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Enhanced stability of layered phases in parallel hard spherocylinders due to addition
of hard spheres

Zvonimir Dogic! Daan Frenkef,and Seth Fradén
The Complex Fluid Group, Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02254
2FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 31 March 2000

There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures inter-
acting through hard particle potentials. One such phase consists of alternating two-dimensional liquidlike
layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using
computer simulations, and compare results to experiments and theory. We conclude the follbwiihgre is
stable entropy driven microphase separation in mixtures of parallel rods and spi2eréslding spheres
smaller than the rod length decreases the total volume fraction needed for the formation of a layered phase, and
therefore small spheres effectively stabilize the layered phase; the opposite is true for large $phéhes.
degree of this stabilization increases with increasing rod length.

PACS numbgs): 64.70.Md, 64.75t+g, 61.30.Cz

[. INTRODUCTION layer of parallel rods alternating with a layer of spheres. The
subject of this paper is a theoretical analysis of phase transi-
In hard particle fluids all allowed configurations have thetions between the lamellar phase and either a phase consist-
same energy, and therefore it is the number of states, dRg of a uniform mixture of spheres and rods in a nematic
equivalently the entropy of a system, that determines th®hase, named thmisciblephase, or a phase where rods and
equilibrium phase. Examples of well known phase transi-SPheres bulk phase separate into a rod-rich phase and sphere-
tions where the formation of ordered structures are driveich phase named thenmisciblephase as illustrated in Fig.
solely by an increase in entropy are the liquid to crystall'
transition in hard spherg4], and the isotropic to nematjé]
and the nematic to smectic transition in hard rf8igl]. Be-
cause of their high degree of monodispersity, and because

In this paper we use the second virial approximation first
studied by Kodeet al. [29] to examine the influence of mo-
qacular parameters such as shape and size, on the phase be-

the dominant role of steric repulsion in the pair potential, avior of rod-sphere mixtures. As the second-virial theory is

colloidal suspensions of polystyrene latex and rodlike Viruseﬁpproxmate in nature, we validate the theoretical predictions

have often been used as experimental model systems for t gy comparing them with e'th‘?f computer S|mula'§|ons or ex-
study of entropy induced ordering in hard-sphESe7] and perimental results. The remainder of this paper is orgamz.ed
hard-rod systems, respectivdg,d] as follows: In Sec. Il we formulate the second virial approxi-

A natural extension of the above work is to the phasemation for the rod-sphere mixture. The general features of

behavior of mixtures, with a number of recent experimentafhe phase diagram are discussed, and a physical picture of

and theoretical studies focusing on the phase behavior &pe factors responsible for the enhanced stability of the lay-

binary mixtures of hard spher¢s0-19. We have recently ered phase_ due to the presence of sphere; Is presented. In
begun work on less studied systems that closely approxima%ec' [l the influence of varying the spherocylinder length on
e phase behavior of spherocylinder-sphere mixtures is

hard-rod—hard-sphere and hard-rod—polymer mixtees- /o | using computer simulations, and the results are com-

26]. As a model for hard rods we used either fdeor to- : - . .
| s pared to theoretical predictions. Section IV examines how

bacco mosaic virusTMV) virus; as a model for hard sphere h £ th h di ter infl the oh behavi
we used polystyrene latex; and as a model for polymers w&hanges ot the spnere diameter influence the phase benavior
of spherocylinder-sphere mixtures. Finally in Sec. V we

used polyethylene-oxidg with varying molecular weights )
[27,28. The part of the phase diagram explored consisted Opresent our conclusions.
pure rods in either the isotropic, nematic, or smectic phase
to which a small volume fraction of spheres or polymers was
added. Remarkably, besides the expected uniform mixtures

and bulk demixing, we also observed a variety of mi- Although the equilibrium phases of all hard particle fluids
crophases for a wide range of sphere sizes and concentrare determined by maximizing the entropy, ordering transi-
tions [27]. In microphase separation the system starts sepdions are still possible because the expression for the total
rating into liquidlike regions that are rich in either spheres orentropy, or equivalently free energy, splits into two parts.
rods. However, unlike bulk demixing, where rod and spherelhe ideal contribution to the entropy is of the forpinp,

rich regions grow until reaching macroscopic dimensions, invhere p is the density distribution function. This contribu-
microphase demixing these liquidlike regions increase onlytion to the entropy attains a maximum for a uniform density
to a critical size after which they order into well defined distribution, and therefore always suppresses transitions from
three-dimensional equilibrium structures. One of the mi-uniform to modulated phases. In contrast, excluded volume
croseparated phases observed, named lémeellar mi-  entropy sometimes increases with increasing spatial organi-
crophase, consisted of stacks of a two-dimensional liquidlikeation, and therefore drives the system toward a modulated

1. GENERAL FEATURES OF A PHASE DIAGRAM OF A
SPHEROCYLINDER-SPHERE MIXTURE
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L] @ .. O .. FIG. 2. Stability boundaries for a mixture of perfectly aligned
@) @) spherocylinders I{/D,.=20) and spheres with equal diameter
_ @ .. (Dse/Dgp=1). The full line indicates the theoretical prediction of
. the volume fraction at which the system becomes unstable toward
’. @) lamellar fluctuations, and its slope 1s[Eq. (1)]. The dashed line
... indicates instability toward demixing into two macroscopically dis-
tinct phases. Squares are results of computer simulations at which
| the layering transition is observed. Theoretically, the periodicity
associated with a one-dimensional lamellar instability continuously

FIG. 1. (a) A schematic illustration of excluded volume effects grows and divergeg as the systgm completely phase separates. lllus-
. e . . : : trations of the miscible, immiscible, and lamellar phases are shown
in amiscible(nematig¢ phase in a spherocylinder-sphere mixture. In in Fig. 1
the miscible phase each sphere creates a large excluded volume " ™

around it, indicated by gray areas, that is inaccessible to spherocyl-

inders.(b) When the system undergoes a transition ttammellar  the smectic phase. There are predictions of a negative value
(layered phase, the large excluded sphere-spherocylinder volumef 7 in a bidisperse rod mixture when the ratio of rod lengths
vanishes since the probability distribution severely limits the num-s |arge enough30], or when added rods have a larger di-
ber of ways that spheres are allowed to approach spherocylinderameterBz]_ In this section we focus on the phase behavior
(c) lllustration of theimmisciblephase where the system bulk phase of the spherocylinder-sphere mixture for the specific micro-
separates into a rod-rich phase and a sphere-rich phase. scopic parameteis/D .= 20 andDSC/DSp: 1. We present a
hysical picture of excluded volume effects that are respon-
ible for the enhanced stability of the lamellar phase. In the
next two sections we extend our study on how changes in the

tropy. :

I . . . molecular parameteiis/Dg. andDg./Dg, modify the phase
. The eqU|I|br|um phase in a spherocylmder-spher_e mixtur ehavior and, in particular, their influence on the magnitude
is determined by four parameters: the length over diameter g

a spherocylinderl{/Dy.), the diameter of a spherocylinder and sign of the slope.
over the diameter of a spher®{./Ds,), the total volume
fraction of spheres and spherocylindetg) ( and the partial

volume fraction of spheres(,). To help us in the interpre- N o .
tation of our results we first define the slope The second virial approximation for a mixture of perfectly

aligned spherocylinders and spheres of equal diameter was
proposed by Koda, Numajiri, and lkei29], and is general-
ized for arbitraryL/Dg. and Ds./Ds,, in the Appendix. It
was previously shown that the second virial approximation
where 77(ps;) is the total volume fraction of the rod-sphere qualitatively described the formation and various features of
mixture at the layering transition after the introduction of the smectic phase of hard rofi3,33—-35. Here we study
spheres at the partial volume fractign, (see Fig. 2 A how the addition of spheres perturbs the formation of the
positive value ofr implies that adding a second componentsmectic phase. Since the sphere volume fraction is very low,
stabilizes the nematic phase by displacing the smectic trarwe expect that the second virial approximation is still quali-
sition to higher densities. For the case when both compotatively correct for these mixtures. We consider a sinusoidal
nents are spherocylinders of different lengths but with theperturbation from the uniform density for both spherocylin-
same diameter, slopeis positive if the ratio of lengths is ders and spheres. From E@¢A3) and(A6) in the Appendix,
less than approximately[B80,31]. In the same manner, nega- we obtain the free energy difference between the uniformly
tive values ofr imply that the second component stabilizesmixed and layered state in a spherocylinder-sphere mixture:

phase. In this paper we use the highly simplified secon@
virial approximation to calculate the excluded volume en-

A. Second virial approximation

= lim ﬂ(psp)_ﬂ(o)' (1)

psp—0 Psp
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The phase diagram obtained within this approximation for
microscopic parameters /Ds.=20 and Dg./Dgp=1 is
shown in Fig. 2. From the phase diagram we see that the first
prediction of the model is that spheres, upon addition to a N
smectic phase, will preferentially occupy space between % [ S:~2/| 22l
smectic layers, and therefore create a stable microseparate
lamellar phase. The second prediction is that the total vol- [ ’2(/| "|'
ume fraction at which the system undergoes a transition from -2 1z
a uniform miscible state to a layered lamellar state is lowered
by increasing the partial volume fraction of spheres. This -3r 1
implies that the sloper is negative for this particular p ’ '
spherocylinder-sphere mixture, and we conclude that in this 0.00 0.01 0.02 0.03 0.04
casespheres enhance the layering transition partial volume fraction of spheres pgp

We can assign a simple physical origin to every term .
given in Eq.(2) above and Eq(A5) of the Appendix. The FIG. 3. Term-b_y-term dependence of the free energy <_j|fference
parts of the spherocylinder-spherocylinder interaction ternpetween the miscible and lamellar phabés. (2)] as a function of
S,, and sphere-sphere tergy, that scale as; are due to the the partial volume fraction of spheres fofDs=20 andD¢./Ds,

ideal (id) contribution to the free energy, also known as the = *: ThesS}; and Sy, terms are the sphere and spherocylinder ideal
entropy of mixing and are denoted Sg and S respec- contrlbgtlons to the total free energy difference between the Iay.ered
. ; 2 R and uniform statesS(}, Si3, andS5) are excluded volume contri-
tively. The terms having & dependen_ce 1822, S12, ar_1d butions to the free energy due to sphere-sphere, spherocylinder-
Sy are due to the spherocylinder-spherocylinder,gonere, and spherocylinder-spherocylinder interactions, respec-
spherocylinder-sphere, and sphere-sphere excluded VolungGely. Since from our analysis we cannot determine the amplitude,

(ex interactions, respectively, and are denotedS#S Si;,  in Eq. (2) we plot amplitude independent ratios of each of five
andSS;. Since the instability is defined @ (7.,k.) =0, at  components of the free energy with different origins to the
a critical densityy. and at a critical wave vectd, all indi- spherocylinder-spherocylinder excluded volume interactions. The

vidual contributions to the free energy difference in [E2).  stability condition is thatF =0, so for any value of partial volume
must add up to zero. In Fig. 3 we show the value of all termdraction of spheregs, the sum of the five contributions t6F is

with distinct physical origins at the instability density and ~ zero. 6F of the ideal terms are positive; hence they stabilize the
wave vectork, as a function of partial volume fraction of uniform, misciple nematic state, while the free volume terms are
spheres. Since from our analysis we cannot determine theegative, favormg the Igmellar state. The excluded volume sphere-
absolute amplitude od,, we only plot the ratios of all free SPhere term&py) is negligible, and the spherocylinder-spheggy
energy components to the absolute value of thd€™ dominates the transition.

spherocylinder-spherocylinder excluded volufsg)|. If we ] o

set the partial volume fraction of spheres to zesg,E0) in where L and D are defined in Fig. 4. However, the ex-
Eq. (2) we obtain an equation whose solution indicates thefluded volume between any two spherocylinders with large
nematic-smectic stability limit in a pure suspension ofL/DsciS only about twice this value, as illustrated in Fig. 4.
aligned spherocylinderf33]. For these conditions the only Although replacing spherocylinders by spheres in such a

two nonzero components of free energy &%, which is manner leaves the excluded volume almost unchanged, it

negative and therefore drives the transition, agy‘ which significantly decreases the total volume fraction of the mix-

is positive and therefore suppresses the transition. As we
start increasing the partial sphere volume fractiag, the Dsp L
spherocylinder-sphere free volume te8f rapidly assumes a)
large negative values, as evidenced by the rapidly decreasing
ratio of S5¥/|S5|. This implies that layering the mixture sig-
nificantly decreases the excluded volume that is due to the b) C ﬂ
spherocylinder-sphere interaction.

We Fan gse the mf(.)rmatlon galne(_:i fro”.‘ the Second virial FIG. 4. (a) Volume excluded to the center of mass of a sphero-
approximation to obtain a clear physical picture of excluded_ . o

- . - cylinder (s¢ due to the presence of a sphésp) is indicated by

volume effects in spherocylinder-sphere mixtures, and exg

lain th h d bili f the | I h Taki light shading.(b) Volume excluded to the center of the mass of a
piain t. € enhance Sta ”ty.o the ameliar phase. Taxinge.ong spherocylinder due to the presence of the first. Replacing a
any single spherocylinder in a uniform spherocylinder-

. o X spherocylinder by a sphere decreases the excluded volume by ap-
sphere mixture and replacing it by two spheres will leave the,ximately a factor of 2, but it decreases the total volume fraction
value of the excluded volume virtually unchanged. The reamych more since the volume of a spherocylinder with ldréB .

son for this lies in the fact that the volume excluded to thejs greater than the volume of a sphere with diamdeg. The
Spherocylinder due to the presence Of a sphere _With ?QU@bmparatively large excluded volume between a sphere and a
diameter, under the constraint of uniform packing, is aspherocylinder is the reason for the enhanced formation of the
spherocylinder with diameter2;. and length (+2D), lamellar phase.

Dsc
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efficiently pack a uniform mixture of spherocylinders and
plane perpendicular to the spherocylinder's long axis, and one-

spheres, as reflected in the large spherocylinder-sphere ex-

cluded volume term, that destabilizes the nematic phase and
dimensional disorder parallel to the long axis) A representative
configuration of spherocylinders in a smectic phase, which is char-

ture since the volume of two spheres is much smaller than I )
c I I
enhances the formation of a layered phase.
An alternate way to think about the formation of a layered
In Sec. Il A we discussed two predictions of the seconccterized by one-dimensional order along the spherocylinder’s long
virial theory for a spherocylinder-sphere mixture with axis and two-dimensional disorder in the perpendicular directions.

the volume of a spherocylinder with larggD.. Therefore a) b)
in the spherocylinder-sphere mixture we encounter excluded
volume problems similar to those found in a pure spherocyl-
inder solution, but at a lower total volume fraction. As in
pure spherocylinders, the system reduces the excluded vol-
ume by undergoing a transition to a layered phase. The ex-
cluded volume is reduced in the lamellar state because a
periodic density distribution forces spheres and spherocylin-
ders into alternate layers thus decreasing the probability of
the very unfavorable sphere-spherocylinder contacts, as illus- I:I
trated in Fig. 1. This explains the large decrease in the value
of the S{} term at the lamellar transition that we observe in
the second virial theory. This term is responsible for the (]
enhanced stability of the lamellar phase in a sphere-
spherocylinder mixture. In conclusion, it is the inability to
phase is to focus on the effects of spherocylinder ¢B@$
The nematic phase in our simplified model is characterized FIG. 5. (&) A schematic example of a typical configuration of
by random distribution of spherocylinders along their axialSPherocylinders in a dense nematic phase. Since the nematic phase
and radial directions, as illustrated in Fig. 5. This end effec'ﬂ_s cr_la_racterlze(_j by a uniform density distribution, this results in
is responsible for the formation of the smectic phase, whichefficient packing and large excluded volume between spherocyl-
is characterized by a periodic density distribution. In a simi-nders both along their radial and axial directions. This large and
lar fashion, introducing a sphere into the nematic phase wilf'nf"’“’c’r"j‘bk.a exc'“fjed V°|ume.' IS |nd|eated l.)y lightly Shado‘.'ved ar
have the same effect on the surrounding spherocylinders aesas.(b) An illustration of a typical configuration of spherocylinders

- - in a columnar phase where the excluded volume between sphero-
another sp_herocyllnder end. '_I'herefore addlr}g spheres Vegf/linders is lower compared to the nematic phase at the same den-
effectively increases the density .Of spherocylinder end_s,_ an ty, and the ideal part of free energy is higher. In a columnar phase
Qecreases_ t_he total V,Olume fraction. To resolve the d'fT'CUI'the spherocylinders are forced into registry as one spherocylinder
ties in efficient packing due to these extra spherocylindepccpies space right above or below another one. Therefore, the
ends, the mixture layers at a lower total volume fraction.  cojumnar phase is characterized by two-dimensional order in the
L/D¢.=20 and Dsp/Dsc:13 the existence of the lamellar Both theory and experiment indicate that the columnar phase is
phase and the enhanced stability of the lamellar phase whetivays metastable with respect to the smectic phasgts.
compared to a smectic phase of pure spherocylinders. Our
results are in agreement with previous studies by Keitdal.  of spheres. To check for finite size effects we also ran simu-
[29]. However, the second virial approximation is highly ap- lations with 784 spherocylinders, but saw no significant dif-
proximate, and there is reasonable concern about the inflference in the results obtained. In one sweep, pressure was
ence of higher terms on the topology of the phase diagramncreased from a dilute homogeneous mixture up to a well
To support their conclusions, Kodat al. performed com- ordered, dense smectic or lamellar phase. At each value of
puter simulations, which indicated the existence of a lamellathe pressure, the density of spheres and spherocylinders and
phase[37,29. Still, the question of whether spheres simply their corresponding smectic order parameter were measured
fill the voids between layers in an already formed smecticafter the system was allowed to equilibrate. Identical results
phase, or actually induce layering at lower total volume fraciwere obtained when the pressure was slowly decreased from
tion, was not addressed. In this section, using Monte Carlan initially dense phase composed of alternating layers of
simulations we address the question of the influence of addspherocylinders and spheres to a dilute homogeneous mix-
ing spheres on the phase behavior of spherocylinders by déare.

B. Monte Carlo simulation

termining the sloper in Eq. (1) in a mixture of spherocylin- Besides lamellar transitions, there is a possible demixing
ders and spheres with parameter =20 andD,/Dg.  transition where spherocylinders and spheres phase separate
=1. into macroscopically distinct phases. However, once a lay-

A Monte Carlo simulation of a mixture of hard-spheres ered phase is formed the exchange of spheres between layers
and perfectly aligned hard spherocylinders was performed atrops to a negligible amount, leaving open the possibility
a constant pressure and number of partif®8. Most simu-  that system would undergo a demixing transition, but is
lations contained 392 spherocylinders and a variable numbestuck in a lamellar phase, which is only a metastable state.
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FIG. 6. Smectic order parameter obtained from Monte Carlo b)
simulations is plotted against the total volume fraction for sphero- 0.42} .
cylinders () with L/Dg.=20. From right to left, the partial volume v+ <
fraction of spheresds,) increases from 0% to 2.4%, as indicated ¢ 2 0.41
by the legend. The phase diagram is reconstructed from these date2 2 \
by defining a phase as layered when the spherocylinder order pa-® g 0.40} N
rameter reaches a value of 0.3. "q', £ \A
E® 039}
To find the location of the demixing transition it is necessary % 3
to measure the chemical potential of both spherocylinders> & g.3g} L/D=20
and spheres in a spherocylinder-sphere mix{®@@. This g - a
possibility was not examined in this work, primarily because * 0.37} L/D=40
we are only interested in how low concentrations of spheres L L L ! L
perturb the formation of the layered phase. Therefore, it is 000 002 004 006 008
reasonable to expect that at a very low volume fraction of volume fraction of spheres psp

spheres, the lamellar transition is going to be more stable
than the demixing transitions as predicted by the second FIG. 7. (a) Prediction from the second virial theory for the total
virial theory. volume fraction ¢) of the lamellar instability as a function of
A plot of the smectic order parameter for spherocylinderssphere partial volume fractiorp(,) for spherocylinders with dif-
with L/D¢.=20 as a function of increasing total density for ferentL/Dg, ratios. The diameter of spherocylinders is kept con-
different partial volume fractions of spheres is shown in Fig.stant, and is equal to the diameter of the sphei®skesults from
6. As the system approaches a certain critical density, w#lonte Carlo simulations for the lamellar instability of spherocylin-
observe a rapid nonlinear increase in the smectic order palers as a function of partial volume fraction of spheres for same
rameter, that we interpret as a signature of the nematic toonditions as ina). The volume fraction at the phase transition was
smectic phase transition. This critical density shifts to lowerdefined as having a smectic order parameter of spherocylinders
values of the total volume fraction as the partial volumeequal to 0.3
fraction of spheres is increased. To reconstruct a phase dia-
gram from the above data, we define a phase as layered wheredictions of the second virial theory for the nematic-
its smectic order parameter reaches a value of408 Fora  |amellar instability are shown in Fig.(&. The second virial
pure spherocylinder suspension this value yields good agregheory clearly predicts the increasing stability of the lamellar
ment with previous studies of the volume fraction of the phase with the increasing length of spherocylinder. To verify
nematic-smectic phase transitiphl]. Since we are mostly this prediction we repeated Monte Carlo simulations for
interested in the qualitative behavior of a Spherocyl'nder'spherocylinders with different/D.., and used the same

sphere mixture, this method should suffice for our PUNDOSESy e as before to identify the volume fraction of the nematic-

Using this phenomenological rule, the phase diagram for famellar transition. The simulation results for the location of

mixture of spherocylinders and spheresL/Dg, : L i
—~20D./D,,=1) is reconstructed and compared to the SeC_the nematic to layered transition are shown in Figp).7We

ond virial theory in Fig. 2. An immediate conclusion drawn can conclude that our simulations confirm predictions of the
from Fig. 2 is that addiﬁg .spheres to aligned spherocylindergecor.ld virial model, and th_at the I_ength of the spherocylino_|er
enhances the stability of the lamellar phase, which is indiiS @0 important parameter in forming the lamellar phase, with

cated by the negative value of slopgin agreement with the longer spherocylinders showing an increasing tendency to
prediction of the second virial approximation. form a layered phase at a lower volume fraction of added

spheres.

Using the physical picture of the excluded volume effects
developed in Sec. Il provides a natural explanation for our
simulation results in Fig. 7. With increasing spherocylinder

Next we proceed to investigate the influence of varyinglength the excluded volume due to the spherocylinder-sphere
the spherocylinder length on the magnitude of slep@he interaction grows proportionally to the spherocylinder

Ill. EFFECTS OF SPHEROCYLINDER LENGTH
ON THE PHASE DIAGRAM
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R " — " expect that this assumption holds for spheres smaller than the
of L/D=20 1 spherocylinder length, but as a sphere becomes larger than
- m the spherocylinder length, long wavelength elastic effects
-10 start to dominate the behavior of the system, and hard
spherocylinders will tend to align parallel to the surface of

the spherd44]. Therefore, in Fig. 8 we plot the values of

-20 slope 7 only for those values oD¢./Dg, for which our as-
v sumptions are at least qualitatively correct. As we increase
-30 the sphere size beyond this limit, our model describes a
highly artificial system of large spheres and parallel sphero-
-40 cylinders. In this regime we observe oscillations in the value
of slope 7 similar to what is observed in binary mixtures of
50 parallel spherocylinders30].

0.1 1 A. Sphere diameter smaller than spherocylinder diameter

Dsc/Dsp In the regime wher®¢./D¢,>1 (for spherocylinders of

FIG. 8. Theoretical prediction for the stability criterium of the anyL/DsJ), decreasing th.e S.phere size m(.:reases.the Stab'!lty
lamellar phaser in Eq. (1) as a function of spherocylindésd to of the lamellar phase as |nd|c§lted by the_lncreas!ng nega_tlve
sphere(sp) diameter ratio for four spherocylinders with different Value of sloper seen on the right hand side of Fig. 8. This
L/D... The negative value of slopeindicates that spheres of that Prediction of the theory has a simple explanation in our pic-
particular size enhance the layering transition. Larger negative valture of excluded volume in a sphere-spherocylinder mixture.
ues ofr implies the formation of the lamellar phase at a lower total If We halve the sphere radiuss,, while keeping constant
volume fraction. the volume fraction of spheres, we increase the number of

spheres eight times. At the same time, the result of reducing

length, and consequently the value of 8§ term increases the spher_e size is to c.iecreas'e the excluded vollume of.the
in magnitude. As we have seen before, the larger Sfie spheroc_yllnder—sphere interaction. H'owever, the e]ghtfold'm-
term, the more likely it is for the system to form a layered crease in the number of spherocyllnder-s:.phere interactions
phase. more than compensates for the de_crease in excluded volume
It is interesting to consider the limit of spherocylinders betwgen the ngh.ere and sphgrocylmder,. and conseq'uently the
with infinite aspect ratio. In the density regime of the ma?g”"“de Oi5y; INCTEases with Q¢crea5|ng sphere dlametgr.
nematic-smectic transition, this model can be mapped onto his Iea<_js to the mcr_eased stability of the layered phase with
system with skewed cylinders with an aspect ratio close to 19€¢r€asing sphgrg Slz€. . . . .
The nematic-smectic transition in this model was studied nu- 't be_00me_s difficult to verify th'.s prediction using com-
merically [42,43. If we consider the addition of spheres to puter S|mulat|ons._ As the sphere size dec_rease_s at a constant
this system, then the same affine transformation that mag§t@! volume fractions, the number of particles in a simula-
the infinite spherocylinders onto squat, skewed spherocylintion rapidly reaches the order of thousands, requiring simu-
ders, will map the spheres onto infinitely thin, parallel disks.ation times that are prohibitively long. As the ratio of
As the disks are infinitely thin, they do not interact with eachSPherocylinder to sphere diameteD(/Dsy) was varied
other but only with the cylinders. Inside the nematic phaseVithin the accessible range between 0.5 to 2, we did not
most volume is excluded for these disks. However, in the?PServe any changes in the value of slopat were larger
smectic phase, there is ample space for the disks between tH@n our measurement error. Larger and longer simulations
layers. In fact, the stronger the layering, the larger the acce® needed for a careful analysis of spherocylinder-sphere
sible volume. Hence, in this limit, the addition of spheresMixtures with extreme values of the raidc/Dsp.

will strongly stabilize the smectic phase.
B. Sphere diameter larger than spherocylinder diameter

IV. EEEECTS OF SPHERE DIAMETER For spherocylinders With small/Dg., Fig. 8 s.hov.vs that
ON THE PHASE DIAGRAM f[he magnltudg of slope uniformly decreases W|th.|ncreas—
ing sphere size. Eventually the slopechanges sign and
In this section we investigate the influence of sphere dibecomes positive, implying that large spheres stabilize the
ameter on the value of slope Figure 8 shows the prediction nematic phase and not the smectic phase. The phase diagram
of the second virial theory for the dependence of slom®  under conditions where slopeis positive is shown in Fig. 9.
the ratio of spherocylinder to sphere diameteg (/D) for ~ The wave vector associated with the layering transition, in-
spherocylinders with differert/Dg.. In Sec. IV A we ex- dicated by a solid line in Fig. 9, remains at an almost con-
amine the phase behavior of sphere-spherocylinder mixturestant value. Another important point is that the amplitude
when the sphere diameter is smaller than spherocylinder dratio in Eg. (A6) is positive. This means that the periodic
ameter, and in Sec. IV B we examine the other case when thgensity modulations of the spherocylinders and spheres are
sphere diameter is larger than the spherocylinder diameter. in phase, which implies that spheres no longer go into the
our model the presence of the spheres cannot alter the oriegap between two spherocylinder layers, but rather fit into the
tational distribution function of spherocylinders, which are spherocylinder layer. However, as the partial volume fraction
always perfectly parallel to each other. It is reasonable t@f spheres g, is increased further, we observe a discon-
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0.8 T r T T system bulk phase separates at the lowest volume fraction of
spheres possible.
0.7 . While for short spherocylinders the magnitude of slepe

layered

imiscible uniformly decreases with increasing sphere size, longer
. spherocylinders exhibit a qualitatively different behavior.
For a mixture of spherocylinders witlh/Ds.=100 and
spheres withD./Dg,=0.1, there is a pronounced increase
in the stability of the lamellar phase, as shown in Fig. 8. By
increasing the length of spherocylinders to even larger val-
miscible ues, the region of increased stability of the lamellar phase
1 shifts to higher values of the sphere radius. Two conditions
emerge, which when satisfied lead to enhanced stability of
0.2 the lamellar phase. First, it is necessary for a sphere to fit
. p ' ' ' between two smectic layers without disturbing them. This
0.00 0.02 0.04 0.06 0.08 0.10 condition is satisfied whe®,,/L~0.1. The second condi-
partial volume fraction of spheres psp tion is thatD,/D¢c>1. It was argued before that under
FIG. 9. Stability diagram of a mixture of spherocylinders these conditions large spheres are able to induce smectic cor-
(L/Dge=10) and large spherd®./Ds,=0.15. Unlike a mixture of relations among neighboring spherocylindg2g], which in
small spheres and spherocylindefBig. 2), introducing large turn can enhance the formation of the lamellar phase.
spheres displaces the layering transition to higher total volume frac- Because of the large size asymmetry it was not feasible to
tions, indicating a positive value of slope The structure of the carry out simulations for mixture of spherocylinders and
layered phase is also different, with large spheres fitting in thespheres with./Ds~100 andD./Ds,~0.1. However, these
smectic layer rather than into the smectic gap. The smectic periocconditions are closely approximated by recent experiments
icity associated with the layering transition does not change signifion rodlike fd(L=1 wm,L/D¢~100) and polystyrene
cantly until the concentration of spheres is high enough for thesphereq27]. Therefore, we compare theoretical results of
system to demix. Then the smectic wave vector discontinuouslyjope r for spherocylinders with./D .= 100, shown in Fig.
jumps to zero. 8, to these experimental resuft27]. When large spheres
Dsp~1 um(Ds./Dsp~0.01) are mixed wittfd at any con-
tinuous jump in the wave vector to a zero value. This impliescentration for which the nematic phase is stable, we observe
that there is a discontinuous change from a layering to &40 formation of the layered phase. Instead, large spheres
demixing transition. As the demixing transition is reachedPhase separate into dense aggregates elongated along the
there is also a change in sign of the amplitude ratio, whicH'@matic director, indicating that the value of slopis larger
becomes negative, and the spherocylinders and spheres bifidn 2ero. When the size of the sphere was decreased to

separate. In contrast, the phase diagram for mixtures of sm sz%l “m(DS;ESP%O'l)' we obfs;:)ved ? tlra%s],iti?n to a
spheres and spherocylinders shown in Fig. 2 looks quite gidyered state at afu concentration o mg/mi. 1he forma-

. . . ; . _tion of a smectic phase in a pufé suspension at the same
ferent. The amplitude ratio for this case is always negatlveronic strength occurs at 65 mg/ml. The fact that adding

|mply_|ng th‘? formgtlon of the lamellar phase. Another .Con'spheres diminishes the rod density by a factor of 3 indicates
trast is that in a mixture of small spheres and spherocyllnderg1 large negative value of slope As the sphere size was
the wave vector associated with the layering transition defurther decreased,,=0.022 um(D./D.,=0.46), there

sp . sc’Msp . ’

creases in a continuous fashion, until it reached zero value, ¢ again an indication of a lamellar phase, but this time at
We now examine the behavior of individual terms in EQ. 5 mych higher concentration of rods of about 50 mg/ml.
(2) for the mixture of large spheres and short spherocylindergy, g aithough small spheres still stabilize the layering tran-
shovyn in Fig. 9. Most notably, we find that at low volume sition, implying a negative value of slopethe magnitude of
fractions of spheres, where the system undergoes the IayesrropeT is much less foD../D.,~0.46 than forD../Dy
ing transition, the ratidS;3/S;;<1. This implies that upon _g 1 These qualitative trends of the nonmonotonic behavior
layering there is. almost no redl_Jction of the unfavorableyt slope = with sphere size observed in experimentsfaf
sphere-spherocylinder  interaction, —and  that  theyglystyrene mixtures are very similar to the theoretical pre-

spherocylinder-spherocylinder interaction alone drives theyiction shown in Fig. 8 for spherocylinders with/D
formation of the layered phase. In contrast, for small spheres. 11 s¢

this ratio was large, and was responsible for the enhanced
stability of the lamellar phase, as shown in Fig. 3. At a
higher volume fraction of large spheres where the mixture
directly bulk phase separates, we find that the r&{i$S5; In this paper we have presented the predictions of the
>1. This implies, as expected, that demixing very effec-second virial theory for a mixture of parallel hard spherocyl-
tively reduces the unfavorable sphere-spherocylinder interagnders and hard spheres undergoing one-dimensional mi-
tions. These results suggest a physical picture of the exerophase separation. We have been able to verify a number
cluded volume effect. Unlike small spheres, large spheresf these predictions using Monte Carlo simulations. We
cannot fit into the gap between smectic layers, and consdeund that spheres induce layering, which implies a negative
guently there is no way to gain free volume by undergoing avalue of the sloper, which is the change in total volume
layering transition. As an alternative, to gain free volume thefraction of the mixture at the point of nematic-smectic insta-

o
o

o
~

total volume fraction n
o
(8]

o

w
—
1

V. CONCLUSIONS
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bility with respect to the partial volume fraction of added inders[29]. It attains the value of-1 if two particles over-

sphereq Eqg. (1)]. At the same time the magnitude of the lap; otherwise it is equal to 0. The terms involvipdnp

slope 7 increases with increasing spherocylinder length. Inrepresent the entropy of mixing, while the terms involving

other words, spheres at the same partial volume fraction std; ; represent the free volume entropy. Since we are inter-

bilize layering of longer spherocylinders more than shorterested in one-dimensional layering, we look at the response of

spherocylinders. In addition, the theory predicts an unusuahe system to the following density perturbations:

nonmonotonic behavior in slopeas a function of sphere to

spherocylinder diameter. Although the physical origin of this

e?fect isynot clear, it is intrigui?]g tha? s};milar ql?alitative op1(z)=a; cogk,z),

trends are observed in experiments of mixtures of the sphero- (A2)

cylinderlike fd and polystyrene spheres. However, in real ex- Spo(2)=a, cogk,z).

periments spherocylinders are free to rotate, are flexible, and

have charge associated with them. Before quantitative com-

parisons with experiments are possible, it will be necessarype free energy difference between the uniform and per-

to perform simulations and formulate theories that take intq,,iped state is

account these effects mostly ignored in this highly idealized

treatment. ~

SF=F@+ 6p1(2),1+ 6p,(2))—F(1,)=aSa (A3)
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APPENDIX 2ko cos ka| 2+2—| | —sin k2o —
DSC DSC
A general expression for the free energy of bidisperse - 2K3 :
mixture at the second virial level is
(Ad)
The above expression depends only on geometrical factors,
,3|:(,017102):i=§1;2 Jvd(f)Pi(r)m(Pi(r)) and is related to the Fourier transform of the spherocylinder
which is specified by the excluded volume between a sphere
_1 E 2 f q of diameterD, and a spherocylinder of lengthand diam-
24242 Iy M1 eterDg.. Wave vectork is dimensionless because it is re-

scaled with the spherocylinder diamet® (). The param-
etero is defined as ratio of sphere diameter to spherocylin-
. jvdrzpi(rl)pi(rZ)fiJ(rl’r2)’ (AL ger diameter ¢=Dsp/Dsg). In the limit of L/Ds.—0, the
above expression reduces to a Fourier transform of a sphere
where the functiorf; ; is the overlap function between two with unit diameter. The stability matri$ for a mixture of
spheres, the sphere and the spherocylinder, or two spherocy@pherocylinders and spheres has the form

L
2p(1— 28l — 14+ 0,k
7(1= pey) (1+ 4(1— pey) 7S(0,1K)) Pspl1=Psp) S| 5
4 o2 L 1 2
o2
3D..
S= 3L , A5
2pe(1— per) 728 —— 1+ 0k "6<§D_+1 L -
- _’ 0-’
Psp Psp) 7 D.. TPsp sc " 77psps< 2—,20',k>
2 L 2 4 Dsc
5o S i
o2
SC 3DSC
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wherep, denotes the partial volume fraction of spheres, andindergoing a layering transition. On the other hand, the con-
varies between 0 and 1, while denotes total volume frac- dition det(S)=0, whenk.=0, implies a complete demixing.
tion. Note that the terms in matrix elemersg; and S,,, Once we obtain values af, andk; we can find the ratio of
proportional ton, are due to configurational entropy, while amplitudes from the following formula:
terms proportional tay? are due to free volume entropy. As

k—0 the condition de®)=0 reduces to the usual thermo- a; S 7me.ke)
dynamic condition for the stability of the system against bulk a,  Sy(mc,ko)
phase separation.

To reconstruct the stability diagram from the determinant,A positive value of the amplitude ratio implies that the
we slowly increase the total volume fractian At a certain  spheres and spherocylinders are in the same Idlgerperi-
value of total volume fractions.), the determinant o% will odic modulations are in phasevhile a negative value im-
equal zero for a specific wave vectde]. If the wave vector plies that the spheres and spherocylinders intercélatepe-

k. obtained has a finite value, it implies that the system igiodic modulations are out of phase
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