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Enhanced stability of layered phases in parallel hard spherocylinders due to addition
of hard spheres
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There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures inter-
acting through hard particle potentials. One such phase consists of alternating two-dimensional liquidlike
layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using
computer simulations, and compare results to experiments and theory. We conclude the following:~1! There is
stable entropy driven microphase separation in mixtures of parallel rods and spheres.~2! Adding spheres
smaller than the rod length decreases the total volume fraction needed for the formation of a layered phase, and
therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres.~3! The
degree of this stabilization increases with increasing rod length.

PACS number~s!: 64.70.Md, 64.75.1g, 61.30.Cz
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I. INTRODUCTION

In hard particle fluids all allowed configurations have t
same energy, and therefore it is the number of states
equivalently the entropy of a system, that determines
equilibrium phase. Examples of well known phase tran
tions where the formation of ordered structures are dri
solely by an increase in entropy are the liquid to crys
transition in hard spheres@1#, and the isotropic to nematic@2#
and the nematic to smectic transition in hard rods@3,4#. Be-
cause of their high degree of monodispersity, and becaus
the dominant role of steric repulsion in the pair potenti
colloidal suspensions of polystyrene latex and rodlike viru
have often been used as experimental model systems fo
study of entropy induced ordering in hard-sphere@5–7# and
hard-rod systems, respectively@8,9#.

A natural extension of the above work is to the pha
behavior of mixtures, with a number of recent experimen
and theoretical studies focusing on the phase behavio
binary mixtures of hard spheres@10–19#. We have recently
begun work on less studied systems that closely approxim
hard-rod–hard-sphere and hard-rod–polymer mixtures@20–
26#. As a model for hard rods we used either thefd or to-
bacco mosaic virus~TMV ! virus; as a model for hard sphere
we used polystyrene latex; and as a model for polymers
used poly~ethylene-oxide! with varying molecular weights
@27,28#. The part of the phase diagram explored consisted
pure rods in either the isotropic, nematic, or smectic pha
to which a small volume fraction of spheres or polymers w
added. Remarkably, besides the expected uniform mixt
and bulk demixing, we also observed a variety of m
crophases for a wide range of sphere sizes and conce
tions @27#. In microphase separation the system starts se
rating into liquidlike regions that are rich in either spheres
rods. However, unlike bulk demixing, where rod and sph
rich regions grow until reaching macroscopic dimensions
microphase demixing these liquidlike regions increase o
to a critical size after which they order into well define
three-dimensional equilibrium structures. One of the m
croseparated phases observed, named thelamellar mi-
crophase, consisted of stacks of a two-dimensional liquid
PRE 621063-651X/2000/62~3!/3925~9!/$15.00
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layer of parallel rods alternating with a layer of spheres. T
subject of this paper is a theoretical analysis of phase tra
tions between the lamellar phase and either a phase con
ing of a uniform mixture of spheres and rods in a nema
phase, named themisciblephase, or a phase where rods a
spheres bulk phase separate into a rod-rich phase and sp
rich phase named theimmisciblephase as illustrated in Fig
1.

In this paper we use the second virial approximation fi
studied by Kodaet al. @29# to examine the influence of mo
lecular parameters such as shape and size, on the phas
havior of rod-sphere mixtures. As the second-virial theory
approximate in nature, we validate the theoretical predicti
by comparing them with either computer simulations or e
perimental results. The remainder of this paper is organi
as follows: In Sec. II we formulate the second virial appro
mation for the rod-sphere mixture. The general features
the phase diagram are discussed, and a physical pictur
the factors responsible for the enhanced stability of the l
ered phase due to the presence of spheres is presente
Sec. III the influence of varying the spherocylinder length
the phase behavior of spherocylinder-sphere mixtures
studied using computer simulations, and the results are c
pared to theoretical predictions. Section IV examines h
changes of the sphere diameter influence the phase beh
of spherocylinder-sphere mixtures. Finally in Sec. V w
present our conclusions.

II. GENERAL FEATURES OF A PHASE DIAGRAM OF A
SPHEROCYLINDER-SPHERE MIXTURE

Although the equilibrium phases of all hard particle flui
are determined by maximizing the entropy, ordering tran
tions are still possible because the expression for the t
entropy, or equivalently free energy, splits into two par
The ideal contribution to the entropy is of the formr lnr,
wherer is the density distribution function. This contribu
tion to the entropy attains a maximum for a uniform dens
distribution, and therefore always suppresses transitions f
uniform to modulated phases. In contrast, excluded volu
entropy sometimes increases with increasing spatial org
zation, and therefore drives the system toward a modula
3925 ©2000 The American Physical Society
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3926 PRE 62ZVONIMIR DOGIC, DAAN FRENKEL, AND SETH FRADEN
phase. In this paper we use the highly simplified seco
virial approximation to calculate the excluded volume e
tropy.

The equilibrium phase in a spherocylinder-sphere mixt
is determined by four parameters: the length over diamete
a spherocylinder (L/Dsc), the diameter of a spherocylinde
over the diameter of a sphere (Dsc /Dsp), the total volume
fraction of spheres and spherocylinders (h), and the partial
volume fraction of spheres (rsp). To help us in the interpre
tation of our results we first define the slope

t5 lim
rsp→0

h~rsp!2h~0!

rsp
, ~1!

whereh(rsp) is the total volume fraction of the rod-sphe
mixture at the layering transition after the introduction
spheres at the partial volume fractionrsp ~see Fig. 2!. A
positive value oft implies that adding a second compone
stabilizes the nematic phase by displacing the smectic t
sition to higher densities. For the case when both com
nents are spherocylinders of different lengths but with
same diameter, slopet is positive if the ratio of lengths is
less than approximately 7@30,31#. In the same manner, nega
tive values oft imply that the second component stabiliz

FIG. 1. ~a! A schematic illustration of excluded volume effec
in a miscible~nematic! phase in a spherocylinder-sphere mixture.
the miscible phase each sphere creates a large excluded vo
around it, indicated by gray areas, that is inaccessible to sphero
inders. ~b! When the system undergoes a transition to alamellar
~layered! phase, the large excluded sphere-spherocylinder volu
vanishes since the probability distribution severely limits the nu
ber of ways that spheres are allowed to approach spherocylin
~c! Illustration of theimmisciblephase where the system bulk pha
separates into a rod-rich phase and a sphere-rich phase.
d
-

e
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t
n-
o-
e

the smectic phase. There are predictions of a negative v
of t in a bidisperse rod mixture when the ratio of rod lengt
is large enough@30#, or when added rods have a larger d
ameter@32#. In this section we focus on the phase behav
of the spherocylinder-sphere mixture for the specific mic
scopic parametersL/Dsc520 andDsc /Dsp51. We present a
physical picture of excluded volume effects that are resp
sible for the enhanced stability of the lamellar phase. In
next two sections we extend our study on how changes in
molecular parametersL/Dsc andDsc /Dsp modify the phase
behavior and, in particular, their influence on the magnitu
and sign of the slopet.

A. Second virial approximation

The second virial approximation for a mixture of perfect
aligned spherocylinders and spheres of equal diameter
proposed by Koda, Numajiri, and Ikeda@29#, and is general-
ized for arbitraryL/Dsc and Dsc /Dsp in the Appendix. It
was previously shown that the second virial approximat
qualitatively described the formation and various features
the smectic phase of hard rods@3,33–35#. Here we study
how the addition of spheres perturbs the formation of
smectic phase. Since the sphere volume fraction is very l
we expect that the second virial approximation is still qua
tatively correct for these mixtures. We consider a sinusoi
perturbation from the uniform density for both spherocyli
ders and spheres. From Eqs.~A3! and~A6! in the Appendix,
we obtain the free energy difference between the uniform
mixed and layered state in a spherocylinder-sphere mixt

me
yl-

e
-
rs.

FIG. 2. Stability boundaries for a mixture of perfectly aligne
spherocylinders (L/Dsc520) and spheres with equal diamet
(Dsc /Dsp51). The full line indicates the theoretical prediction o
the volume fraction at which the system becomes unstable tow
lamellar fluctuations, and its slope ist @Eq. ~1!#. The dashed line
indicates instability toward demixing into two macroscopically d
tinct phases. Squares are results of computer simulations at w
the layering transition is observed. Theoretically, the periodic
associated with a one-dimensional lamellar instability continuou
grows and diverges as the system completely phase separates.
trations of the miscible, immiscible, and lamellar phases are sh
in Fig. 1.
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dF5a1
2XS1122

a1

a2
S121S a1

a2
D 2

S22C50 ~2!

The phase diagram obtained within this approximation
microscopic parametersL/Dsc520 and Dsc /Dsp51 is
shown in Fig. 2. From the phase diagram we see that the
prediction of the model is that spheres, upon addition t
smectic phase, will preferentially occupy space betwe
smectic layers, and therefore create a stable microsepa
lamellar phase. The second prediction is that the total v
ume fraction at which the system undergoes a transition f
a uniform miscible state to a layered lamellar state is lowe
by increasing the partial volume fraction of spheres. T
implies that the slopet is negative for this particula
spherocylinder-sphere mixture, and we conclude that in
casespheres enhance the layering transition.

We can assign a simple physical origin to every te
given in Eq.~2! above and Eq.~A5! of the Appendix. The
parts of the spherocylinder-spherocylinder interaction te
S22 and sphere-sphere termS11 that scale ash are due to the
ideal ~id! contribution to the free energy, also known as t
entropy of mixing and are denoted asS22

id and S11
id , respec-

tively. The terms having ah2 dependence inS22, S12, and
S11 are due to the spherocylinder-spherocylind
spherocylinder-sphere, and sphere-sphere excluded vo
~ex! interactions, respectively, and are denoted asS22

ex , S12
ex ,

andS11
ex . Since the instability is defined asdF(hc ,kc)50, at

a critical densityhc and at a critical wave vectorkc all indi-
vidual contributions to the free energy difference in Eq.~2!
must add up to zero. In Fig. 3 we show the value of all ter
with distinct physical origins at the instability densityhc and
wave vectorkc as a function of partial volume fraction o
spheres. Since from our analysis we cannot determine
absolute amplitude ofa1, we only plot the ratios of all free
energy components to the absolute value of
spherocylinder-spherocylinder excluded volumeuS22

exu. If we
set the partial volume fraction of spheres to zero (rsp50) in
Eq. ~2! we obtain an equation whose solution indicates
nematic-smectic stability limit in a pure suspension
aligned spherocylinders@33#. For these conditions the onl
two nonzero components of free energy areS22

ex , which is
negative and therefore drives the transition, andS22

id , which
is positive and therefore suppresses the transition. As
start increasing the partial sphere volume fractionrsp , the
spherocylinder-sphere free volume termS12

ex rapidly assumes
large negative values, as evidenced by the rapidly decrea
ratio of S12

ex/uS22
id u. This implies that layering the mixture sig

nificantly decreases the excluded volume that is due to
spherocylinder-sphere interaction.

We can use the information gained from the second vi
approximation to obtain a clear physical picture of exclud
volume effects in spherocylinder-sphere mixtures, and
plain the enhanced stability of the lamellar phase. Tak
any single spherocylinder in a uniform spherocylind
sphere mixture and replacing it by two spheres will leave
value of the excluded volume virtually unchanged. The r
son for this lies in the fact that the volume excluded to
spherocylinder due to the presence of a sphere with e
diameter, under the constraint of uniform packing, is
spherocylinder with diameter 2Dsc and length (L12Dsc),
r
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where L and Dsc are defined in Fig. 4. However, the ex
cluded volume between any two spherocylinders with la
L/Dsc is only about twice this value, as illustrated in Fig.
Although replacing spherocylinders by spheres in such
manner leaves the excluded volume almost unchange
significantly decreases the total volume fraction of the m

FIG. 3. Term-by-term dependence of the free energy differe
between the miscible and lamellar phases@Eq. ~2!# as a function of
the partial volume fraction of spheres forL/Dsc520 andDsc /Dsp

51. TheS11
id andS22

id terms are the sphere and spherocylinder id
contributions to the total free energy difference between the laye
and uniform states.S11

ex , S12
ex , andS22

ex are excluded volume contri
butions to the free energy due to sphere-sphere, spherocylin
sphere, and spherocylinder-spherocylinder interactions, res
tively. Since from our analysis we cannot determine the amplitu
in Eq. ~2! we plot amplitude independent ratios of each of fi
components of the free energy with different origins to t
spherocylinder-spherocylinder excluded volume interactions.
stability condition is thatdF50, so for any value of partial volume
fraction of spheresrsp the sum of the five contributions todF is
zero. dF of the ideal terms are positive; hence they stabilize
uniform, miscible nematic state, while the free volume terms
negative, favoring the lamellar state. The excluded volume sph
sphere term (S11

ex) is negligible, and the spherocylinder-sphere (S12
ex)

term dominates the transition.

FIG. 4. ~a! Volume excluded to the center of mass of a sphe
cylinder ~sc! due to the presence of a sphere~sp! is indicated by
light shading.~b! Volume excluded to the center of the mass of
second spherocylinder due to the presence of the first. Replaci
spherocylinder by a sphere decreases the excluded volume b
proximately a factor of 2, but it decreases the total volume fract
much more since the volume of a spherocylinder with largeL/Dsc

is greater than the volume of a sphere with diameterDsc . The
comparatively large excluded volume between a sphere an
spherocylinder is the reason for the enhanced formation of
lamellar phase.



ha

de
y
in
v
e
e
lin

y
llu
lu
in
h
re

to
nd

a

ed

ze
ia
ec
ic
i

w
s
ve
an
u
de

n
th
r
h
O

p-
fl

am

lla
ly
ti

ac
ar
d
d

es
d

b

u-
if-
was
ell

e of
and

ured
ults
from

of
mix-

ing
arate
ay-
ayers
lity
is

ate.

of
hase
in

cyl-
nd
ar-

rs
ero-
den-
ase
der

, the
the
ne-

ar-
ong
ns.

e is

3928 PRE 62ZVONIMIR DOGIC, DAAN FRENKEL, AND SETH FRADEN
ture since the volume of two spheres is much smaller t
the volume of a spherocylinder with largeL/Dsc . Therefore
in the spherocylinder-sphere mixture we encounter exclu
volume problems similar to those found in a pure spheroc
inder solution, but at a lower total volume fraction. As
pure spherocylinders, the system reduces the excluded
ume by undergoing a transition to a layered phase. The
cluded volume is reduced in the lamellar state becaus
periodic density distribution forces spheres and spherocy
ders into alternate layers thus decreasing the probabilit
the very unfavorable sphere-spherocylinder contacts, as i
trated in Fig. 1. This explains the large decrease in the va
of the S12

ex term at the lamellar transition that we observe
the second virial theory. This term is responsible for t
enhanced stability of the lamellar phase in a sphe
spherocylinder mixture. In conclusion, it is the inability
efficiently pack a uniform mixture of spherocylinders a
spheres, as reflected in the large spherocylinder-sphere
cluded volume term, that destabilizes the nematic phase
enhances the formation of a layered phase.

An alternate way to think about the formation of a layer
phase is to focus on the effects of spherocylinder ends@36#.
The nematic phase in our simplified model is characteri
by random distribution of spherocylinders along their ax
and radial directions, as illustrated in Fig. 5. This end eff
is responsible for the formation of the smectic phase, wh
is characterized by a periodic density distribution. In a sim
lar fashion, introducing a sphere into the nematic phase
have the same effect on the surrounding spherocylinder
another spherocylinder end. Therefore adding spheres
effectively increases the density of spherocylinder ends,
decreases the total volume fraction. To resolve the diffic
ties in efficient packing due to these extra spherocylin
ends, the mixture layers at a lower total volume fraction.

B. Monte Carlo simulation

In Sec. II A we discussed two predictions of the seco
virial theory for a spherocylinder-sphere mixture wi
L/Dsc520 andDsp /Dsc51: the existence of the lamella
phase and the enhanced stability of the lamellar phase w
compared to a smectic phase of pure spherocylinders.
results are in agreement with previous studies by Kodaet al.
@29#. However, the second virial approximation is highly a
proximate, and there is reasonable concern about the in
ence of higher terms on the topology of the phase diagr
To support their conclusions, Kodaet al. performed com-
puter simulations, which indicated the existence of a lame
phase@37,29#. Still, the question of whether spheres simp
fill the voids between layers in an already formed smec
phase, or actually induce layering at lower total volume fr
tion, was not addressed. In this section, using Monte C
simulations we address the question of the influence of a
ing spheres on the phase behavior of spherocylinders by
termining the slopet in Eq. ~1! in a mixture of spherocylin-
ders and spheres with parametersL/Dsc520 andDsp /Dsc
51.

A Monte Carlo simulation of a mixture of hard-spher
and perfectly aligned hard spherocylinders was performe
a constant pressure and number of particles@38#. Most simu-
lations contained 392 spherocylinders and a variable num
n
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of spheres. To check for finite size effects we also ran sim
lations with 784 spherocylinders, but saw no significant d
ference in the results obtained. In one sweep, pressure
increased from a dilute homogeneous mixture up to a w
ordered, dense smectic or lamellar phase. At each valu
the pressure, the density of spheres and spherocylinders
their corresponding smectic order parameter were meas
after the system was allowed to equilibrate. Identical res
were obtained when the pressure was slowly decreased
an initially dense phase composed of alternating layers
spherocylinders and spheres to a dilute homogeneous
ture.

Besides lamellar transitions, there is a possible demix
transition where spherocylinders and spheres phase sep
into macroscopically distinct phases. However, once a l
ered phase is formed the exchange of spheres between l
drops to a negligible amount, leaving open the possibi
that system would undergo a demixing transition, but
stuck in a lamellar phase, which is only a metastable st

FIG. 5. ~a! A schematic example of a typical configuration
spherocylinders in a dense nematic phase. Since the nematic p
is characterized by a uniform density distribution, this results
inefficient packing and large excluded volume between sphero
inders both along their radial and axial directions. This large a
unfavorable excluded volume is indicated by lightly shadowed
eas.~b! An illustration of a typical configuration of spherocylinde
in a columnar phase where the excluded volume between sph
cylinders is lower compared to the nematic phase at the same
sity, and the ideal part of free energy is higher. In a columnar ph
the spherocylinders are forced into registry as one spherocylin
occupies space right above or below another one. Therefore
columnar phase is characterized by two-dimensional order in
plane perpendicular to the spherocylinder’s long axis, and o
dimensional disorder parallel to the long axis.~c! A representative
configuration of spherocylinders in a smectic phase, which is ch
acterized by one-dimensional order along the spherocylinder’s l
axis and two-dimensional disorder in the perpendicular directio
Both theory and experiment indicate that the columnar phas
always metastable with respect to the smectic phase@33,45#.
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To find the location of the demixing transition it is necessa
to measure the chemical potential of both spherocylind
and spheres in a spherocylinder-sphere mixture@39#. This
possibility was not examined in this work, primarily becau
we are only interested in how low concentrations of sphe
perturb the formation of the layered phase. Therefore, i
reasonable to expect that at a very low volume fraction
spheres, the lamellar transition is going to be more sta
than the demixing transitions as predicted by the sec
virial theory.

A plot of the smectic order parameter for spherocylind
with L/Dsc520 as a function of increasing total density f
different partial volume fractions of spheres is shown in F
6. As the system approaches a certain critical density,
observe a rapid nonlinear increase in the smectic order
rameter, that we interpret as a signature of the nemati
smectic phase transition. This critical density shifts to low
values of the total volume fraction as the partial volum
fraction of spheres is increased. To reconstruct a phase
gram from the above data, we define a phase as layered w
its smectic order parameter reaches a value of 0.3@40#. For a
pure spherocylinder suspension this value yields good ag
ment with previous studies of the volume fraction of t
nematic-smectic phase transition@41#. Since we are mostly
interested in the qualitative behavior of a spherocylind
sphere mixture, this method should suffice for our purpos
Using this phenomenological rule, the phase diagram fo
mixture of spherocylinders and spheres (L/Dsc
520,Dsc /Dsp51) is reconstructed and compared to the s
ond virial theory in Fig. 2. An immediate conclusion draw
from Fig. 2 is that adding spheres to aligned spherocylind
enhances the stability of the lamellar phase, which is in
cated by the negative value of slopet, in agreement with the
prediction of the second virial approximation.

III. EFFECTS OF SPHEROCYLINDER LENGTH
ON THE PHASE DIAGRAM

Next we proceed to investigate the influence of vary
the spherocylinder length on the magnitude of slopet. The

FIG. 6. Smectic order parameter obtained from Monte Ca
simulations is plotted against the total volume fraction for sphe
cylinders (h) with L/Dsc520. From right to left, the partial volume
fraction of spheres (rsp) increases from 0% to 2.4%, as indicate
by the legend. The phase diagram is reconstructed from these
by defining a phase as layered when the spherocylinder orde
rameter reaches a value of 0.3.
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predictions of the second virial theory for the nemat
lamellar instability are shown in Fig. 7~a!. The second virial
theory clearly predicts the increasing stability of the lamel
phase with the increasing length of spherocylinder. To ve
this prediction we repeated Monte Carlo simulations
spherocylinders with differentL/Dsc , and used the sam
rule as before to identify the volume fraction of the nemat
lamellar transition. The simulation results for the location
the nematic to layered transition are shown in Fig. 7~b!. We
can conclude that our simulations confirm predictions of
second virial model, and that the length of the spherocylin
is an important parameter in forming the lamellar phase, w
longer spherocylinders showing an increasing tendency
form a layered phase at a lower volume fraction of add
spheres.

Using the physical picture of the excluded volume effe
developed in Sec. II provides a natural explanation for o
simulation results in Fig. 7. With increasing spherocylind
length the excluded volume due to the spherocylinder-sph
interaction grows proportionally to the spherocylind

o
-

ata
a-

FIG. 7. ~a! Prediction from the second virial theory for the tot
volume fraction (h) of the lamellar instability as a function o
sphere partial volume fraction (rsp) for spherocylinders with dif-
ferent L/Dsc ratios. The diameter of spherocylinders is kept co
stant, and is equal to the diameter of the spheres.~b! Results from
Monte Carlo simulations for the lamellar instability of spherocyli
ders as a function of partial volume fraction of spheres for sa
conditions as in~a!. The volume fraction at the phase transition w
defined as having a smectic order parameter of spherocylin
equal to 0.3
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length, and consequently the value of theS12
ex term increases

in magnitude. As we have seen before, the larger theS12
ex

term, the more likely it is for the system to form a layer
phase.

It is interesting to consider the limit of spherocylinde
with infinite aspect ratio. In the density regime of th
nematic-smectic transition, this model can be mapped on
system with skewed cylinders with an aspect ratio close t
The nematic-smectic transition in this model was studied
merically @42,43#. If we consider the addition of spheres
this system, then the same affine transformation that m
the infinite spherocylinders onto squat, skewed spherocy
ders, will map the spheres onto infinitely thin, parallel dis
As the disks are infinitely thin, they do not interact with ea
other but only with the cylinders. Inside the nematic pha
most volume is excluded for these disks. However, in
smectic phase, there is ample space for the disks betwee
layers. In fact, the stronger the layering, the larger the ac
sible volume. Hence, in this limit, the addition of spher
will strongly stabilize the smectic phase.

IV. EFFECTS OF SPHERE DIAMETER
ON THE PHASE DIAGRAM

In this section we investigate the influence of sphere
ameter on the value of slopet. Figure 8 shows the predictio
of the second virial theory for the dependence of slopet on
the ratio of spherocylinder to sphere diameter (Dsc /Dsp) for
spherocylinders with differentL/Dsc . In Sec. IV A we ex-
amine the phase behavior of sphere-spherocylinder mixt
when the sphere diameter is smaller than spherocylinde
ameter, and in Sec. IV B we examine the other case when
sphere diameter is larger than the spherocylinder diamete
our model the presence of the spheres cannot alter the o
tational distribution function of spherocylinders, which a
always perfectly parallel to each other. It is reasonable

FIG. 8. Theoretical prediction for the stability criterium of th
lamellar phaset in Eq. ~1! as a function of spherocylinder~sc! to
sphere~sp! diameter ratio for four spherocylinders with differe
L/Dsc . The negative value of slopet indicates that spheres of tha
particular size enhance the layering transition. Larger negative
ues oft implies the formation of the lamellar phase at a lower to
volume fraction.
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expect that this assumption holds for spheres smaller than
spherocylinder length, but as a sphere becomes larger
the spherocylinder length, long wavelength elastic effe
start to dominate the behavior of the system, and h
spherocylinders will tend to align parallel to the surface
the sphere@44#. Therefore, in Fig. 8 we plot the values o
slopet only for those values ofDsc /Dsp for which our as-
sumptions are at least qualitatively correct. As we incre
the sphere size beyond this limit, our model describe
highly artificial system of large spheres and parallel sphe
cylinders. In this regime we observe oscillations in the va
of slopet similar to what is observed in binary mixtures o
parallel spherocylinders@30#.

A. Sphere diameter smaller than spherocylinder diameter

In the regime whereDsc /Dsp.1 ~for spherocylinders of
anyL/Dsc), decreasing the sphere size increases the stab
of the lamellar phase as indicated by the increasing nega
value of slopet seen on the right hand side of Fig. 8. Th
prediction of the theory has a simple explanation in our p
ture of excluded volume in a sphere-spherocylinder mixtu
If we halve the sphere radiusDsp , while keeping constan
the volume fraction of spheres, we increase the numbe
spheres eight times. At the same time, the result of reduc
the sphere size is to decrease the excluded volume of
spherocylinder-sphere interaction. However, the eightfold
crease in the number of spherocylinder-sphere interact
more than compensates for the decrease in excluded vo
between the sphere and spherocylinder, and consequentl
magnitude ofS12

ex increases with decreasing sphere diame
This leads to the increased stability of the layered phase w
decreasing sphere size.

It becomes difficult to verify this prediction using com
puter simulations. As the sphere size decreases at a con
total volume fractionh, the number of particles in a simula
tion rapidly reaches the order of thousands, requiring sim
lation times that are prohibitively long. As the ratio o
spherocylinder to sphere diameter (Dsc /Dsp) was varied
within the accessible range between 0.5 to 2, we did
observe any changes in the value of slopet that were larger
than our measurement error. Larger and longer simulati
are needed for a careful analysis of spherocylinder-sph
mixtures with extreme values of the ratioDsc /Dsp .

B. Sphere diameter larger than spherocylinder diameter

For spherocylinders with smallL/Dsc , Fig. 8 shows that
the magnitude of slopet uniformly decreases with increas
ing sphere size. Eventually the slopet changes sign and
becomes positive, implying that large spheres stabilize
nematic phase and not the smectic phase. The phase dia
under conditions where slopet is positive is shown in Fig. 9.
The wave vector associated with the layering transition,
dicated by a solid line in Fig. 9, remains at an almost co
stant value. Another important point is that the amplitu
ratio in Eq. ~A6! is positive. This means that the period
density modulations of the spherocylinders and spheres
in phase, which implies that spheres no longer go into
gap between two spherocylinder layers, but rather fit into
spherocylinder layer. However, as the partial volume fract
of spheres (rsp) is increased further, we observe a disco

l-
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tinuous jump in the wave vector to a zero value. This impl
that there is a discontinuous change from a layering t
demixing transition. As the demixing transition is reach
there is also a change in sign of the amplitude ratio, wh
becomes negative, and the spherocylinders and spheres
separate. In contrast, the phase diagram for mixtures of s
spheres and spherocylinders shown in Fig. 2 looks quite
ferent. The amplitude ratio for this case is always negat
implying the formation of the lamellar phase. Another co
trast is that in a mixture of small spheres and spherocylind
the wave vector associated with the layering transition
creases in a continuous fashion, until it reached zero va

We now examine the behavior of individual terms in E
~2! for the mixture of large spheres and short spherocylind
shown in Fig. 9. Most notably, we find that at low volum
fractions of spheres, where the system undergoes the la
ing transition, the ratioS12

ex/S22
ex!1. This implies that upon

layering there is almost no reduction of the unfavora
sphere-spherocylinder interaction, and that
spherocylinder-spherocylinder interaction alone drives
formation of the layered phase. In contrast, for small sphe
this ratio was large, and was responsible for the enhan
stability of the lamellar phase, as shown in Fig. 3. At
higher volume fraction of large spheres where the mixt
directly bulk phase separates, we find that the ratioS12

ex/S22
ex

@1. This implies, as expected, that demixing very effe
tively reduces the unfavorable sphere-spherocylinder inte
tions. These results suggest a physical picture of the
cluded volume effect. Unlike small spheres, large sphe
cannot fit into the gap between smectic layers, and con
quently there is no way to gain free volume by undergoin
layering transition. As an alternative, to gain free volume

FIG. 9. Stability diagram of a mixture of spherocylinde
(L/Dsc510) and large spheresDsc /Dsp50.15. Unlike a mixture of
small spheres and spherocylinders~Fig. 2!, introducing large
spheres displaces the layering transition to higher total volume f
tions, indicating a positive value of slopet. The structure of the
layered phase is also different, with large spheres fitting in
smectic layer rather than into the smectic gap. The smectic per
icity associated with the layering transition does not change sig
cantly until the concentration of spheres is high enough for
system to demix. Then the smectic wave vector discontinuou
jumps to zero.
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system bulk phase separates at the lowest volume fractio
spheres possible.

While for short spherocylinders the magnitude of slopet
uniformly decreases with increasing sphere size, lon
spherocylinders exhibit a qualitatively different behavio
For a mixture of spherocylinders withL/Dsc5100 and
spheres withDsc /Dsp50.1, there is a pronounced increa
in the stability of the lamellar phase, as shown in Fig. 8.
increasing the length of spherocylinders to even larger v
ues, the region of increased stability of the lamellar ph
shifts to higher values of the sphere radius. Two conditio
emerge, which when satisfied lead to enhanced stability
the lamellar phase. First, it is necessary for a sphere to
between two smectic layers without disturbing them. T
condition is satisfied whenDsp /L'0.1. The second condi
tion is that Dsp /Dsc@1. It was argued before that unde
these conditions large spheres are able to induce smectic
relations among neighboring spherocylinders@27#, which in
turn can enhance the formation of the lamellar phase.

Because of the large size asymmetry it was not feasibl
carry out simulations for mixture of spherocylinders a
spheres withL/Dsc'100 andDsc /Dsp'0.1. However, these
conditions are closely approximated by recent experime
on rodlike f d(L51 mm,L/Dsc'100) and polystyrene
spheres@27#. Therefore, we compare theoretical results
slopet for spherocylinders withL/Dsc5100, shown in Fig.
8, to these experimental results@27#. When large spheres
Dsp'1 mm(Dsc /Dsp'0.01) are mixed withfd at any con-
centration for which the nematic phase is stable, we obse
no formation of the layered phase. Instead, large sph
phase separate into dense aggregates elongated alon
nematic director, indicating that the value of slopet is larger
than zero. When the size of the sphere was decrease
Dsp50.1 mm(Dsc /Dsp'0.1), we observed a transition to
layered state at anfd concentration of 20 mg/ml. The forma
tion of a smectic phase in a purefd suspension at the sam
ionic strength occurs at 65 mg/ml. The fact that addi
spheres diminishes the rod density by a factor of 3 indica
a large negative value of slopet. As the sphere size wa
further decreasedDsp50.022mm(Dsc /Dsp50.46), there
was again an indication of a lamellar phase, but this time
a much higher concentration of rods of about 50 mg/m
Thus, although small spheres still stabilize the layering tr
sition, implying a negative value of slopet, the magnitude of
slope t is much less forDsc /Dsp'0.46 than forDsc /Dsp
'0.1. These qualitative trends of the nonmonotonic beha
of slopet with sphere size observed in experiments offd-
polystyrene mixtures are very similar to the theoretical p
diction shown in Fig. 8 for spherocylinders withL/Dsc
5100.

V. CONCLUSIONS

In this paper we have presented the predictions of
second virial theory for a mixture of parallel hard spheroc
inders and hard spheres undergoing one-dimensional
crophase separation. We have been able to verify a num
of these predictions using Monte Carlo simulations. W
found that spheres induce layering, which implies a nega
value of the slopet, which is the change in total volum
fraction of the mixture at the point of nematic-smectic ins
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bility with respect to the partial volume fraction of adde
spheres@Eq. ~1!#. At the same time the magnitude of th
slopet increases with increasing spherocylinder length.
other words, spheres at the same partial volume fraction
bilize layering of longer spherocylinders more than shor
spherocylinders. In addition, the theory predicts an unus
nonmonotonic behavior in slopet as a function of sphere to
spherocylinder diameter. Although the physical origin of th
effect is not clear, it is intriguing that similar qualitativ
trends are observed in experiments of mixtures of the sph
cylinderlike fd and polystyrene spheres. However, in real e
periments spherocylinders are free to rotate, are flexible,
have charge associated with them. Before quantitative c
parisons with experiments are possible, it will be necess
to perform simulations and formulate theories that take i
account these effects mostly ignored in this highly idealiz
treatment.
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APPENDIX

A general expression for the free energy of bidispe
mixture at the second virial level is

bF~r1 ,r2!5 (
i 51,2

E
V
d~r !r i~r !ln„r i~r !…

2
1

2 (
i51,2

(
j51,2

E
V
dr 1

3E
V
dr 2r i~r 1!r j~r 2!fi,j~r 1 ,r 2! , ~A1!

where the functionf i , j is the overlap function between tw
spheres, the sphere and the spherocylinder, or two spher
n
ta-
r
al

o-
-
nd

-
ry
o
d

r

-
-

e

yl-

inders@29#. It attains the value of21 if two particles over-
lap; otherwise it is equal to 0. The terms involvingr lnr
represent the entropy of mixing, while the terms involvin
f i , j represent the free volume entropy. Since we are in
ested in one-dimensional layering, we look at the respons
the system to the following density perturbations:

dr1~z!5a1 cos~kzz!,
~A2!

dr2~z!5a2 cos~kzz!.

The free energy difference between the uniform and p
turbed state is

dF5F„11dr1~z!,11dr2~z!…2F~1,1!5ãSa, ~A3!

whereã5(a1 ,a2), andS is a two-dimensional stability ma
trix. To find the limit of stability we have to solve the equa
tion det(S)50. For later convenience, we define the functi

SS L

Dsc
,s,kD5

3 sinFksS 212
L

Dsc
D G

4k3

2

2ks cosFksS 212
L

Dsc
D G2sinS k2s

L

Dsc
D

4k3
.

~A4!

The above expression depends only on geometrical fac
and is related to the Fourier transform of the spherocylin
which is specified by the excluded volume between a sph
of diameterDsp and a spherocylinder of lengthL and diam-
eter Dsc . Wave vectork is dimensionless because it is r
scaled with the spherocylinder diameter (Dsc). The param-
eters is defined as ratio of sphere diameter to spherocy
der diameter (s5Dsp /Dsc). In the limit of L/Dsc→0, the
above expression reduces to a Fourier transform of a sp
with unit diameter. The stability matrixS for a mixture of
spherocylinders and spheres has the form
S51
h~12rsp!„114~12rsp!hS~0,1,k!…

4

2rsp~12rsp!h
2SS L

Dsc
,11s,kD

s6S 2

3

L

Dsc
11D 2

2rsp~12rsp!h
2SS L

Dsc
,11s,kD

s6S 2

3

L

Dsc
11D 2

hrsp
S s6S 3

2

L

Dsc
11D

4
1hrspSS 2

L

Dsc
,2s,kD D

s6S 2

3

L

Dsc
11D 2

2 , ~A5!
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wherersp denotes the partial volume fraction of spheres, a
varies between 0 and 1, whileh denotes total volume frac
tion. Note that the terms in matrix elementsS11 and S22,
proportional toh, are due to configurational entropy, whi
terms proportional toh2 are due to free volume entropy. A
k→0 the condition det(S)50 reduces to the usual thermo
dynamic condition for the stability of the system against b
phase separation.

To reconstruct the stability diagram from the determina
we slowly increase the total volume fractionh. At a certain
value of total volume fraction (hc), the determinant ofS will
equal zero for a specific wave vector (kc). If the wave vector
kc obtained has a finite value, it implies that the system
n-

se

s

ce

y
lu

A

k-
d

t,

s

undergoing a layering transition. On the other hand, the c
dition det(S)50, whenkc50, implies a complete demixing
Once we obtain values ofhc andkc we can find the ratio of
amplitudes from the following formula:

a1

a2
52

S12~hc ,kc!

S11~hc ,kc!
. ~A6!

A positive value of the amplitude ratio implies that th
spheres and spherocylinders are in the same layer~the peri-
odic modulations are in phase!, while a negative value im-
plies that the spheres and spherocylinders intercalate~the pe-
riodic modulations are out of phase!.
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