value of μu and m. Given two steady-state solutions for each pa-
rameter set and a four-variable system, each parameter set yields
eight eigenvalues, and each eigenvalue is a function of the wave-
number q. The maximum value for the real component of each
eigenvalue was calculated, and that with the largest real maximum
was identified as the dominant mode. If all eight maximal real
values were negative, then that case was identified as a stable
steady state with no associated Turing pattern.
In Fig. 2A, along the left axis corresponding to low MA con-

centration ðMA< 1 mMÞ and independent of coupling strength,
there is one stable steady state corresponding to the oxidized state.
Everywhere else, there are two steady states: one stable and oxi-
dized, and the other unstable and reduced. Along the bottom axis,
corresponding to zero coupling strength μ= 0, LSA predicts that
the unstable reduced steady state undergoes a nonoscillatory Tu-
ring instability [case (a)] for 1 mM<MA< 370 mM and an os-
cillatory Turing instability [case (b)] for MA> 370 mM. Away
from the axes, the reduced steady state is unstable to one of
the Turing instabilities corresponding to cases (b–f).
Once the dominant eigenmode was identified, that parameter

set could then be further categorized. First, the wavenumber qT at
which the real maximum occurs is identified as the dominant
wavenumber, and thus the associated Turing wavelength is
λT = 2π=qT . Second, the magnitude of the imaginary component
of the dominant eigenvalue at the dominant wavenumber qT is
identified as the frequency ωT . See Fig. S4 for examples. The six
Turing states are defined by their dominant wavenumber qT and
associated frequency ωT . However, given the numerical rounding
and desire to compare with experiment, a small amount of lee-
way was allowed for defining states in the LSA. The mode was
identified as stationary if ωT < 10−7 rather than strictly equal to
zero, the wavelength was identified as minimal if λT < 2:02
(measured in units of cell number) rather than strictly equal to 2,
and the wavelength was identified as maximal if λT > 39:6.

Nonlinear Simulations. The simulations were conducted using the
VE model, Eqs. S1 and S2, with the same parameters as used in
the LSA (Table S2). The nonlinear simulations (NLSs) consisted
of 40 identical BZ drops diffusively coupled through chemical
species u (inhibitor) and x (excitator) with periodic boundary
conditions. Different initial conditions were used for each drop
and each trial. The initial conditions for the 40 drops were
generated from a normal distribution (with coefficient of varia-
tion of 20% in each chemical species) around the steady state of
the system. When the system oscillates, the reduced state of the
oscillation has concentrations close to the steady state. For most
of the state diagram, the steady state was unstable; only for ex-
tremely low values of MA was the steady state stable.
Numerical investigation of the NLS model revealed that MA

concentration (m) and coupling strength (μ) are the two pa-
rameters that most greatly affect the state diagram of the system
(Fig. 2 of the main text). To generate the NLS state diagram, we
systematically varied the parameters μ and m and integrated
equations (Eq. S1) long enough for the system to settle on a
stable attractor. From the space–time plot, we could identify
whether or not the attractor was a Turing state and to which case
the attractor belonged. Similarly to the LSA, there are no ad-
justable parameters in calculating the nonlinear state diagram.

SI Discussion
Additional discussion of the concepts from the main text are
included in this section.
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Comparison with Data. When directly comparing the data from
the synchronization rates of two drops and the state diagram
measurements with the theoretical predictions, we found that an
additional fitting parameter needed to be added for quantitative
agreement between theory and experiment. As noted in the
legend to Fig. S1, the coupling strength, μ, must be multiplied by
a fitting factor of f = 0:0152 for the calculated and measured
synchronization rates to match. The LSA and NLS are calculated
in an abstract space where we vary the coupling strength μc over
a range of values, whereas for experiments this is a function of
many physical parameters (Eq. 2, main text) as derived earlier in
this supplement. Similarly to the case of synchronization rates, in
order for the state diagram data to match theory (Fig. 2), the
coupling strength μc must be multiplied by a fitting factor of
f = 0:14. Possible physical explanations for this fitting factor are
mentioned in the main text. Furthermore, when plotting the data
in Fig. 2 of the main text, the drop spacing is augmented such
that b= b+ 10 nm to account for the fact that drops do not co-
alesce, as they are always separated by a surfactant layer. Finally,
when plotting 2D data in Fig. 2 of the main text, the coupling
term μ is multiplied by 3 as a result of the normal mode analysis
for closely packed spheres in 2D.

Observed States. We observe spatial-temporal patterns in drops
arranged in linear rows, which are classified by their di-
mensionless wavevector, q, and oscillation frequency, ω, using
the same nomenclature as Turing. The wavevector, q, has units
of phase. Turing classified patterns by arranging the possible
values of q into three categories: q= 0, 0< q< π, and q= π.
Furthermore, Turing divided the frequency, ω, into two cate-
gories, ω= 0 and ω> 0. This scheme gives six cases in total, and
we observe patterns with the symmetry of each of these cases,
shown in Fig. 1. However, more than one distinct physical-
chemical mechanism can lead to the same pattern; therefore,
observation of a pattern with the same spatial-temporal structure
as a Turing instability does not prove that the pattern arises from
the Turing mechanism. To identify a pattern as a Turing in-
stability, we additionally require that the observed pattern be
located in the state diagram of Fig. 2B as predicted by the full
Turing model. Our philosophy is that, if two predictions of the
model agree with experiment, then the chances of the model
being wrong are small. The ideal experiment would be to prepare
the system in conditions corresponding to the unstable steady state
and measure the chemical concentrations as a function of time.
However, we do not have the ability to do this ideal experiment; the
best we can do is observe the space–time pattern (Fig. 1) of the
catalyst and the chemical state diagram (Fig. 2). Additionally, using
a light-sensitive catalyst, for some set of parameters, we are able to
control initial and boundary conditions, which permits careful ex-
perimental study of the coupling of two drops (Fig. S1).
The LSA and NLS calculations predict that, at very low MA

concentrations, there is one steady state, corresponding to the
oxidized state, and the steady state is stable. For a 1D array of
drops, if all of the drops are stationary and in the same state
(oxidized), then the wavevector ðq= 0Þ and frequency ðω= 0Þ
correspond to the symmetry of Turing case (a). However, by
definition, the state at low MA is not Turing state (a), because all
Turing states must arise as an instability from an unstable steady
state. Thus, for our system, only five of the six Turing states are
predicted to exist. In experiment, we do observe a stationary,
uniform state at low MA, exactly where theory predicts a stable
steady-state solution. As experiment and theory agree, we assign
this low MA to be the steady-state solution and not Turing state
(a). However, for catalyst concentrations of 42 mM, which is 10
times the amount used in our experiments, the LSA predicts
that, instead of the single, stable steady oxidized state found
for MA< 1 mM, there are two steady states: one, the oxidized
stable steady state, and a second unstable steady reduced state

with an instability to a nonoscillatory Turing instability corre-
sponding to Turing case (a). Experimentally, when we prepared
samples with catalyst concentrations exceeding 24 mM, in 20
mM MA, the samples did not oscillate, even though the VE
model predicted they would oscillate. This discrepancy between
theory and experiment is unresolved.
Of the remaining five Turing cases (b, c, d, e, f), four of the

experimental Turing cases are observed to occur in the regions of
the state diagram predicted by the NLS. Turing case (b) is an
exception. At the experimental conditions for state (b) shown in
Fig. 1 of the main text (2.4 M MA), the nonlinear simulations
generate an initial transient state that corresponds to state (b),
but that evolves with time into a stable attractor corresponding
to Turing case (e). Notably, this evolution from an initial in-
phase transient to Turing case (e) is also seen experimentally, but
for much lower MA (20 mM) concentration, as shown in Fig. S3.
In summary, patterns with the same appearance as the six

Turing cases (a–f) are observed as illustrated in Fig. 1. Five of the
six patterns, Fig. 1 A and C–F, appear where predicted by theory.
Four of the six patterns are identified with Turing cases (c, d, e,
f). Turing case (a) does not occur for the parameters accessible
to our experimental system. However, at low MA, we do observe
a pattern with the same symmetry as Turing state (a), which the
Turing model predicts to be a stable steady state. Only the
pattern with the symmetry of Turing case (b), shown in Fig. 1B, is
observed in a region of parameter space not predicted by theory.
The LSA unambiguously reveals the stability of the steady

state and the eigenvalue of the instability for each chemical
condition. The nonlinear simulations and experiments are more
difficult to analyze, as the initial, linear response of the ex-
perimental system produces too small a signal to be detected
with our instrumentation. In experiment, we observe dynamics
when the chemical amplitudes are large and therefore non-
linear. Identification of the Turing state is done using space–time
data, which creates several difficulties. First, the drops are a
closed chemical system. With time, the MA is consumed, but the
coupling strength remains the same. In terms of the state diagram
shown in Fig. 2, this means that conditions initiate from a starting
point on the right of the figure, and with time evolve horizontally
to the left. Second, the Turing states are dynamical attractors,
but, in general, initial conditions of the NLS and experiments are
different from the attractor, so that there is an initial transient
period before the system settles in on an attractor. Third, wave-
length selection is broad. This means that more than one wave-
length will be selected, which leads to creation of defects in the
patterns, complicating identification of states.
Four of the Turing states are straightforward to recognize and

categorize, as they have finite wavelengths; these correspond to
Turing states (c) and (d) (stationary with wavelengths of λ= 2
drops or 2< λ<∞) and Turing states (e) and (f) (oscillatory with
wavelengths of 2 drops< λ<∞ or λ= 2 drops). The remaining
two states [(a) and (b)] are more difficult to identify due to
ambiguities and possible secondary mechanisms. In simulations,
oscillations with nearest neighbors in-phase with each other are
seen both as a final state [Turing state (b)] and as a transient
response evolving to a finite-phase oscillatory state with nearest
neighbors not in-phase [Turing state (e)]. This makes it difficult
to classify in experiments whether what is seen is an adiabatic
transition from a quasistable in-phase attractor to the finite-
phase attractor due to decaying MA concentration, or an in-
phase transient transforming to the finite-phase attractor. Ex-
periments from high MA concentrations (2.4 M, Fig. 1B in the
main text) demonstrate long periods of in-phase oscillations,
lending support for transitions due to MA decay rather than
initial transients. In general, if a system stays in one state for 10
periods, we consider this to be a stable attractor and not tran-
sient behavior resulting from initial conditions. Similarly, in
simulations and experiments the in-phase stationary state is seen,
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but it is impossible to determine by the space–time data alone if
this is due to the Turing mechanism or an underlying stability of
the steady state. In Fig. S5, we observe a transition from the
finite-phase stationary state to the in-phase stationary state.
Because the theory predicts a stable steady state at low MA, we
conclude that experiment is consistent with theory and that what
we observe is a steady state and not Turing state (a). Thus, al-
though we present data and simulations that demonstrate the
phenomenology of Turing state (a), it is the one state that we
cannot classify as due to the Turing mechanism.
We repeated the experiments many times to average over

transients. We also made samples with slightly different droplet
diameters and spacings at constant chemical concentrations, and
conversely, samples with the same droplet dimensions, but with
slightly different chemical concentrations. In this way, we tra-
versed the state diagram in Fig. 2B along vertical and horizontal
trajectories. We compared the initial behavior of samples with
slightly different MA concentrations, say 40, 30, and 20 mM, with
a single sample of 40 mM malonic as a function of time. The
hypothesis is that the sample that initially started at 40 mM MA
would over long times lower its concentration from 40 to 30 and
20 mM and thus over time generate the states exhibited by fresh
samples that initially had different MA concentrations. Only
after a series of such experiments produced consistent results did
we ascribe a Turing state to a particular region of the parameter
space in Fig. 2B.

Finite Rings. An important facet to note is that the behavior of
finite rings with a small number of oscillators depends on both the
chemical conditions and the number of drops in the ring, as seen
in Fig. 1 of the main text and Fig. S4. In a ring with an infinite
number of drops, LSA allows continuous values of q and asso-
ciated wavelength ðλ= 2π=qÞ; thus, the dominant mode is simply
the q at which the real component of the eigenvalue is maximal.
However, for finite rings, the wavelength is limited by the re-
quirement of periodicity such that q= 2πs=N for s= ½0;  smax�,
where for even-numbered rings, smax =N=2, and for odd rings,
smax = ðN − 1Þ=2, as the phase differences between nearest
neighbors around the ring must add up to an integer multiple of
2π. This yields the result that, for chemical conditions where the
real component of the eigenvalue is maximal at q= π, there will
be a different state for rings where N is even or odd, as q= π is
not an available solution when N is odd. In Fig. S4, we can see
the predicted behavior for rings with three, four, five, and six
drops and the corresponding experiments. In these situations,
the linear stability predictions of the Turing theory and experi-
ments are in complete agreement.

0sπs and 00ππ States. Another two states observed in simulations
and experiments are what we refer to as the “0sπs” state and
“00ππ” cluster state (as seen in Fig. 2 of the main text). The 0sπs
state is a 1D state with a wavelength of four drops, of which the
first and third drops are antiphase, whereas the second and
fourth drops are stationary. The name 0sπs is simply a sequential
observational naming scheme of zero phase, stationary, π phase,
stationary. Examples of this state are shown in Fig. S6. From
a linear stability point of view, this state would correspond to an
oscillatory state with a wavelength of four drops, the same as
a traveling wave; therefore, this state satisfies the normal mode
solutions from Turing with nodes of zero amplitude located on
the second and fourth drops, Turing state (e). Similarly, the 00ππ
state has a period of four drops. However, all drops oscillate; the
first two drops are in-phase and the next two drops are anti-
phase. These two states were seen in simulations before any
experiments were done at the conditions at which the simu-
lations identified the states. Subsequently, experiments found the
state as predicted.

MA Decay. A key difference between the VE model and experi-
ments is MA decay. The VE model is based on an open BZ
reaction system where the reactors are continuously fed new
reactants and products are continuously removed; the feed
chemicals can be treated as constant. The experimental emulsion
system is a closed BZ reaction where the reactants are consumed,
and thus the chemical parameters change with time. Conse-
quently, the MA concentration will decay with time. This allows
for a single experiment to probe the state transitions that occur
when the MA concentration crosses the border between two
predicted patterns as seen in Fig. S5. The transitions observed are
in agreement with the simulations based on the VEmodel as seen
in Fig. 2 of the main text and are thus seen as additional con-
firmation that the underlying mechanism is indeed that described
by Turing. We note that the bromate also decays in time, but
because it is larger than the MA concentration (and the state
behavior is less sensitive to it), this effect can be neglected.

Stabilization of the s0π State. The s0π state is observed in 2D
hexagonal closed-packed lattices of BZ drops in the part of the
state diagram shown in Fig. 2 intermediate between the Turing
state (d) of stationary drops and Turing state (e) of oscillatory
drops. It consists of a mixed oscillatory and stationary state in
which three drops, arranged in a triangle, exhibited the following
behavior: one drop was stationary, s, in a reduced, near stable
steady state, and the other two oscillated π radians out of phase.
Considerable effort was spent trying to find parameters in

numerical simulations in ordered, hexagonal arrays of drops that
demonstrated the s0π state without the addition of heterogene-
ity, using both point models in Matlab and full finite-element
simulations in COMSOL. All of these efforts proved futile, even
with the inclusion of the ∼5% chemical and physical heteroge-
neity measured in experiments. For example, when we simulated
a ring of three identical drops, we observed three different states
as a function of coupling strength. At low coupling strength, all
three drops oscillated with a relative phase shift of 2π=3. At
higher coupling strength, all drops continued to oscillate, but two
drops had a relative phase shift of 0 and the third drop had
a phase shift of π. At still higher coupling strength, the three
drops stopped oscillating simultaneously. Only with the inclusion
of exaggerated heterogeneity of ∼20% in either chemistry or
geometry is the s0π state realized in simulations. In simulations,
we have not yet explored the effect of lattice disorder on the
state behavior, and at this point our understanding of the state is
incomplete. What follows is our current best understanding of
the state from a purely mathematical perspective.
To understand the origin of the s0π state, we first consider the

oscillating pair. Two identical oscillators that are diffusively
coupled such that the diffusivity matrix, Mc, in Eq. S1 is scalar
(each component has exactly the same diffusion coefficient) will
always have a stable synchronized solution. Thus, to disrupt the
synchronous state, the diffusion coefficients must be different,
and if that is the case, then it is often possible to obtain a stable
antiphase state when the two oscillating drops are coupled. In
the VE model used here for illustration, the interdrop flux of the
u component (bromine, inhibitor communicator) is far greater
than that of the x component (bromous acid, activator). The
origin and stability of the antiphase state can best be understood
with the theory of weakly coupled oscillators, which enables one
to write explicit equations for the phase differences between two
or more oscillators when the coupling between them is suffi-
ciently small. For the VE model, weak diffusion solely of x leads
to stable synchrony and unstable antiphase behavior, whereas
coupling via solely u or z leads to stable antiphase coupling. This
is why we need a component of diffusion in the u variable.
With these preliminaries, we now assume that there is a pair-

wise antiphase stable state that can be extended into the weak
coupling regime (that is, it remains stable as the diffusion strength
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goes to zero). If we vary the parameter h, which controls the
hydrogen ion concentration, we find that for h< hB, where
hB ≈ 0:054 (Fig. S7B), the oscillation of one drop ceases and
there is a stable reduced steady state (stable equilibrium). The
drop is dead. As h increases, the oscillation returns through
a Hopf bifurcation (stable oscillations in Fig. S7B), where it
persists beyond h= 0:3: Now, suppose that there is heterogeneity
in the coupled set of three droplets. Let h1 = h2 and h3 < h1: This
means drop 3 is closer to the stable reduced state. Indeed, if
h3 < hB, then for this isolated drop, it is stable and dead. With
small enough coupling between the three drops, because of our
assumption about the pairwise stability of antiphase, we obtain
a stable s0π state. However, this is “cheating” because the third
drop is in a stable steady state. Thus, we start to increase h3 past
the value hB, which destabilized the reduced state. Clearly, if the
coupling is too small, the pair of oscillating drops cannot stabilize
the steady state. However, if the diffusion increases enough, it
may be possible, and indeed, it is.
Using the VE system, we can fix h3 = 0:11 to be close to, but

above hB so that, without coupling, drop three will undergo
oscillations. We fix h1;2 = 0:16, so drops 1 and 2 also oscillate.
For small diffusion, the interactions between the pair of oscil-
lating drops (drops 1 and 2) can be predicted through a weak-
coupling analysis. Fig. S7C shows the interaction functions re-
sulting from coupling via x (black, scaled down by a factor of
10) and via u (red). Intersections with zero that have positive
slopes represent stable locked states. Thus, coupling only via u
leads to a stable antiphase state, whereas coupling via x en-
courages synchrony. Because the effects of x are an order of
magnitude larger than those of u, the permeability of x must be
greatly reduced to ensure that the pairwise coupled drops os-
cillate in antiphase. So, for small coupling, we satisfy the re-
quirements for a s0π state to exist when the diffusion is small.
However, this state is not stable for very small diffusion because
drop three is positioned at an unstable reduced state. Thus, we
begin to increase the diffusion and find that if the heterogeneity is
enough (h3 sufficiently different from h1,2), then the s0π state is
stabilized. As the diffusion gets larger, this state remains stable
until the diffusivity is large enough to destroy it. For the VE model,
if the diffusion is large enough, the antiphase state loses stability
and becomes a synchronous state. Thus, the triplet will go to a state
where the homogeneous pair synchronizes and the third drop os-
cillates occasionally, an example of n : 1 mode locking. Other
complex dynamics can also occur.
The mechanism for the stabilization of the s0π state is not

trivial. One could imagine, for example, that the diffusion terms,
−dxx; − duu, could stabilize the rest state, but it is easily checked
that the strength of diffusion is much too small to have any ef-
fect. To better understand the phenomenon, we use the simplest
possible model that has a Hopf bifurcation and the ability to
oscillate pairwise in antiphase as follows:

z′j = zj
h
μj − jzjj2 + i

�
1+ qjzjj2

	i
+ dð1+ iνÞ
zj+1 + zj−1 − 2zj

�
 j= 1; 2; 3:

[S8]

Here, we identify j= 0 with j= 3 and j= 4 with j= 1. These equa-
tions arise from doing a perturbation analysis around any sys-
tem of coupled differential equations that undergo a Hopf
bifurcation. The parameter μj plays the role of hj in the VE
model; for μj > 0, there is an oscillation and otherwise a stable
rest state. The parameter d is the net diffusivity. The parameter
q provides amplitude dependence on the frequency of the os-
cillation, whereas the parameter ν plays the role of the different
diffusivities of the four species in the VE. It is easy to write

down an exact expression for the s0π state and then use stan-
dard stability theory to show conditions under which it is stable.
We can think of two ways to obtain a stable s0π state in a ring

of three oscillators without heterogeneity, but only if we allow
the removal of some of the experimental constraints. For ex-
ample, if the Hopf bifurcation is subcritical and then turns
around (so that there is a regime of bistability between rest and
oscillation; also called a “hard excitation”), then we can find a set
of parameters such that the homogeneous model:

z′j = zj
h
μ+ jzjj2 − jzjj4 + i

�
1+ qjzjj2

	i
+ dð1+ iνÞ
zj+1 + zj−1 − 2 zj

�
 j= 1; 2; 3

has a stable s0π state and such that when d= 0, all three droplets
oscillate. The VE model does not have this bistable region, so
the simple model above violates the conditions imposed by the
experimental system. Golubitsky et al. (3) (chapter XVIII, sec-
tion 4, p. 393) provide a homogeneous version of Eq. S8, which
exhibits a s0π state; however, in the absence of diffusion, each
droplet has only one stable steady state, again contradicted by ex-
periment. The mechanism for the Golubitsky s0π state is through
a Turing–Hopf bifurcation to the rotating wave and then complex
bifurcation involving a torus instability that ends with the s0π.

Morphogenesis. The experiments for this section are illustrated in
Fig. 4 of the main text and Movie S7. Consider the net reaction in
the FKN (4) model of the BZ reaction:

3BrO−
3 + 5CH2ðCOOHÞ2 + 3H+

→ 3BrCHðCOOHÞ2 + 2HCOOH+ 4CO2 + 5H2O:
[S9]

We assume that this is the major reaction that takes place in going
from the reduced to the oxidized state. With the initial concen-
trations used, we have to take into account the counterions (every
BrO−

3 comes with an Na+, H+ comes from H2SO4) and assuming
the sulfuric acid starts off as H+ + HSO−

4 , but HSO−
4 dissociates

to H+ + SO2−
4 when the reaction consumes H+. The limiting

reactant is the MA. If the reaction goes to completion in the
oxidized state, all of the MA is consumed. We assume that es-
sentially all of the CO2 partitions out of the drops. The initial
and final concentrations are shown in Table S3.
If we further assume that the drops in the reduced state

consume no MA and the drops in the oxidized state go to
completion, then this calculation shows that the maximum dif-
ference in molarity is 17% between a reduced and oxidized drop.
This difference in molarity will drive a flux of water between the
drops until the molarity of the drops is equal. In the experiment,
roughly two-thirds of the drops are oxidized and one-third re-
duced. This leads to the prediction that the oxidized drops shrink
by 6% in volume and the reduced drops swell by 12% in volume.
The drops have a measured diameter of ∼60 μm and they are
confined in a rectangular capillary of 50-μm height. Assuming
the drops are spheres leads to the prediction that the ratio of the
radii of the swollen (reduced) to shrunken (oxidized) drops is
1.06, whereas assuming the drops are highly confined in height to
be approximated as disks, the ratio of radii becomes 1.09. The
measured ratio is 1.1, consistent with the crude estimates given
above. Additionally, we can think of no other plausible mecha-
nism to account for the change in size of the drops besides os-
motic pressure. The combination of the reasonable physical
mechanism and agreement between quantitative prediction and
measurement leads us to conclude that osmosis drives the shape
change, as speculated by Turing.
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Fig. S1. Comparison between theory and experiment for the rate of synchronization between two isolated oscillating drops as a function of oil gap and drop
size. (A) An image of four drops in a capillary where red arrows indicate drops inhibited with light and green arrows indicate drops allowed to oscillate. (B) A
space–time plot demonstrating the initial bright pulse synchronizing the drops in phase (blue bar), the constant light holding the outer two drops in the
oxidized state, and the phase evolution of the center two drops. Space–time plots were generated by plotting the intensity of a single line of pixels connecting
the centers of adjacent drops as a function of time. See Movie S1. (C) A cartoon illustrating the assumptions in deriving Eq. S2, μc . (D) A schematic illustrating
the geometry behind the Derjaguin approximation (1). The Latin characters (a, b, d, L, r) represent the experimental parameters including the measurements of
end-to-end drop width a, end-to-end gap width b, capillary diameter d, and calculated parameters of the linear portion L, and radius of curvature r of the
spherocylinder. The Greek characters (α, β, Δ, ρ) represent the internal variables of drop width α, gap width β, gap augment Δ, and radial position ρ. (E) A plot
of the phase difference between the center drops from Inset (A) fit with an exponential curve from which the measured synchronization rate is extracted. (F) A
3D plot of the experimental rates plotted against the theoretical synchronization rates calculated for the coupling function μc of Eq. S2 with the drop size and
oil gap as independent variables. (G) A plan view of the same data as Inset (F). Obtaining agreement between the experimentally measured rates (E) and
theoretically calculated rates (F and G) requires a scaling factor, f = 0:0152 in μc . Experimental conditions: 300 mM bromate, 3 mM ferroin, 1.2 mM Rubpy,
80 mM acid, 400 mM MA, 10 mM NaBr, 100-μm round capillary, ∼100-μm drops, and ∼105-μm gaps.
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Fig. S2. Optical isolation is achieved by using the fact that illuminated drops have constant chemical conditions corresponding to the reduced state. (A) A
space–time plot of the drops x-1-y-4-z shown in B. For this space–time plot, all but drops 1 and 4 were illuminated. Drops 1 and 4 oscillate; the rest were held
constant in the reduced state. (B) An image illustrating the selective illumination of droplets to create a ring of six drops. (C–E) Radial phase-time plots of
optically isolated drops (time is the radial dimension, zero in the center, and phase is relative to drop 1). In each plot, only two drops are allowed to oscillate; all
others are optically inhibited. These experiments last ∼40 drop periods. (C) Drops 1–2 are phase locked with a phase difference of ∼170°. (D and E) Drops 1–3
and drops 1–4 are asynchronous and drift ∼2π out of phase after ∼40 periods. All drops contain 300 mM bromate, 3 mM ferroin, 1.2 mM Rubpy, 80 mM acid,
400 mM MA, and 10 mM NaBr. Drop size is ∼150 μm.

()()

300µm

500s

tim
e

space

Fig. S3. Space–time plot illustrating transient behavior. Drops, in conditions corresponding to Turing case (e) were initiated all in phase by application of
a long pulse of light. After two oscillations the system adjusts to Turing instability (e), ðq,ωÞ. Chemical conditions: 20 mM MA, 80 mM H2SO4, 300 mM NaBrO3,
3 mM ferroin, no NaBr, 0.4 mM Rubpy, drop size of ∼140 μm, and oil gap of ∼10 μm.
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Fig. S4. Comparison between theory and experiment for rings of 3, 4, 5, and 6 drops. (A–D) Photoisolated rings of BZ drops with space–time plots to indicate
order of oscillation. (E–H) LSA predictions for finite rings with allowable states indicated with squares. Allowable wavenumbers correspond to q= 2πs=N, where
the integer s ranges from 0 to smax, where for even-numbered rings smax =N=2 and for odd rings smax = ðN− 1Þ=2. The wavevector with the largest real value
grows the fastest. All of the wavevectors are imaginary and therefore oscillate. Conditions as shown in Table S1 for Turing instability f. See SI Methods for
details on the LSA plots.

150µm

a b

Fig. S5. The MA concentration of a closed reaction decreases with time such that the system evolves along horizontal trajectories proceeding from Right to
Left in Fig. 2 and can undergo a transition from one Turing instability to another. The initial chemical conditions are 80 mM H2SO4, 300 mM NaBrO3, 40 mM
MA, 3 mM ferroin, no Rubpy, and no NaBr. Drop size is ∼50 μm, and oil gap is ∼0 μm (touching) corresponding to μ= 1 in a wide flat 2D capillary. (A) Image of
the system at an early time, which corresponds to Turing case (d), or (finite wavevector, stationary) denoted as ðq,0Þ. With MA ∼40 mM and μ= 1, the numerical
simulations of Fig. 2 in the main text also predicts Turing case (d). (B) Image of the system 2 hours after A, which corresponds to a uniform state [or Turing case
(a)], or (zero wavevector, stationary) denoted as (0,0). The numerical simulations of Fig. 2 in the main text predict a stable stationary (0,0) state at μ=1 for MA <
10 mM. Movie S4 of this data shows that the oxidized fraction increases gradually from that in A to that in B.
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a b
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60µm
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320s

Fig. S6. Example of the 0sπs state in experiment and simulation. The red and green dashed lines are meant to guide the eye for the phase differences
between oscillatory drops. (A) Experimental data demonstrating the 0sπs state. Experimental conditions: 400 mM MA, 80 mM sulfuric acid, 300 mM bromate,
10 mM bromide, 3 mM ferroin, 1.2 mM Rubpy, ∼50-μm drop size, and ∼3-μm spacing. (B) Numerical simulations demonstrating the 0sπs state. Simulation
conditions: m = 400 mM MA, h = 160 mM H+, A = 300 mM bromate, c0 = 4:2 mM catalyst, a = 50-μm drops, b = 50-μm gap, Pu = 2:5, and Px = 0:05.

Fig. S7. In theory and simulation, the s0π state is only seen in the presence of small chemical or physical heterogeneities. (A) Point oscillator VE model
simulation for three BZ drops using periodic boundary conditions and random initial conditions close to the steady state. Parameters: Px = 0:05, Pu =2:5, a = 70
μm, b = 0 μm, hi   =   ½H+ �i for i = 1,2,3, m = 640 mM, A = 300 mM, c0 = 3 mM. The simulated space–time plots indicate that, when coupled, the system with small
chemical heterogeneity forms the s0π state, when decoupled ðPx = Pu = 0Þ all three drops are oscillatory, and without chemical heterogeneity forms an anti-
phase pattern. The s0π state was also observed in systems with physical heterogeneity. (B) A bifurcation diagram demonstrating that at typical experimental
conditions there is an unstable equilibrium state as well as a stable oscillatory state. (C) The interaction function for the u and x components of the VE
mechanism.
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Table S1. Experimental conditions for each observed state

State MA Drop, μm Oil, μm NaBr, mM Rubpy, mM Capillary

Turing a 10 mM 130 20 — 0.4 100 μm round
Turing b 2.4 M 230 100 10 0.4 100 μm round
Turing c 20 mM 98 0/47 — 0.4 100 μm round
Turing d 40 mM 95 0 — 0.4 100 μm round
Turing e 640 mM 117 3 10 0.4 100 μm round
Turing f 380 mM 106 25 10 0.4 100 μm round
Rings 640 mM 150 0 10 1.2 100 μm flat
s0π 640 mM 70 0 10 0.4 100 μm flat
Morpho 200 mM 66 0 — 0.4 50 μm flat

In all experiments, 80 mM sulfuric acid, 300 mM sodium bromate, and 3 mM ferroin were used. The addition
of sodium bromide (up to 10 mM) has been seen to only change the initial conditions. The concentration of
Rubpy (up to 2 mM) has been seen to only change the optical isolation capabilities.

Table S2. Simulation parameters and their experimental
counterparts

Parameter Counterpart Value Type

A Sodium bromate 0.3 Constant
c0 Total catalyst 0.003/0.0042 Constant
h Hydrogen ions 0.16 Constant
m MA Varies Constant
μ Coupling strength Varies Constant
x Activator HBrO2 Variable Intermediary
y Inhibitor Br− Variable Intermediary
z Oxidized catalyst Variable Intermediary
u Communicator Br2 Variable Intermediary

In the VE model, the inclusion of sodium bromide, only changes the initial
value of y and Rubpy is not differentiated from ferroin as z is the sum of both
catalysts. The physical parameters a, b, d, D, and P are included in the diffusion
term μ as described in SI Methods. Other rate constants used are as follows:
k1   =   2× 106, k2   =   2h2A, k3   =   3000, k4   =   42hA, k7   =   29m, k10   =   0:05m,

kr   =   2× 108, kred   =   5×106, and cmin   =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2krc0ðk9 +k10Þ=k2

red

q
. The value

of k9 depends on m such that k9   =   0:12m for m> 0:1 and k9   =   0:07m
for m≤ 0:1.

Table S3. Chemical concentrations for morphogenesis
experiments

Species Initial concentration, mM Final concentration, mM

Na+ 300 300
BrO−

3 300 180
MA 200 0
H+ 80 40
HSO−

4 80 0
SO2−

4 0 80
BrMA 0 120
HCOOH 0 80
Total 960 800

The initial and final concentrations of the chemical species are indicated
along with the net molarity within the drops.
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Movie S1. Data from extended data Fig. 1. The source data from Fig. S1 combined with an animated space–time plot of the same data. Four drops in
a capillary with constant light holding the outer two drops in the oxidized state to measure the phase evolution of the center two drops, which are initially
synchronized. Experimental conditions: 300 mM bromate, 3 mM ferroin, 1.2 mM Rubpy, 80 mM acid, 400 mM MA, 10 mM NaBr, 100-m round capillary, 100-m
drops, and 105-m gaps.

Movie S1
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Movie S2. Data from Fig. 1A–F. Fig. 1A–F displayedwith themovie accelerated 100×. Chemical states of linear arrays of BZ drops. (A–F) Cylindrical capillaries of 100-m
inner diameter filled with a linear array of closely spaced droplets. (Upper) Space-time plot demonstrating Turing state. (Lower) Cartoon above corresponding movie of
droplets. Cartoon colors: blue, BZ drops in oxidized state; red, reduced state; cyan, oil. Chemical conditions: 300 mM bromate, 3 mM ferroin, 0.4 mM Rubpy, and 80 mM
sulfuric acid. Malonic acid (MA), NaBr, drop size and spacing specified in each case. (A) Stationary stable oxidized state after initial transient; 10 mMMA, no NaBr, drop
size of 130 m, and oil gap of 20 m. (B) Turing case b, (long-wavelength, oscillatory), 2.4 MMA, 10 mM NaBr, drop size of 230 m, and oil gap of 100 m. (C) Turing case c,
(short-wavelength, stationary), 20 mM MA, no NaBr, drop size of 98 m, and variable oil gap between 0 and 47 m. (D) Turing case d, (intermediate-wavelength, sta-
tionary), 40 mM MA, no NaBr, drop size of 95 m, and oil gap of 0 m (touching drops). (E) Turing case e, (intermediate-wavelength, oscillatory), 640 mM MA, 10 mM
NaBr, drop size of 117 m, and oil gap of 3 m. (F) Turing case f, (short-wavelength, oscillatory), 380 mM MA, 10 mM NaBr, drop size of 106 m, and oil gap of 25 m.

Movie S2
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Movie S3. Data from Fig. 1 G and H. Fig. 1 G and H displayed with the source data at 300× and the phases of each oscillator plotted on the phase circle. (G and
H) Odd and even circular arrays. Turing case f. Rectangular capillaries with cross-section 0.1 mm × 2 mm filled with a 2D array of close-packed droplets from
which rings are created with optical isolation. (Left) Oscillatory drops are labeled; all other drops are illuminated with light (cross) and held nonoscillatory in the
reduced state. (Right) Space–time plot. Chemical conditions: 300 mM bromate, 3 mM ferroin, 80 mM sulfuric acid, 10 mM NaBr, 0.4 mM Rubpy, 640 mM MA,
and drop size is 150 m. (G) Five-membered ring. Drops oscillate in a pentagramal pattern. (H) Six-membered ring. Neighboring drops are radians out-of-phase.

Movie S3

Movie S4. Data from extended data Fig. 6. Extended data Fig. 6 source data accelerated 1,000× . The MA concentration of a closed reaction decreases with
time such that the system can undergo a transition from one Turing state to another. The initial chemical conditions are 80 mM H2SO4, 300 mM NaBrO3, 40 mM
MA, 3 mM ferroin, no Rubpy, and no NaBr. Drop size is 50 m and no oil gap corresponding to μ= 1 in a wide flat 2D capillary. At an early time, the system clearly
corresponds to Turing state (d). With MA 40 mM and μ= 1, the numerical simulations of Fig. 2 in the main text predicts the same Turing state (d). After about 2 h,
the system is in a uniform state [or Turing state (a)]. The numerical simulations of Fig. 2 in the main text predicts this same state at μ = 1 for MA < 10 mM.

Movie S4
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Movie S5. Data complementing extended data Fig. 6. A 100× accelerated movie showing initial transients transforming over time to a final Turing state (d).
The system is initially entirely reduced until an oxidation wave oxidizes most of the drops. The oxidized drops then selectively reduce until only one-third of the
drops remain oxidized in a well-ordered hexagonal pattern. Chemical conditions: 666 mM MA, 0 mM Rubpy, 0 mM NaBr, 80 mM H2SO4, 300 mM NaBrO3, 3 mM
ferroin, 0.05 × 1-mm capillary, initial drop size of 35 μm.

Movie S5

Tompkins et al. www.pnas.org/cgi/content/short/1322005111 15 of 17

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322005111/-/DCSupplemental/sm05.mov
www.pnas.org/cgi/content/short/1322005111


Movie S6. Data from Fig. 3. Movie of Fig. 3 source data accelerated 180× displayed with Fig. 3, Inset D. Observations of 2D arrays of s0π states. (Upper) A
combined image in which the stationary drops are outlined in red and the oscillatory drops are color coded by their phase difference, ϕ= θ− θref, where
0<ϕ< π and θref is the phase of the drop indicated with the white vertical arrow. Drops where ϕ< π=2 are green and ϕ> π=2 are blue. Notice that every third
drop is stationary and every oscillatory drop is out of phase with its immediate neighbors, with two exceptions noted with orange arrows. (Lower) Movie of Fig.
3 source data accelerated 180× displayed with Fig. 3, Inset D. Chemical conditions: 300 mM bromate, 3 mM ferroin, 0.4 mM Rubpy, 80 mM acid, 640 mM MA,
and 10 mM NaBr. Drop size is 70 m.

Movie S6
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Movie S7. Data from Fig. 4. Movie of Fig. 4 and animated histogram displayed with a nonlinear timescale (time bar in movie). Drops demonstrating mor-
phogenesis plotted as fraction of original drop area vs. fraction of original drop intensity. The color-coded line tracks the center of each peak as a function of
time. Drops are initially homogenous in both intensity and size. Bright drops are oxidized, and dark drops are reduced. At intermediate times, the drops
undergo a Turing case (d) instability; heterogeneous in intensity, or oxidation state, but homogenous in size. At later times, drops are heterogeneous in both
oxidation state and size. The oxidized (bright) drops shrink and reduced (dark) drops swell. Chemical conditions: 200 mM MA, 0.4 mM Rubpy, 0 mM NaBr,
80 mM H2SO4, 300 mM NaBrO3, 3 mM ferroin, 0.05 × 1-mm capillary, and initial drop size of ∼66 μm.

Movie S7
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