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ABSTRACT Many phenomena of biological, physical, and chemical importance
involve synchronization of oscillatory elements. We explore here, in several
geometries, the behavior of diffusively coupled, nanoliter volume, aqueous drops
separated by oil gaps and containing the reactants of the oscillatory Belousov-
Zhabotinsky (BZ) reaction. A variety of synchronous regimes are found, including
in- and antiphase oscillations, stationary Turing patterns, and more complex
combinations of stationary and oscillatory BZ drops, including three-phase pat-
terns. A model consisting of ordinary differential equations based on a simplified
description of the BZ chemistry and diffusion of messenger (primarily inhibitory)
species qualitatively reproduces most of the experimental results.

SECTION Kinetics, Spectroscopy

S tudies of synchronized oscillators have generated sig-
nificant insights into a diverse array of physical, che-
mical, and biological phenomena since the first known

efforts by Huygens in the seventeenth century.1 In biology,
coupled oscillator approaches have been applied, for example,
in modeling the growth of slime molds,2 bimanual coordina-
tion of vertebrates,3-5 and in much more complex simula-
tions of the human brain.6 The coupling can be local or global
(e.g., all-to-all) or a combination,7,8 as well as attractive (ex-
citatory) or repulsive (inhibitory). Global inhibitory coupling in
chemical or electrochemical oscillatory systems led to the
discovery of such new patterns as oscillatory or chaotic
clusters.9,10 Global excitatory coupling usually results in sys-
tem-wide in-phase synchronization (above a critical value of
the coupling strength).11 When the coupling is purely excita-
tory or when excitatory coupling is dominant,12,13 a system
typically has two states: asynchronous, inwhich theoscillators
have random phases, and synchronous, when all oscillators
are in-phase with one another. Time delays associated with
the coupling can complicate this simplified picture.

Local inhibitory coupling has been much less investigated
experimentally, though it is found in many important cases.
Examples of inhibitory coupling include interneuron commu-
nication in the brain6 and coupled semiconductor lasers.14

Several theoretical works suggest that inhibitory coupling
should produce many different synchronous regimes and
multistability between them.15-19 Recently, we developed
an experimental system consisting of a linear array of small
(50-300 μm in diameter) identical water droplets separated
by oil gaps.20 Each drop contains the reactants of the oscilla-
tory Belousov-Zhabotinsky (BZ) reaction:21,22 malonic acid
(MA), bromate, sulfuric acid, ferroin (catalyst), and a small
amount of Ru(bpy)3, which serves both as a cocatalyst and to
make the BZ reaction photosensitive. Droplets are diffusi-
vely coupled through the inhibitor, Br2, which preferentially

dissolves in the oil gaps. We observed antiphase synchroniza-
tion and stationary Turing patterns in this system.20

In this letter we report new synchronized patterns ob-
served in two-dimensional (2D) arrays of oscillatory BZmicro-
drops, aswell as novel,more complex patterns found in linear
(1D) configurations and in arrays of partially stacked (“1.5D”)
drops. Thus we experimentally confirm that inhibitory cou-
pling is able to produce a rich variety of patterns.

In the 1D configuration, the most stable behavior is the
previously reported antiphase oscillation,20 in which each
drop is 180� out of phasewith its neighbors. If we synchronize
the drops initially with a flash of light and block communica-
tion between drops by adding a bromine scavenger to the oil
between drops (see Supporting Information, Methods), then
we initially observe in-phase synchronization, but, because
there are small differences in frequency between the drops,
this regime demonstrates a slow phase drift that soon
destroys the synchrony. If no scavenger is employed, the
drops remain in phase for tens of oscillations, indicating
active in-phase synchronization (see Supporting Information,
Figure S1). Our simulations show, however, that in-phase
synchronization with inhibitory coupling has a much smaller
basin of attraction than antiphase synchronization. Experi-
mentally, delaying the phase of a single drop in a synchro-
nized in-phase 1D arrangement with a focused laser beam
initiates a transition to an antiphase pattern that propagates
out from the delayed drop. Indeed, a quite precise in-phase
initial condition among all drops is necessary to produce
in-phase synchronization.

In the 1.5D experiments, when the drop diameter lies
between 0.5d and d, where d is the inner diameter of the glass
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capillary, the drops self-organize to form a zigzag structure
(Figure 1a). This geometry, in which each drop has four
neighbors, two near and twomore distant, produces a wealth
of new stable patterns, some of which are shown in Figures 1
and 2. The space-time plots consist of the intensity taken
along a horizontal line through the center of the capillary as a
function of time. In Figure 1b we follow the evolution of 60
drops in one very complex regime, in which all the drops
oscillate. Initially, all drops are in-phase, but in the second
cycle shown, drop 38 (numbering starts from the left) experi-
ences a delay in flashing. This phase shift cascades to the
neighboring drops, generating a switchingwave shownby the
green dotted lines. The velocity of this wave is about 0.8 μm/s,
approximately equal to the linear size of a drop divided by the
period of oscillation. Note, however, that the oscillation period
can vary significantly depending on the synchronous regime.
For example, the period of the initial in-phase regime ismuch
shorter than that of the final staggered pattern. The same
behavior emerges in the simulations.

Looking carefully at Figure 1b, we see that the drops near
drop 38 oscillate 180� out-of-phase with their neighbors. A
typical stretch of out-of-phase behavior is marked by the blue
oval. Other sets of neighboring drops assume phase differ-
ences close to (120�, as highlighted by red dashed lines in
Figure 1b. There are also several pairs of neighboring drops
thatoscillate in-phase from time to time.A simpler behavior in
1.5D, stationary Turing patterns found at a lower MA con-
centration, is illustrated in Figure 1c,d,e. In the experiment
shown in Figure 1c,d, all drops initially oscillate in-phase after
a brief synchronizing illumination (Figure 1c). Soon, each
drop ceases to oscillate and reaches a stationary reduced or
oxidized state, forming the Turing structure (Figure 1d).
The characteristic length of this pattern is several drops,
suggesting that the Turing wavelength can be larger, perhaps
much larger, than the distance between neighboring drops.

The dynamics of an array of drops in a 1D chain that
ultimately reaches a stationary and more regular Turing
pattern obtained in another experiment is shown in
Figure 1e. Here, the characteristic length of the pattern com-
prises exactly two drops in a reduced state and one drop in an
oxidized state. Note that before the system reaches the
stationary Turing regime, the drops oscillate antiphase.

Figure 2 demonstrates a novel pattern found in the 1.5D
geometry, where all drops in one row (see Figure 2a,d) are
stationary, while drops in the other row oscillate antiphase.
Figure 2b shows the initial stage of these oscillations, and
Figure 2c shows the final stable regime. These drops were not
initially synchronized, as no Ru(bpy)3 was added to this
system, so the drops begin to oscillate with random phases
(Figure 2b). A schematic representation of the pattern beha-
vior is shown in Figure 2d: drops in the bottom row
(represented as blue or red) oscillate antiphase, while drops
in the upper row remain in a stationary reduced state (gray).
The spatial period of this pattern consists of four drops. This
pattern is neither a Turing pattern nor a simple antiphase
oscillatory pattern. It is difficult to identify an analogous
behavior in the homogeneous spatially extended reac-
tion-diffusion system, although ifwe equate stationary drops
to nodes, then this pattern might be thought of as a discrete
analog of a standing wave. Another possible analogy is to the
oscillatory out-of-phase Turing patterns found recently.23,24

In 2D geometry, the drops, when packed at high density,
spontaneously form a hexagonal array. The regime consisting
of antiphase oscillation between all neighboring pairs, which
is extremely stable in the 1D geometry, is impossible in a
hexagonal 2D geometry. A similar, symmetry-generated si-
tuation arises in an analogous Hamiltonian system: the 2D
antiferromagnetic XY model.25,26 To resolve this geometrical
constraint, our drops respond in different ways. Figure 3a
shows a pattern, denoted “π-S”, in which stationary drops

Figure 1. Snapshots (a,c,d) and space-time plots (b), (e, 1D) of patterns emerging from initially in-phase arrays of partially stacked (1.5D)
BZ drops in a 150 μm ID capillary. In frames b and e, spikes of oxidation of ferroin are seen as short horizontal light lines (flashes) across
BZ-drops. In frames a and b, horizontal length of the frame is 3.8mm; total time shown in b is 3900 s. In frames c, d, and e, horizontal lengths
are 1.6, 2.2, and 4.6 mm, respectively. Total time shown in e is 12 000 s. Initial concentrations of reactants: [H2SO4]= 0.08 M, [NaBrO3]=
0.288 M, [MA] = 0.64 M (a, b), 0.040 M (c-e), [NaBr] = 10 mM, [ferroin] = 3 mM, and [Ru(bpy)3] = 0.4 mM (bpy = bipyridine).
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(black) surrounded by six oscillating antiphase drops form a
larger hexagonal pattern. Figure 3b shows this pattern sche-
matically, with stationary drops in gray, and blue and red
drops oscillating out of phase by nearly 180�. As a result, drop
10 (or drops 2, 4, 7, 13, 16, 18, etc.) in Figure 3b is exposed to
inhibitory bromine signals twice as often as any of the red-
blue pairs. This inhibition is apparently sufficient to prevent it
from oscillating, pushing it into a stationary reduced state.
This 2D pattern bears similarities to the mixed stationary-
oscillatory 1.5D pattern shown in Figure 2; however, the
spatial period of the pattern in Figure 3 taken along any of
the three hexagonal axes consists of three drops. Figure 3c,d
shows space-time plots for selected drops, confirming the
antiphase behavior of neighboring drops.

A second configuration for drops in 2D, denoted “2π/3,”
is shown in Figure 4, where the neighboring drops oscillate
with a phase shift close to 120�, corresponding to the ground
state of the 2D antiferromagnetic XYmodel.25,26 A snapshot
of the system is shown in Figure 4e, with the outlined region

of interestmagnified in Figure 4f. Frames a-d are snapshots
of the region centered around drop 1 in Figure 4f taken after
the stationary behavior has been reached. The interval
between snapshots is about 73 s, i.e., 1/3 of the single drop
oscillation period of 220 s. Drops 2, 4, and 6 oxidize in-phase
in frame a, followed by in-phase oxidation of drop 1 and its
symmetrically equivalent counterparts (b), and finally drops
3, 5, and 7 (c). The cycle starts again in frame (d). Figure 4g
shows a staggered space-time plot of drops 1-7, marked
in (f). This regime resembles the portions of Figure 1b with
phase shift = 120� between neighboring drops. The most
important difference between the conditions that result in
the two patterns illustrated in Figure 3 (π-S) and Figure 4
(2π/3) is that π-S patterns are obtained at stronger coupling,
which we can characterize by the dimensionless ratio
D/(kL2). Here D is the effective diffusion coefficient of the
inhibitor (bromine), k is the effective (first-order) rate con-
stant for the consumption of the inhibitor, and L is the
distance between drops. There are at least two ways to
increase the coupling strength: (i) by decreasing the size of
the water droplets or (ii) by decreasing the length of the oil
gap between droplets. We explored both methods (to de-
crease the oil gap, we decreased the amount of oil in the
emulsion). With either method, an increase in coupling
strength (e.g., by decreasing the droplet diameter from
120 to 90 μm) leads to a transition from the 2π/3 to the
π-S pattern. More generally, stronger coupling results in a
higher proportion of stationary droplets, a result found in
both the experiments and the simulations. The simulations

Figure 2. Pattern consisting of stationary and antiphase oscilla-
tory BZ drops in 1.5D geometry. (a) Snapshot of capillary with BZ
drops; (b,c) space-time plots (time-axis is vertical) for (b) early
times during transient period and (c) later, after the stationary
regime is established; (d) schematic representation of the pattern.
Initial concentrations of BZ reagents are as in Figure 1with [MA]=
0.64 M, except [Ru(bpy)3] = 0. Drop size is 65 μm. Oscillation
period is 177 s. Length of frames is 1.044 mm. Times shown in
frames b and c are 1068 and 798 s, respectively.

Figure 3. Stationary and antiphase oscillatory BZ drops in 2D.
(a)Hexagonally packed drops forming a larger hexagonwith each
stationary drop (black) surrounded by six oscillatory drops. Im-
aged area is 0.7 � 0.7 mm. (b) Schematic representation of the
pattern (stationary drops in gray). (c,d) Space-time plots
(duration 2800 s) of drops 6, 11, 15, 14, 9, and 5 (c) and drops 1,
5, 10, 15, and 19 (d). Concentrations of BZ reagents are as in
Figure 1.
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further suggest that, in the limit of very strong coupling, a
limit we have achieved in the 1D but not in the 2D experi-
ments, all droplets become stationary, resulting in Turing
patterns. At intermediate coupling strengths, the slightly
different initial conditions may also contribute to the selec-
tion of different final patterns by our system. In both cases,
we have patterns consisting of three groups of droplets
having either different phases or different dynamical beha-
vior (stationary or oscillatory drops).

To better understand our experimental results, we carried
out computer simulations ona simplifiedmodel of our system
S1-S12, described in the Supporting Information, Modeling.
Because, even at this level of simplification, modeling large
arrays of drops is computationally taxing,we exploredmainly
configurations consisting of small numbers of drops to see
whether the key features of our 1D, 1.5D, and 2D systems
would emerge.

Typical results of simulations are shown in Figure 5. The
regime seen in Figure 2with stationaryandantiphaseoscillatory

BZ drops is reproduced in Figure 5a,d for an eight-drop array
in the 1.5D configuration. Stationary Turing patterns re-
sembling the experimental patterns shown in Figure 1d,e
are presented in the Supporting Information, Results (Figure
S3). Such Turing patterns are obtained with stronger inhibi-
tory coupling (through bromine) and/or at smaller concen-
trations ofMA, as in the experiments. Note that a decrease in
[MA] leads to higher [Br2] in the drops and the intervening oil
and consequently gives stronger inhibitory coupling.

The 2Dpattern shown inFigure 3 can be simulatedwith an
arrayof three linearly coupleddrops in1Dshown inFigure5b,e
(where the central drop is nearly stationary and the two end
drops oscillate antiphase, over a broad range of concen-
trations) and several configurations of hexagonally packed
drops shown in Figure 5c. For example, if we take only drops
1-7 as labeled in Figure 5c, drops 1-12, 1-16, 1-20, or
1-24, we obtain patterns as in Figure 3. However, if the
number of drops in our cluster is small (less than about 20),
the final pattern is very sensitive to the addition or removal
of a single droplet. A cluster of 28 drops (shown in Figure 5c)
is much less sensitive to this procedure. A number of

Figure 4. Three-phase oscillatory clusters in 2D. Drop diameter is
128 μm. Initial concentrations: [H2SO4] = 0.08 M, [NaBrO3] =
0.29 M, [MA] = 0.64 M, [Ferroin] = 3 mM, [NaBr] = 0.01 M, and
[Ru(bpy)3]=1.2 mM. Snapshots a-d are taken at t=0, T/3, 2T/3,
and T, where T= 231 s. Snapshot e and its enlargement (f) show a
2D configuration of BZ drops. (g) Space-time plot for drops 1-7
shown in snapshot f; dimensions are 896μmhorizontal and 2877 s
vertical. Period of oscillations for each drop in the space-time plot
is the same as T in snapshots a-d.

Figure 5. Simulations. (a,d) Eight identical coupled BZ drops for
1.5 D configuration. (a) Gray drops are stationary. Drops 1 and 5
oscillate in-phase, drops 3 and 7 also oscillate in-phase but
antiphase to drops 1 and 5. (d) Oscillations of drops 1 and 3,
T = 165.5 s, z is the oxidized form of the catalyst. Chemical
parameters: h= [Hþ]=0.2 M, a= [BrO3

-]=0.3 M,m= [MA]=
0.5 M, c0 (total concentration of the catalyst)=0.003 M. Coupling
parameters: kf (coupling strength between close droplets like 1
and 2)=1 s-1, 1/kb (associated with time delay in coupling)= PB/
FVkf, PB (partition coefficient for Br2 betweenwater and oil)=2.5,
FV (volume ratio of water drops and oil gaps) = 10, kfd (coupling
strength between distant droplets like 1 and 3 in frame a)= kf/10,
FV2=2, kbd= FV2kfd/PB, kO= kfr= 0. (b,e) Theminimumnumber
(three) of drops simulating the pattern in Figure 3. The gray drop is
stationary. Drops 1 and 3 oscillate antiphase, as shown in frame e.
Parameters: h= 0.16 M, a= 0.3 M,m= 0.65 M, kf = 1 s-1, PB =
2.5, FV2 = 10. (c,f) Twenty-eight identical hexagonally packed BZ
drops. (c) Gray drops (7, 21, 12, 25, 16, and 17) are in the oxidized
SS (oscillates with very small amplitude). Reddish drops oscillate
almost in-phase. Bluish drops also oscillate almost in-phase and
antiphase to reddish drops. (e) phase shift between three types
(with slightly different environments) of bluish drops (1, 5, and
26). Parameters: as in (b,e) except kf = 0.4 s-1. Other constants
used in the FKN model S1-S12 are specified in the caption for
Figure 3S in the Supporting Information.
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questions about the sensitivity of the pattern to the number
of droplets, the coupling strength, the symmetry of the
droplet configuration, and the initial conditions remain. Note
that droplets that oscillate “in-phase,” like the reddish or
bluish droplets in Figure 5c, have a slight phase shift, as
shown in Figure 5f. An analogous phase shift can be seen in
all our experimental results. The origin of this shift in the
simulations is the different number of neighbors for bound-
ary and “inner” droplets.

The three-phase oscillatory patterns shown in Figure 4 can
be simulated with just three circularly coupled BZ drops plus
three oil drops (like drops 1, 2, and7 inFigure 5c, for example;
see also Supporting Information, Results, Figure S4). Curi-
ously, the three-phase pattern of Figure 3 cannot be modeled
with three circularly coupled drops. Both of the two three-
phasepatterns in2D,π-S and2π/3, are found in a clusterof six
identical drops connected in 3D to form an octahedron
(Supporting Information, Results, Figure S5). This unique
configuration allows us to have periodic boundary conditions,
an even number of neighbors (4 vs 6 in hexagons), and a total
number of drops divisible by 3 (the spatial period for these
two patterns). Simulations reveal that an increase in coupling
strength leads to a transition from2π/3 to π-S patterns, just as
we observe in our experiments. However, there is no clear
physical correspondence between the experimental configu-
ration of hexagonally packed drops and the simulations on
3D octahedrons.

In our simulations, we used the well-known FKN mecha-
nism for the BZ reaction,27 inwhich BrO2

• radical serves as an
excitatory messenger between droplets, and Br2 acts as an
inhibitory messenger. Excluding BrO2

• as a messenger in the
model causes almost no change in the calculated patterns,
which suggests that this species plays practically no role in the
coupling.

The formation of two-phase and three-phase structures,
i.e., sets of drops that oscillate with a common phase (or are
stationary) in our system, may be viewed as a generalization
of the chemical quorum sensing recently reported13 in sets of
particles loaded with catalyst and immersed in a BZ solution.
Here, too, the individual drops behave independently until
brought together so that their density (or coupling strength)
exceeds a critical value. They then begin to exhibit more
complex dynamical behavior, in our caseantiphase and three-
phase patterns as well as the in-phase oscillation observed in
the particle experiments. Our oscillatory structures also re-
semble the clusters observed in experiments on globally
coupled electrochemical oscillators.10 The larger the coupling
strength, the larger the number of different synchronous
groups (up to the limit of Turing patterns). Therefore in
addition to the “quorum sensing”, our system exhibits a
primitive kind of “differentiation”.

Since the coupling of our oscillatory BZ drops is primarily
inhibitory, and theycan formstationaryTuring-like patterns (if
the coupling is strong enough), this system can be viewed as a
discrete manifestation of the Turing-Hopf interaction that
generates many interesting patterns in continuous reaction-
diffusion systems, such as oscillatory in-phase and antiphase
Turing patterns (the latter is analogous to our antiphase
regime).23,24

All configurations that we have studied computationally
demonstrate multiple synchronous regimes, i.e., regimes in
which each drop has the same total period (though possibly
with different numbers of maxima during this period). We
expect to find some of these regimes in further experiments
on our system of coupled BZ droplets, whichmimics diffusive
inhibitory coupling among biological objects, a situation that
is ubiquitous in nature.

SUPPORTING INFORMATIONAVAILABLE Methods,mode-
ling, and results as Figures S1-S5. This material is available free of
charge via the Internet at http://pubs.acs.org.
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