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1. Introduction

Colloidal liquid crystals are a useful experimental system for studying fun-
damental aspects of liquid crystal ordering, because the time, energy, and
size scales involved allow one to interact with the system with laboratory
scale probes and forces, in a way that is not possible in small molecule
systems. In the colloidal systems, liquid crystalline ordering arises from
simple particle shape and excluded volume e�ects, rather than more com-
plex interactions that occur in molecular systems involving van der Waals
attractions, dipolar e�ects, and more complicated molecular interactions.
The study of hard rod systems has recently been a subject of intensive the-
oretical investigation [1, 2, 3] prompted by a series of remarkable computer
simulations [4, 5, 6, 7]. For comparing this body of theoretical work to a real
physical system, solutions of virus particles have provided the only suitable
experimental tests [8, 9, 10]. These studies have implications for all liquid
crystals, because the symmetry and the nature of the ordered phases being
studied are universal to a wide range of systems, including low molecular
weight thermotropics and polymer liquid crystals. In this chapter we will
discuss experiments exploring the liquid crystalline properties of colloidal
suspensions of virus particles. Since an article summarizing TMV research
at Brandeis was published recently [11], we will focus on studies not re-
viewed previously. A second review article on TMV research by Wetter [12]
is especially recommended for its abundance of splendid photographs.

Our goal is to understand liquid crystal behavior on three di�erent
length scales; microscopic, mesoscopic, and macroscopic. On the micro-
scopic scale we seek to determine the interparticle potential, which gener-
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ally has both repulsive and attractive components. The mesoscopic scale
is concerned with interparticle spatial, angular, and temporal correlations,
and on the macroscopic scale we measure visco-elastic constants and ex-
plain a wide variety of phenomena treating the liquid crystal as a con-
tinuum visco-elastic medium. Equally importantly we wish to understand
the interconnections between these length scales and �nally seek a uni�ed
theoretical understanding of phenomena on all three scales.

The microscopic interparticle interactions inuence properties at larger
length scales, and from the studies of simple uids, such as liquid argon, it
has been shown that phase behavior and interparticle correlations are dom-
inated by steric repulsion, with attractive forces playing a secondary role
[13]. By isolating the repulsive interaction and studying model hard sphere
systems, computer simulations, theory, and experiments on hard sphere
colloids have contributed to our understanding of liquids and solids. The
most notable conceptual advance being the realization that two-phase co-
existence between a liquid and a crystal occurs at densities far below close
packing in hard sphere systems. This is an example of an entropy driven
phase transition where the seemingly higher ordered crystalline phase has
greater entropy than the disordered liquid [14, 15, 16].

The idea that steric interactions dominate phase behavior of spherical
molecules has been extended to liquid crystals by computer simulations
of hard rods which exhibit a nematic - smectic (N - Sm) transition [4,
5, 6, 7]. Previously it was thought that speci�c attractive potentials were
needed to produce a N - Sm transition. However, experimentally there are
no liquid crystal forming anisotropic small molecules equivalent to argon,
nor are there yet hard rod colloids similar to the hard sphere colloids (see
the lectures of H. Lekkerkerker in this volume). Instead, we study charged
particles interacting with a screened coulomb potential, which like the hard
particle potential is short ranged and repulsive.

The rod shaped virus particles, Tobacco Mosaic Virus (TMV) and semi-
exible bacteriophages fd and pf1 remain unique experimental systems
because they are the only colloidal suspensions of particles whose inter-
actions are predominately repulsive, which with increasing concentration
form isotropic, nematic (TMV and pf1) or cholesteric (fd), and smectic
liquid crystals. In the isotropic phase both interparticle angular and spa-
tial correlations are short ranged while in the nematic the long axes of the
rods are parallel (long range angular correlations), but the center of masses
have liquid-like short range correlations. In smectic suspensions the rods
are also parallel, but rod ends are in register forming individual layers with
liquid like order in each layer. Additionally, the rigid TMV particle has a
colloidal crystalline phase where the aligned particles have their centers of
mass located on a crystalline lattice and partially dried oriented �bers of
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Figure 1. Tentative phase diagram of TMV as a function of ionic strength. At high
ionic strengths the sequence isotropic, nematic, smectic, colloidal crystal, and disordered
is observed with increasing concentration, while at low ionic strength there appears to
be a direct transition from the nematic to the colloidal crystalline phase. The phase
transitions are �rst order, except the nematic - smectic, which is second order. The
nature of the disordered region is not understood in either TMV or fd.

fd, pf1, and TMV exhibit hexagonal columnar order [17, 18] with hexagonal
packing of the viruses in the plane perpendicular to the particle axis (direc-
tor) and short range correlations parallel to the director. However, it is not
clear if the observations of columnar order have occurred in monodisperse
samples, or in ones at equilibrium.

At high concentrations, both fd and TMV become somewhat disordered.
Long range orientational order remains (the samples are birefringent), but
long range spatial order vanishes (Bragg scattering disappears). The phase
diagram is also a function of ionic strength since the range of the screened
coulomb repulsion decreases with increasing ionic strength, which lowers
the e�ective diameter of the particle. The phase diagrams of fd and TMV
are schematically shown in Figures (1) and (2).

2. Physical properties of virus

The unique attribute of using virus particles as an experimental system
for investigating liquid crystal behavior is that Nature has designed the
viruses to be identical in structure, which gives rise to the same physical
parameters such as mass, length, diameter, as well as charge density. Such
a high degree of monodispersity is not currently obtainable using synthetic
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Figure 2. fd shows a sequence of isotropic (I), cholesteric (C), smectic (S), and dis-
ordered with increasing concentration. Both the I-C and C-S transitions are �rst order.
The nature of the disordered region is not understood in either TMV or fd. The solid line
along the C - S boundary corresponds to a constant e�ective volume fraction of � = 0:75
discussed in section (9). The open circles and triangles correspond to the highest mea-
sured concentrations of the cholesteric and smectic phases, respectively while the solid
triangles and circles correspond to the lowest measured concentrations of the disordered
and smectic phases, respectively.

chemical methods.

Viewed at low resolution in an electron microscope, TMV appears as a
rigid rod of length L = 300 nm and diameter D = 18 nm [19] and light
scattering studies have failed to detect any exibility [20, 21]. TMV is com-
posed of 2130 identical protein subunits arranged in a helix composed of
16 and 2/3 units per turn of the helix, wound about a hollow, water-�lled
center of 4 nm diameter. The units form a helical grooved outer surface
resembling a �nely threaded screw with the outer groove diameter 18 nm
and the inner 16 nm. In addition to the protein, TMV contains a single
strand of RNA running the entire length of the virus in a slot in the pro-
tein with three bases per protein subunit. TMV is a polyelectrolyte with an
isoelectric point of about 3.5 and at pH 7 is negatively charged with a linear
charge density of 10 - 20 e�/nm. This is rather highly charged and is close
to the Manning condensation limit. TMV is also optically anisotropic and
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exhibits form birefringence as a consequence of its shape anisotropy [22].
TMV has a host of other anisotropic physical properties including dia-
magnetic and dielectric susceptibilities as well as anisotropic translational
di�usion constants, summarized in Table 1.

Electron micrographs of fd reveal a slender thread-like polymer, often
bent but without hairpins [23]. The bacteriophage fd is longer and thinner
than TMV, with L = 880 nm and D = 6:6 nm [24] and unlike TMV, light
scattering studies show fd is exible with a persistence length of P = 2200
nm [20, 21, 25, 26]. While TMV is composed of multiple copies of only one
protein, fd is composed of �ve proteins. About 2700 copies of one protein
comprise the coat, while �ve copies each of the other proteins make up the
ends. The main protein forms a hollow cylinder of outer diameter 6 nm
and inner 2 nm, which is �lled with the single stranded DNA. fd is also
a polyelectrolyte with charge densities similar to TMV [27]. The physical
properties of fd are summarized in Table 1. Pf1 has a structure similar to
fd and has the same diameter and charge density, but it is longer with a
length of L = 1980 nm.

The length of the particles can be altered. TMV can be induced to end-
to-end aggregate irreversibly by placing it in a dilute lead solution. This
results in a polydisperse suspension with particles of lengths of several mi-
crons. As far as is known, TMV always aggregates end-to-end producing
a polydisperse suspension composed of particles of discrete lengths. TMV
can also be fragmented through sonication resulting in a polydisperse sus-
pension of variable lengths, all less than the 300 nm length of native TMV.

The length of fd has been altered using recombinant DNA techniques
and there are reports in the literature of mutants strains with lengths up
to 3:4�m [28]. This allows us to control the physically important parameter
of length, while still maintaining the monodispersity of a biological species.

We have the impression that TMV aggregates much easier than fd and
in fact we have very little evidence of any aggregation at all in fd. Perhaps
the biological origin of this comes from the fact that TMV is composed of
multiple copies of a single protein and thus the ends of the virus are not
very di�erent from the middle. Since the viruses self-assemble there is a
tendency for TMV to continue to grow. The �nite length of the RNA strand
terminates growth of TMV, and removing the RNA leads to a polydisperse
distribution of protein aggregates. In contrast, fd has several specialized
proteins at each end, providing a mechanism to inhibit growth as well as
end-to-end aggregation.
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Property Symbol TMV fd

diameter D 180�A [19] 66�A [24]

length L 3000�A [19] 8800�A [24]

persistence
length P > 10L [20] 22000�A [26]

density � 1.37 g/cc

molecular
weight Mw 4� 107 g/M [29] 1:64� 107 g/M [30]

Svedburg S 188[10�13] sec [29] 47[10�13] sec [30]

refractive
index
increment

dn/dc 0.194 cc/g [29]

optical
density O.D. 3:06

1mg/ml
1cm;265nm [29] 3:84

1mg/ml
1cm;269nm [24]

refractive
index

n 1.57 [22]

speci�c
birefringence �n/c 2� 10�5 cc/mg [8, 31] 6� 10�5 cc/mg [32]

Diamagnetic
anisotropy �� 2:0� 10�9 c.g.s. [9] 7� 10�24 J/T2 [32]

charge e 2e/�A at > pH 7 [33] 2e/�A at > pH 7 [27]

Hamaker
constant AH 5� 9� 10�14 [33]

permanent
dipole
moment

� 2:5� 10�14 esu cm [34]

electric
polarizability
anisotropy

�k � �? 3:3� 10�13cm3 [31]

rotational
di�usion

Dr 318 � 3 sec�1 [34] 20.9 s�1 [30]

average
translational
di�usion

Do 4:19� 10�8cm2=sec [35] 2:58� 10�8cm2=sec [30]

parallel
di�usion

Dk 5:38� 10�8 cm2/sec [35]

perpendicular
di�usion

D? 3:59� 10�8 cm2/sec [35]

TABLE 1. Physical constants of TMV and fd

2.1. VIRUS PRODUCTION

Production of monodisperse TMV, fd, and pf1 is not challenging for a biol-
ogist. For TMV, we follow the recipe of Boedtkar and Simmons [29], while
paying attention to the caveats of Kreibig and Wetter [36]. Basically, we
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grow a crop of wild Turkish tobacco plants until they are several weeks old,
or about 20 cm in height and then infect the leaves with some TMV (com-
mercial tobacco plants are bred to be resistant to TMV). After another few
weeks the plant develop brownish legions indicating infection with TMV.
The leaves are ground to extract the tobacco juice and then puri�cation
of TMV from the plant debris is achieved by several cycles of di�erential
centrifugation. Low speed spins sediment heavy debris and leave the virus
is suspension, and then high speed spins pellet the virus leaving low molec-
ular weight components in suspension. We get about 0.2 g of puri�ed virus
from 1 kg of tobacco leaves. The degree of monodispersity of extracted
TMV varies from crop to crop. We �nd that high temperatures (> 40� C)
in the green house produces poor samples, and the virus seems most stable
at low ionic strength, such as distilled water. Barring catastrophes, or in-
fection with bacteria or mold, TMV samples are stable for years. Extracted
samples should never be frozen, as this severely damages the virus. Several
times refrigeration malfunctions froze our samples and ruined months of
work.

fd and Pf1 are bacteriophages that infect Escherichia coli and Pseu-

domonas aeruginosa, respectively. Production of the phage is similar and
standard in molecular biology [37]. One produces a healthy batch of bacte-
ria and infects them with virus. After a few hours the bacteria is separated
from the virus with a low speed centrifugation spin, and the virus is con-
centrated with a subsequent centrifugation spin. Yields of about 1 g of
virus per liter of infected bacteria are typical. Working with the genetically
engineered virus is more di�cult; yields are lower and there is a tendency
for the bacteria to delete the altered DNA. However, there are ways of
applying selective evolutionary pressure to the bacteria to suppress this
tendency [28].

Characterizing sample polydispersity is very important in our studies
and we have tried a variety of methods including size exclusion column chro-
matography, light scattering, electron microscopy, magnetic birefringence,
analytical centrifugation, and gel electrophoresis. Our current opinion is
that electrophoresis [38] o�ers the greatest resolution in determining the
relative size distribution, but must be used in conjunction with electron
microscopy to determine the absolute length distribution of the virus.

3. The Isotropic - Nematic transition

The �rst ordered phase that appears in virus suspensions with increasing
concentration is the nematic phase (TMV, pf1) or cholesteric phase (fd).
A microscopic theory for the isotropic - nematic (I - N) transition of hard,
rigid rods was �rst developed by Onsager [39] who was actually seeking to
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explain the nematic phase in suspensions of TMV. In hard particle suspen-
sions the free energy is determined solely by entropy. Onsager showed that
the I - N phase transition results from a competition between two types of
entropy; rotational entropy, which is maximized by having the rods point in
any given direction with equal probability, and translational entropy, which
is maximized by allowing the greatest translational motion, or smallest free
volume per rod. In dilute suspensions, the rods move unhindered by their
neighbors, irregardless of their relative orientation and the total entropy
is maximized with an isotropic angular distribution of rod axes. However,
with increasing concentration the randomly oriented rods bump into each
other restricting their translational freedom. Eventually, a concentration
is reached where the total entropy is maximized by aligning the particles,
which reduces the excluded volume per particle and increases the transla-
tional entropy at the cost of reducing orientational entropy.

The relevant dimensionless concentration controlling the I - N transition
is the excluded volume in the isotropic phase (b = �L2D=4) times the
number density (c) and Onsager showed that in the limit of L=D� 1 the I -
N co-existence concentrations were bci = 3:3 and bcn = 4:2. Note that this
transition is temperature independent and the co-existence concentrations
depend only on the length and diameter of the particles. A suspension where
concentration rather than temperature is the thermodynamic variable is
known as a lyotropic.

The virus particles are charged, which has two e�ects on the I - N tran-
sition. First, at a given ionic strength Onsager argued that the free energy
of the electrostatic repulsion between particles is equivalent to increasing
the diameter of the particle by the distance at which the interparticle re-
pulsive potential falls to kT , this distance being known as the e�ective
diameter De�. Second, the angular-dependent potential between two like
charged cylinders acts to misalign the particles and its magnitude is charac-
terized by the \twist" parameter h = ��1=De�, with ��1 being the Debye
screening length [40]. This torque on the particles acts to destabilize the
nematic phase and indeed if h > 4=3 the nematic phase ceases to exist [41].
To �rst approximation, Onsager showed that the phase co-existence results
for hard rods remain valid for charged rods, but De� is substituted for D
in the excluded volume, b.

The e�ective diameter and twisting constant h for fd are plotted in
Figure 3. At 1 mM ionic strength De� is about 10 times the hard particle
diameter of 6.6 nm, butDe� decreases very rapidly with ionic strength (note
the log scale). There is very little variation in De� with charge density in
the range of 5 - 20 e�/nm because of condensation of the counter-ions. The
twist constant h is small, 0.16 at most, and decreases with increasing ionic
strength. A similar plot for TMV is given in reference [9] and details of the
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Figure 3. The e�ective diameter De� and twisting constant h = ��1=De� for fd as
a function of ionic strength. The bare diameter of 6.6 nm is approached at high ionic
strength. Three charge densities are plotted (a) 5, (b) 10, and (c) 20 e�/nm.

calculation are given in reference [40].

The Onsager theory is restricted to two-body interactions and is thought
to be quantitatively accurate only for L=De� > 100 [1]. We cannot expect
the Onsager theory to apply for TMV since L=De� < 17. However, it
is expected that hard rods with L=D < 100 also form nematic phases
since three-body and greater interactions increase the excluded volume of
the isotropic phase, which will act to stabilize the nematic phase [42]. Of
course, with decreasing L=D the point will arrive at which the di�erence
in excluded volumes is no longer great enough to stabilize the nematic and
a crystalline phase will replace the nematic as the �rst ordered phase [43].

3.1. CO-EXISTENCE CONCENTRATIONS OF TMV

TMV was the �rst virus isolated and shortly afterwards it was realized that
TMV suspensions formed liquid crystals [44]. This last reference paper has a
memorable photograph of the birefringent wake of a gold �sh swimming in a
TMV suspension. However, the early studies on co-existence concentrations
of TMV were done on polydisperse samples, which complicates comparison
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with the Onsager theory. A synopsis of previous work on the I - N transition
can be found in ref. [9], while ref. [12] focuses on the colloidal crystalline
phase. The research described in Section 3 can be found in references [9],
[45], [46], and [47].

Having obtained monodisperse samples of TMV, we dialyze the virus
against a variety of bu�ers and adjust the concentration until co-existing
phases are found, which are identi�ed by observation through crossed po-
larizers. If a sample of average concentration slightly greater than ci is in
the initial stages of phase separation, then when viewed with a polarizing
microscope the nematic droplets appear as bright footballs of the United
States variety on a dark background [12, 44]. With time the nematic do-
mains coalesce and form a continuous phase, which settles to the bottom of
the container because the nematic phase is denser than the isotropic phase.
To determine the sample concentrations we extract a portion of each phase
with a pipette and measure the optical density of the solution to obtain
a mass density. We denote the mass densities of the co-existing isotropic
and nematic or cholesteric phases as �i and �n, respectively. If the sam-
ples are monodisperse then we can convert mass to number density given
the molecular weight and density of the virus (Table 1). The I - N phase
diagram as a function of ionic strength is shown in Figure 4.

We clearly see in Figure 4 that the measured values are signi�cantly
lower than predicted by the Onsager theory. There are several features of
the data which agree with the Onsager theory. First, the Onsager theory
predicts that �i is inversely proportional to De� and the trend of increasing
concentrations with increasing ionic strength is observed. Second, the width
of the co-existence region w = (�n � �i)=�i is similar to the Onsager pre-
dicted value of 1.24. Third, the co-existence concentrations were observed
to be independent of temperature as long as the virus particles did not
begin to aggregate [9].

Since TMV has a small ratio of L=D the co-existence concentrations are
expected to be lower than predicted by a theory that neglects higher order
excluded volume interactions [42]. There are several theoretical approaches
to account for the higher virial terms in hard rod systems of small axial
ratio. Instead of using an ideal gas as the reference state, the other choice
is to use the liquid of hard spheres as the reference state and include the
nematic interaction at the level of the second virial coe�cient. We refer the
reader to the recent review article of the Onsager model and its extensions
by Vroege and Lekkerkerker [1]. In Figure (4) we use a theory developed by
Lee [48], which essentially amounts to an interpolation between the accu-
rate limiting theories of the Carnahan-Starling equation of state for hard
spheres and the Onsager equation of state for in�nitely long hard sphero-
cylinders. This theory accounts in some fashion for the higher virial terms
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Figure 4. The theoretical isotropic (�i) - nematic (�n) co-existence region for TMV
modeled as a sphero-cylinder of dimensions L = 282 nm and D = 18 nm and linear
charge density 20 e/nm are plotted for the Onsager theory (upper shaded region) and
the theory of Parsons - Lee [9] (lower shaded region). The dashed line ({) is the calculated
value of the spinodal branch of the isotropic line and is identical for the two theories.
The individual points correspond to measured values of �i (4) and �n (�). All these
samples were experimentally characterized to be monodisperse, including the TMV in
borate bu�er. The solvent of the TMV suspension is indicated next to the data points.
Tris: TRIS - HCl, pH 8.0, KP: Potassium Phosphate, pH 7.2, Borate: Borate bu�er, pH
8.5, H2O: unbu�ered distilled water.

in the free energy and lowers the co-existence concentrations, however the
predicted width of the co-existence region is much narrower than measured.
Experimentally, residual polydispersity or e�ects of charge may account for
this discrepancy; or the theory needs to be improved. We are currently
mapping the entire phase diagram of monodisperse TMV, including the I -
N transition using monovalent salts, which ease calculations of the e�ective
diameter.
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3.2. CO-EXISTENCE CONCENTRATIONS OF FD

There are two notable di�erences between TMV and fd that need to be
discussed before the co-existence data can be analyzed. First, fd forms a
cholesteric phase in distinction to the nematic phase for TMV. Second, fd
is a exible particle.

The local arrangement of molecules in the cholesteric phase is similar to
the nematic phase except that because the cholesteric is composed of chiral
molecules there is on average a small angle of constant sign between the
rods. As a consequence, the structure of the cholesteric has a screw axis su-
perimposed normal to the preferred molecular direction [49]. The pitch of a
cholesteric is de�ned as the distance along the screw axis in which the local
director has rotated by 360 degrees. For the case of a cholesteric that has a
pitch much larger than the intermolecular spacing, the energy of the twist
distortion in the cholesteric contributes only a minute perturbation to the
total energy associated with the parallel alignment of the molecules [49]. In
particular, cholesteric fd suspensions have about 1000 particles per turn of
the pitch. One therefore expects that any theory of the isotropic-nematic
phase transition will be equally applicable to the isotropic-cholesteric tran-
sition.

Flexibility has a more signi�cant e�ect on the I - N transition. TMV
was shown not to satisfy the Onsager model because the length to diameter
ratio was too small. However, a particle of any material with L=D > 100
will be exible, and fd with L=D = 140 has a persistence length P = 2:5L.
This is a fairly sti� polymer, but even a modest amount of exibility can
have dramatic e�ects on the I - N transition. The Onsager theory was
extended to account for exibility by Khokhlov and Semenov (KS) [50, 51]
and is valid as long as L and P are much greater than D. In the KS
model, the excluded volume term of the Onsager free energy remains the
same, except that the contour length of the particle is replaced with the
persistence length and the number density with the density of persistent
segments. The main modi�cation to the free energy comes from the single
particle entropy. For rigid rods, this consists only of rotational entropy,
but exibility adds an additional term. In the isotropic phase the polymer
can bend in any direction, and does so on a length scale of a persistence
length. However, in the nematic phase the polymer is constrained to bend
on average along the nematic director, with the distance between bends
known as the deection length [41]. This constraint lowers the entropy of
the nematic phase and thus acts to destabilize its formation. The nematic
transition of semi-exible polymers occurs at higher concentrations than
for rigid particles and the co-existence concentrations are narrower.

Khokhlov and Semenov solved their model analytically in the worm-
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like limit of L � P � D and Chen [52] numerically solved the KS model
for arbitrary exibility. The e�ect of charge on the I - N transition has
been calculated in the worm-like limit [53]. To extend the numerical results
of Chen for hard polymers to charged polymers, we adopt the Onsager
approach, and simply replace D with De�, as well as neglecting the twisting
term h. We expect inclusion of h would shift the co-existence region to
slightly greater concentrations [53].

Figure 5 shows the isotropic - cholesteric co-existing concentrations, �i
and �c of fd as a function of ionic strength [45]. Theoretical curves are from
the numerical results of Chen [52] as described above with De� taken from
Figure 3. The ionic strength stops at 170 mM ionic strength above which
serious aggregation was observed through the increase in scattering of the
suspension. Although no free parameters are used in the comparison of
theory and experiment, we note that De� is calculated assuming 10 e/nm.
However, De� is insensitive to the value of the charge density for the range
of values consistent with titration measurements [27].

In Figure 6, the measured di�erence of the co-existence concentrations
relative to �i, ! = (�c��i)=�i, is plotted as a function of the ionic strength
I . Despite the experimental error, we have repeatedly measured the ratio
! to average approximately 10%. This is at least twice as large as the
value from the Khokhlov and Semenov interpolation [50], but falls into close
agreement with Chen's numerical result, which is ! = 9:9% for L=2P = 0:2.
The co-existence width ! increases from about 5% to 15% as ionic strength
varies from 1 to 170 mM. Two explanations for the increase in ! with ionic
strength come to mind. First, as mentioned previously, fd visibly aggregates
at ionic strengths greater than 200 mM, and one could expect the onset
of aggregation to begin at lower ionic strength. Aggregation can lead to
length polydispersity, and as discussed by Lekkerkerker in these lectures,
the co-existence width ! can increase dramatically with the addition of
small amounts of long aggregates [1, 54]. A second explanation is that the
increase of ! with ionic strength is a consequence of the twisting e�ect
of the electric interaction between the charged rods. We observe that the
smallest values of ! occur at the lowest ionic strength where the twisting
constant h is the largest. This would be expected since large values of h act
to destabilize the nematic phase [40, 41].

3.3. TEMPERATURE DEPENDENCE OF THE CO-EXISTENCE

CONCENTRATIONS OF FD

In contrast to TMV, where the isotropic - nematic co-existence concen-
trations were temperature independent [9], we observed that for fd the
isotropic - cholesteric co-existence concentrations varied in a non-monotonic
fashion with temperature over the range 4 - 65� C [55, 47]. We studied a
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Figure 5. Concentrations of co-existing isotropic (�) and cholesteric (�) samples of fd
virus suspensions as a function of ionic strength (I). Theory curves (solid lines) are calcu-
lated based on numerical results from Chen [52] using the ratio of contour to persistence
length L=P = 0:4. The e�ective diameter is taken from Figure 3 with charge density
10e�/nm. Vertical bars indicate the co-existence region.

fd virus solution of approximately 20 mg/ml that was dialyzed against 10
mM potassium phosphate bu�er solution at pH 7.3. Phosphate was cho-
sen because of the weak temperature dependence of the pH. However, a
disadvantage of phosphate is that it is polyvalent, which complicates the
calculation of the interparticle potential [40]. The sample after dialysis was
carefully diluted to the co-existence region and sealed with rubber cover in
a small clean glass tube of roughly 40 mm in length and 5 mm in diameter.
Then the tube was immersed, but kept vertical, in a temperature controlled
water tank and allowed su�cient time to phase-separate. The phase sep-
aration in the bulk was slow due to the small di�erence in the speci�c
gravity between the two co-existing phases, and also the viscosity was large
due to the length of the virus particles. Frequently, a table centrifuge was
used to apply up to 1000 g to speed the separation after the isotropic and
cholesteric phases separated into micron sized droplets after standing at 1 g
overnight. The temperature at which the sample was equilibrated was not
always maintained during centrifugation, so the samples were spun in suc-
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Figure 6. The ratio ! = (�c � �i)=�i (�) at di�erent ionic strengths. The numerical
result, ignoring the twisting e�ect (h = 0), predicts ! = 0:099 (solid line).

cessive intervals of a few minutes each and the sample tube was replaced in
the temperature bath immediately following each centrifugation. The time
needed for the samples to equilibrate were much greater than the time that
the sample was in the non-temperature controlled centrifuge. After thor-
ough phase separation into an isotropic phase in the upper portion of the
tube and a cholesteric in the bottom portion, a sample of volume 20 �l or
so was carefully taken by pipette from each phase while observing through
crossed polarizers. The samples were immediately weighed with an analyt-
ical balance of 0.01 mg accuracy and subsequently diluted approximately
50 fold to measure the fd mass concentration by optical spectrophotometry.
It was necessary to thoroughly mix the two-phase samples after changing
the temperature because it would take an extremely long time for the indi-
vidual co-existing isotropic and cholesteric phases to change concentration
purely by di�usion. In other words, it is easy to superheat or cool these sam-
ples, but mixing the samples allows them to reach equilibrium. Repeated
measurements showed that the variation of the co- existence concentrations
between di�erent samples prepared under what was intended to be identical
conditions occasionally reached 5 percent.

In Fig. (7), the I - C co-existence concentrations of fd are shown at
�ve temperatures. A 5% error bar was assigned to each data point, for
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Figure 7. Co-existence concentrations of isotropic �i (�) and cholesteric �c (�), measured
at �ve temperatures. A maximum in co-existence concentrations is observed near 35� C.
Error bars indicate 5% variation for each concentration.

which three independent measurements were done. However, since we al-
ways measured �i and �c in the same sample, the relative di�erence between
the co-existence concentrations, ! = (�c� �i)=�i, was reliably measured to
be about ! � 10% at each temperature. The remarkable feature of the tem-
perature dependence of the co-existence concentrations is that a maximum
was observed at about 35� C. The temperature induced shift in co-existence
concentrations is not large, amounting to about a 5% variation between the
highest and lowest concentrations.

An alternative method for determining co-existence concentrations as
functions of temperature is to measure the percentage of the cholesteric
portion of the sample in co-existence, instead of directly measuring the
concentrations as before. Since the capillaries are about 8 cm in length and
have uniform cross section, the percentage of cholesteric is easily determined
by measuring the ratio of height of the cholesteric to the total sample with
a ruler. More importantly, since the fractional di�erence in concentration
between the co-existence phases ! is small, and always about 10%, the
shift of percentage of the cholesteric phase is approximately 10 times the
percentage change of the concentration of either phase. This magnifying
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e�ect arises from the conservation of the total virus in a sealed capillary,
which can be written as

�i (1� f) + �c f = �i(1 + f !) = �ave (1)

with f the fraction of the cholesteric, �i the concentration of the isotropic,
and �ave the average concentration of the total solution. For example, if
following a temperature change the isotropic concentration changes as �i !
0:95�i, and the width of the co-existence region ! remains 0.1, then f
increases by about 50% according to eq. (1). Thus a 5 percent change in
the co-existence concentrations is translated into a 50% shift in the height
of the co-existence phase boundary.

There is a serious draw back to this method due to the observation of
a slight irreversible change of the fd samples with time. At room temper-
ature, the co-existence concentrations shift higher with time, and such a
shift persisted for months during our experiment with the sample sealed in
capillaries. A day or two is usually necessary to reach complete separation
of the new equilibrium phases following every temperature change, in spite
of the help of gentle centrifugation. A typical cycle consisting of one mea-
surement following every 5�C temperature change through the temperature
range 4�70�C takes 3 to 4 weeks, during which period the co-existence con-
centrations shift upwards about 1 percent. This is a very slight change, but
is easily measured as a change in the height of the I - C meniscus. The rate
of shift is dependent on temperature and is larger at high temperatures. At
4�C, the sample stays stable for months. This shift rate also depends on
the ionic strength, and we observed more rapid changes at the lower ionic
strengths. The physical origin of such a shift is not well understood. We
believe, however, it is related to an intrinsic change of fd particles.

Figure (8) shows the percentage of cholesteric phase in one sample cap-
illary as a function of temperature. The temperature was cycled from low
to high temperature once (circles), and then from high to low once (tri-
angles). Since the total material in each tube is constant, an increase in
the co-existence concentrations results in a decrease of the percentage of
the cholesteric phase. From the beginning to the end of the experiment of
Fig. (8), a period of two months, the percentage of the cholesteric phase
decreases from 70% to 55%, which amounts to only a 1.5% shift in the
co-existence concentrations.

We have observed that the co-existence concentrations always increase
with time, and with a low but constant rate at each temperature. This
suggests a method to compensate for this time dependence without having
to know the actual rate of shift at each temperature. One can make two
series of measurements, �rst one consisting of sequential temperature in-
creases and the second of temperature decreases taken in opposite order of
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Figure 8. Percentage of the cholesteric in co-existence with the isotropic phase as a
function of temperature, measured in a sealed capillary of the total liquid length 82.2
mm. The temperature was cycled once from low to high temperature (circles), and then
back from high to low once (triangles). The total experiment was completed in about two
months, over which time the percentage of the cholesteric at 4�C decreased about 15%.
The decrease in the percentage of the cholesteric phase from 4 � 35� C corresponds to
an increase in the co-existence concentrations of about 5%, a result consistent with the
data of Fig. (7).

the increases and with equal amount of time spent at the same tempera-
ture levels. Then, by taking the average of every two measurements at the
same temperature, the accumulated drift at all temperatures before and
after the measurements at the highest temperature point is exactly can-
celed. In e�ect, this method sets the highest temperature concentration as
the reference concentration, which is incorrect by only about one percent.

In the previous section we showed how the co-existence concentrations
of fd as a function of ionic strength were in excellent agreement with
Chen's [52] numerical results of the Khokhlov and Semenov theory [50, 51].
If we accept this theory as being applicable to the fd system, then we con-
clude that the temperature dependence of the I - C transition arises from the
temperature dependence of the exibility of fd. Chen [52] provides explicit
formulae for the dependence of concentration of the co-existing isotropic
phase �i and the width of the co-existence concentrations ! as functions of
only the ratio of contour to persistence length of the particle. We substitute
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Figure 9. The persistence length P of fd as a function of temperature deduced from the
measurements of the percentage of the cholesteric phase in co-existence with the isotropic
shown in Fig. (8).

these expressions in eq. (1) along with the measured value of the percent-
age of the cholesteric phase p to convert eq. (1) into a function whose only
unknown is the persistence length P and the temperature independent con-
stant �ave. We know P = 2:2�m at 20� C from the literature, and this �xes
the constant �ave. We thus convert eq. (1) into an equation that relates
the persistence length as a function of the percentage of the cholesteric in
a co-existing sample. The values of the persistence length deduced in this
fashion are shown in Fig. (9). We �nd that the persistence length decreases
about 15% over the temperature range 4 - 35� C and then increases again
by nearly the same amount from 35 - 70� C. It would be interesting if in-
dependent con�rmation of this result could be made by another technique,
such as light scattering.

4. Pre-transitional angular correlations in the isotropic phase

TMV has a positive anisotropy of the diamagnetic susceptibility ��, which
means that the rods tend to align parallel to an applied magnetic �eld. The
particles are also optically anisotropic and when partially aligned by the
�eld the entire suspension becomes birefringent. In the absence of a �eld,
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the particles in the isotropic phase point in all directions with equal proba-
bility when averaged over the entire sample and the suspension is optically
isotropic. However, locally there are angular correlations between neigh-
boring rods. Application of a magnetic �eld aligns these correlated regions
along the �eld. How does the �eld induced birefringence (�n) depend on
the number of particles in a correlation volume? This can be answered
by considering �n from a single rod in a �eld. Research described in this
section can be found in references [9], [45], [47], and [56].

The birefringence for non-interacting rods in a weak �eld is [57]

�n =
c�N 0��H2

15kT
(2)

with c the number density, and �N 0 the maximum speci�c birefringence.
The total birefringence of a completely aligned solution is �nsat = c�N 0,
which is proportional to the number density. To determine the e�ect of cor-
relations on �n, �rst consider a solution of identical particles, which have
a �eld induced birefringence given by eq. (2). Now imagine that each par-
ticle is highly correlated or bound parallel to just one other particle. Then
both �N 0 and �� will double, but c will halve. Thus from eq. (2) �n will
double demonstrating that the �eld induced birefringence is proportional
to the number of particles in a correlation volume.

It is instructive to consider �n=c as the response per particle to an
external stimulus H2. The ratio of this response to stimulus is then the
susceptibility of the suspension to align parallel to the �eld. We de�ne the
speci�c magnetic susceptibility or speci�c Cotton - Mouton constant to be

CM � �n

cH2
(3)

The �eld induced birefringence of the isotropic phase of a lyotropic liquid
crystal was �rst discussed by Straley [58] in a thorough review article of
the experiments and theory of colloidal liquid crystals as of 1973. Straley
showed that the speci�c magnetic susceptibility of hard rods in the limit of
zero �eld for the Onsager approximation is

CM =
�N 0��

15kT (1� c=c�)
(4)

with c� = 4=b, where b = �L2D=4, the average excluded volume of a pair
of rods in the isotropic phase. Analogous to the case of thermotropic liquid
crystals, the birefringence would diverge if the concentration c increases
to c�. But before this occurs, the suspension becomes nematic via a �rst-
order phase transition, which in the Onsager model occurs at ci = 3:3=b.
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In this model, the speci�c �eld induced birefringence is 5.7-fold greater at
the I - N transition than when the concentration is zero. This increase in
the susceptibility can be interpreted as having the number of particles in
a correlation volume (Ncorr) increase. It follows that Ncorr is given by the
ratio of the susceptibility at �nite concentration to the susceptibility in the
limit of zero concentration or

Ncorr =
CM

CMjc!0

=
1

1� c=c�
(5)

Equation (4) for CM can be generalized to take into account both charge
and exibility [45]. We �nd an expression similar to equation (5) but with

CMjc!0 =
�N 0��

15kT

1

g(N)
(6)

and

c� =
16

�De�L
2

g(N)

(1� 3h=4)
(7)

with h the twist constant discussed previously and

g(N) =

�
2

3N
[1� 1

3N
(1� e�3N )]

�
�1

(8)

where N = L=P is the number of persistent elements per polymer.
Two simple limits for CM as a function of exibility are given. For a

rigid charged rod, N = 0, and

�n

cH2
=

�N 0��

15kT

�
1� c(1� 3h=4)

c�

��1
(9)

with c� = 16=�De�L
2. In the worm-like limit as N � 1, g(N) � 3N=2

asymptotically, and we arrive at equation (9) again with the substitutions
�� ! ��

P
and c ! c

P
, where ��

P
= 2��=(3N) and c

P
= 2c=(3N) are

the magnetic anisotropy of a persistent segment and the concentration of
persistent segments, respectively.

4.1. MEASUREMENT OF ANGULAR CORRELATIONS

Magnetic birefringence experiments discussed here were done at the Hochfeld
Magnetlabor of the Max Planck Institut (HM-MPI) in Grenoble, France
and the Francis Bitter National Magnet Laboratory (FBNML), at the Mas-
sachusetts Institute of Technology in the USA. At HM-MPI we used a Bitter
magnet with a maximum �eld of 13.5 Tesla and a 3 cm sample path length.
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The magnet had a radial access for the laser perpendicular to the �eld,
which simpli�ed the optics and maximized space for the sample. Improve-
ment of the �eld to 20 T is underway. The detection optics incorporated
a photoelastic modulator (PEM) from Hinds International and a Pock-
els cell with birefringent axes oriented parallel to the �eld and a crossed
polarizer/analyzer pair oriented at �45� with respect to the �eld. In the
absence of any �eld induced birefringence (�n) the PEM modulates the
birefringence at 50 kHz, which produces an 100 kHz intensity variation
since I / sin2��. The combination of a static �eld induced birefringence
and the PEM produces a 50 kHz intensity variation. The light intensity is
detected by a photodiode and the 50 kHz component is isolated by a lock-in
ampli�er and fed through an operational ampli�er to drive a Pockels cell
to compensate the �eld-induced birefringence. The HM-MPI set-up has a
very convenient design to facilitate rapid changing of samples, a welcomed
feature when studying lyotropic samples.

At FBNML the maximum �eld is 20 T, but there is no radial access.
This limits the path length to 3 mm. For samples for which �n is linear in
H2, a 3 cm path length - 13.5T magnet produces about 5 times the signal
of a 3 mm path length - 20 T one. However, sometimes new physics occurs
at high �elds - an example of which will be given shortly.

The optics at FBNML consists of two polarizers crossed at �45� with
respect to the magnetic �eld, as well as a 50 kHz PEM and Babinet com-
pensator aligned with optic axes parallel to the �eld. This is identical to the
HM-MPI set-up. The detection scheme at FBNML uses a two lock-in tech-
nique, similar to methods that have been discussed by Fuller [59, 60]. This
technique allows the birefringence to be measured without using any com-
pensation. The intensity of transmitted light is I = I0[1� cos(�m+��)]=2
with �m = A sin(!t) the time varying retardance induced by the PEM and
�� the �eld induced retardance. If the PEM is the only birefringent ob-
ject between the polarizers, then the intensity of the transmitted light will
vary with frequencies of integer multiples of 2!. However, once the �eld
induces some additional static birefringence the intensity will have a fre-
quency component at !. The amplitude of the ! and 2! components can
be calculated with the three following equations:

cos(�m +��) = cos(�m) cos(��)� sin(�m) sin(��) (10)

cos(A sin(!t)) = J0(A) + 2
1X
k

J2k(A) cos(2k!t) (11)

sin(A sin(!t)) = 2
1X
k

J2k+1(A) sin((2k+ 1)!t) (12)



135

Two lock-in ampli�ers simultaneously measure the 50 and 100 kHz signals
and reject all the other harmonics. Finally, the �eld induced phase shift
�� is found

tan(��) = C
V50
V100

(13)

with V50 and V100 the voltage output of the 50 and 100 kHz lock-ins re-
spectively. The constant C is experimentally determined by measuring V50
and V100 in the absence of magnetic �eld where �� is produced by a Babi-
net compensator of a variable, but known retardance. This technique is
extremely sensitive, the constant C is independent of the incident intensity
I0, and several orders of retardation are easily accommodated.

An ideal magnetic birefringence set-up designed for lyotropic samples
would have a � 50 mm bore magnet with radial access for the light, and 20
T maximum magnetic �eld. This would permit a 3 cm sample path length,
while preserving enough room to provide temperature control of the sample.
The double lock-in detection method seems to work a bit better than the
compensation method, and permits measurements of retardance greater
than 2 �.

4.2. PREVIOUS PRE-TRANSITIONAL MEASUREMENTS

The �rst study of pre-transitional angular correlations in lyotropics us-
ing magnetic �eld induced birefringence was performed by Nakamura and
Okano [61] in fd suspensions. They studied both the magnetic susceptibility
and the rotational di�usion of the rods in the isotropic phase over a wide
concentration range for one ionic strength and constant temperature. The
temperature and concentration dependence of the induced birefringence of
TMV for dilute samples was �rst carried out by Photinos et. al. [62]. In our
work we have extended these previous measurements to measure the �eld
induced birefringence as a function of concentration, ionic strength, and
temperature over the entire isotropic phase for both TMV and fd [9, 45].

4.3. TEMPERATURE DEPENDENCE OF THE MAGNETIC

BIREFRINGENCE.

In all the preceding, we have assumed that the degree of alignment by the
magnetic �eld is small, which means that the �eld induced birefringence
should be proportional to H2. In Figure (10), the induced birefringence
versus the square of the �eld is plotted for two concentrations of virus, and
two temperatures. The proportionality between the square of the �eld and
the birefringence is clearly shown, as predicted by eq. (9). One can further
note that the slope of these curves (�n=H2) increases as concentration
increases or temperature decreases.
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Figure 10. Magnetic �eld induced birefringence (�n) of TMV is proportional to the
square of the �eld (H2). The samples are in 25 mM phosphate bu�er at pH 7.2 and
concentrations of 56 and 19 mg/ml and at the temperatures indicated. The traces are
digitized recordings of sweeping the �eld up to and down from 12.3 tesla in one minute.

The susceptibility to alignment per particle is found by determining
the slope �n=�H2 � CM from data such as shown in Figure (10). To ex-
perimentally determine the mass concentrations � we measure the optical
density in the ultra-violet, which is sensitive to the total amount of DNA or
RNA in the suspension. This can be converted to number density using the
known molecular weight of the virus and knowing the particle size distri-
bution. Only if the samples are monodisperse is there a simple relationship
between number and mass density; � = cm, with � the mass density of
virus, c the number density, and m the molecular weight of the virus. In
Figure (11) the inverse speci�c Cotton-Mouton constant 1 / CM is plotted
as a function of temperature for a range of concentrations of TMV from
dilute to co-existence with the nematic. According to eq. (4) there should
be a family of straight lines whose slope decreases with increasing concen-
tration and with 1=CM = 0 at T = 0� K. We do see straight lines with
decreasing slope, but 1=CM = 0 at T � = 115� K. We argue that this is due
to a temperature dependence of ��, and not to any collective behavior [9]
because we observe that T � does not vary with either concentration or ionic
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Figure 11. The inverse speci�c magnetic susceptibility (�=CM) is shown as a function
of absolute temperature (T ) for isotropic suspensions of TMV in unbu�ered water. The
wavelength of light � = 633 nm is placed in the numerator by convention. The highest
concentration, 47 mg/ml, is in co-existence with the nematic phase. The values of �=CM
were reversible within the temperature ranges shown for each concentration and fall on
a line which extrapolates to zero at T � = 115� 20�K.

strength. Furthermore, we believe that the temperature dependence of the
CM constant involves internal rearrangement of the orientation of the nu-
cleic acid bases, which does not alter the exibility or persistence length
of the whole particle, because the I - N co-existence concentrations were
observed to be temperature independent.

At low values of the �eld a proportionality between �n and H2 is also
observed for fd suspensions. In Figure (12) the speci�c susceptibility times
temperature is plotted as a function of temperature for several concentra-
tions. According to eq. (4) this combination should be temperature depen-
dent. Instead we observe that there is a non-monotonic variation with a
minimum at about 35� C. Similarly to the TMV case, we argue that this
arises from a temperature dependence of the CM constant of fd, and not
to any collective pre-transitional behavior [55, 47] because the data from
dilute samples in Fig. (12) also show a minimum demonstrating that the
non-monotonic behavior of the CM constant is a single particle property.
The magnitude of the temperature variation of the CM constant is con-



138

   
  ∆

n 
T

/(
ρλ

H
2 ) 

T
-2

 m
g-1

 c
m

2 
K

0 15 30 45 60 75
0.02

0.04

0.06

0.08

0.10

11.0 mg/ml

T  ( oC )

0.9

4.2

Figure 12. �nT=(��H2), the product of the speci�c Cotton-Mouton constant (eq. 3)
and the absolute temperature divided by the wavelength of light �, as a function of
temperature for fd suspensions. Eqs. (4-8) predict that temperature dependence in this
plot can arise from either a temperature dependent �� or persistence length of the
particles. Curves with three concentrations are shown in the graph. Each curve shows a
well de�ned minimum at about 350C. We interpret this to mean that the exibility of fd
has a maximum at this temperature.

sistent with and independently con�rms our previous interpretation that
the temperature dependence of the co-existence concentrations of fd arises
solely from changes in the exibility of individual particles. The observed
concentration dependence of the CM constant, discussed next, is as pre-
dicted due to pre-transitional angular correlations.

Both TMV and fd showed variations of �� with temperature. In gen-
eral, the origin of this variation is the rearrangement of the molecules re-
sponsible for the value of ��. Variation of �� with temperature can arise
from a temperature dependent exibility or persistence length, or can arise
from reorientation of only a small subset of molecules internal to the par-
ticle, which are responsible for the ��. In the latter case, a temperature
variation of �� does not necessarily mean that the exibility of the particle
is varying with temperature. For the case of TMV, the RNA comprises only
a few percent of the total mass of the particle but is entirely responsible
for ��, since upon removal of the RNA from the protein coat the sign of
�� changes from positive to negative. A combination of observations of
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the isotropic - nematic (cholesteric) phase transition with temperature and
the temperature variation of the �eld induced birefringence has lead us to
the following two conclusions. We �nd that for TMV the temperature de-
pendence of the CM constant arises solely from internal rearrangement of
molecules, and the exibility of TMV is independent of temperature. For
fd, in contrast to TMV, we �nd that the temperature dependence of the
CM constant arises solely from the temperature variation of the persistence
length of fd, and not from internal rearrangement of molecules.

The important conclusion of these temperature studies is that while
temperature does e�ect single particle properties, such as the �� of TMV
and the persistence length of fd, temperature does not otherwise inuence
pre-transitional correlations and the phase transition.

4.4. CONCENTRATION DEPENDENCE OF THE PRE-TRANSITIONAL

CORRELATIONS

Having determined that temperature does not inuence the pre-transitional
correlations, it follows that to study the correlations through measurements
of the magnetic susceptibility as a function of concentration and ionic
strength, it is only necessary to measure the Cotton - Mouton constant
at one temperature for each concentration. In this study, all measurements
were carried out at 20�C. In Figure (13), the measured 1=CM values (indi-
vidual points) as a function of TMV concentration for four di�erent ionic
strengths are shown. The lowest ionic strength was achieved by placing ion-
exchange resin in contact with the TMV solution, in which case the only
ions present are the hydrogen counter-ions of TMV. The concentrations
of all samples, but the one in ion-exchange resin, span the entire isotropic
range.

There are several features to note about the data of Fig. (13). First, the
value of 1=CM at � = 0 is slightly di�erent for the four samples, indicating a
small degree, although non-negligible, amount of polydispersity. Second, the
concentration dependence of 1=CM is a strong function of ionic strength.
The excluded volume, b = �L2De�=4, which is proportional to the initial
slope of the curves in Figure (13), increases over sixteen times from the case
of the suspension in 25 mM phosphate bu�er (57.5 mM), to the suspension
kept in de- ionized water (resin) where the ionic strength is provided only by
the counter-ions of TMV. Third, the three data sets which span the entire
isotropic phase decrease faster than a linear function of concentration. If
the rods had a large enough axial ratio (L/D) such that only two body
interactions were important, then 1=CM would be described by eq. (4)
and would be linear in the TMV concentration. The observation of a non-
linear concentration dependence of 1=CM implies that terms greater than
the second virial coe�cient are important in the I-N phase transition for
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Figure 13. The inverse speci�c magnetic susceptibility (�=CM) as a function of concen-
tration (�) at constant temperature (T = 20�C) was measured for four ionic strengths
for monodisperse samples of TMV. The symbols correspond to: (�) TMV in ion exchange
resin, (square) unbu�ered water, (�) 5 mM potassium phosphate bu�er, pH 7.2 (KP),
and (4) 25 mM KP. The solid lines are �ts to the Parsons - Lee theory. The last three
samples cover the entire isotropic range.

TMV, which indeed was expected for rods with L=D < 100. Fourth, the
highest concentration shown (except for the resin sample) is for the isotropic
phase in co-existence with the nematic phase. The expected trend, that the
transition concentrations increase as ionic strength increases, is observed.
Fifth, Ncorr (eq. 5) or the number of particles in a correlation volume varies
between 3 and 6 (see Figure (15)).

In Figure (14), the measured 1=CM values (individual points) as a func-
tion of fd concentration for �ve di�erent ionic strengths are shown. In con-
trast to Figure (13) for TMV, 1=CM is a linear function of �, as predicted
by the Onsager theory and eq. (4). This is because fd has a value of L=D ten
times that of TMV. The limit of concentration of stability of the isotropic
phase, �� is found by �tting the 1=CM data to eq. (4) and extrapolating to
the concentration where 1=CM = 0.

In Figure (15) the number of particles in a correlation volume is plotted
as a function of concentration for TMV where the data is derived from
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Figure 14. The inverse of the speci�c Cotton-Mouton constant (�=CM) versus fd con-
centration �. The �ve curves correspond to the �ve ionic strengths labeled on the plot in
units of milli-molar (mM) with the bu�er being Tris-Cl at pH 7.5. In all cases the highest
concentration is at the isotropic-cholesteric phase transition. Each group of data is �t to
eq. (4) and extrapolated to obtain ��, the concentration where 1=CM = 0.

Figure (13) using eq. (5). There have been several detailed computer simu-
lations on uids of ellipsoids and spherocylinders with L=D = 5 for which
Ncorr was calculated [63, 64] at the I-N transition. The value of Ncorr was
di�cult to determine due to the slowing down of the dynamics near the
phase transition. One measurement on a system consisting of 576 particles
after 20,000 trial moves per particle gave Ncorr = 5.8 [63] while a longer
run of 50,000 moves per particle yielded 2.6 [65]. In Figure (15) the data
of Frenkel for Ncorr versus mass concentration (�) for spherocylinders with
L=D = 5 is plotted along with the values predicted by the theory of Lee
for hard particles of the same aspect ratio. There are no free parameters
when comparing the theory with the computer simulations.

In Figure (16) the number of particles in a correlation volume is plotted
as a function of concentration for fd where the data is derived from Fig-
ure (14) using eq. (5). The solid lines are not �ts of the data, but predictions
of the theory with zero adjustable parameters.

Finally, in Figure (17) the phase diagram for fd is shown again with
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Figure 15. The number of TMV particles in a correlation volume Ncorr, experimentally
obtained using eq. (5) is shown as a function of weight concentration, �. The solid lines are
the theoretical predictions of the Parsons - Lee theory. The symbols represent: (diamonds)
Monte-Carlo data for hard spherocylinders of L=D = 5, and the other samples are the
same as in Figure (13): (square) unbu�ered water, (� ) 5 mM potassium phosphate
bu�er, pH 7.2 (KP), and (4) 25 mM KP. The theory for the Monte - Carlo data has
no adjustable parameters. The theory curves for the two phosphate bu�er samples were
calculated assuming either 5 or 20 e/nm charge density for TMV and using the known
ionic strength of the bu�er.

the additional points of the spinodal of the isotropic phase �� obtained
from the birefringence data shown in Figure (16). Note that the spinodal
concentration for the isotropic phase �� is greater than the co-existence
concentration of the nematic phase.

5. Pre-transitional spatial correlations

The Onsager theory ignores spatial correlations between particles and both
the isotropic and nematic phases are assumed to be liquid-like with short
range correlations. Using low angle neutron scattering we measured the in-
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Figure 16. The fd concentration dependence of Ncorr (eq. 5). Experimentally, Ncorr
varies between 2.5 and 4 at the isotropic - cholesteric transition. In contrast to Figure (14),
the solid lines are drawn using the theoretical �� and �i values with no adjustable or �tted
parameters.

terparticle correlations in both the isotropic and nematic phase [66], and
indeed both phases are observed to have short range correlations. For the
particular case of scattering from spheres there is a relationship between
the scattering intensity I(q) and the structure factor S(q), which measures
interparticle correlations I(q) / F (q)S(q), with F (q) the form factor, or
scattering from a single particle and q = 4� sin(�)=�. However, this conve-
nient intensity relation is not valid in general for rods, where the scattered
intensity depends on the orientation of the rod axis with respect to the scat-
tering vector. When the angular and spatial correlations are coupled, there
is no direct way to separate the di�erent correlations from the scattered
intensity. The form factor of TMV, shown in Figure (18) is experimentally
obtained by measuring the scattered intensity from a dilute suspension.
Figure (19) shows the scattered intensity from a concentration series of
isotropic samples of TMV in suspension at low ionic strength. This sample
underwent an I - N transition near 30 mg/ml. The phase diagram in Fig. (4)
suggests that this concentration corresponds to an ionic strength of about
3 mM. In turn, this implies an e�ective diameter about 3 - 4 times the hard
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Figure 17. The experimental co-existence concentrations of the isotropic and cholesteric
phases �i(�), �c(�) of fd, and the limit of stability (spinodal) of the isotropic phase ��(5),
plotted at �ve ionic strengths. The calculated �i and �c (solid curves) are the same as in
Figure (5), while the calculated �� (dashed line) is from eq. (7).

diameter of TMV, which means that the rods are strongly repulsive. For
lack of anything better to do, we divide the scattered intensity by the form
factor and call the result the structure factor, also shown in Figure (19).

The structure factor has features at three length scales; low, interme-
diate, and high q. At low q, S(q) is proportional to the isothermal com-
pressibility (@c=@�), and we observe that the suspension becomes less com-
pressible with increasing concentration. Associated with the decrease in
compressibility, there is an increase in S(q) at intermediate q, and with
increasing concentration �rst one peak and then two peaks develop. The
location of the peak qm is a measure of the average separation (R) between
the central axes of the particles qm = 2�=R, which for rods is not the
center of mass as it is for spheres. From Figure (19) we �nd R � 79 nm.
The width of the peak of the structure factor �qm = 2�=� measures the
spatial correlation length � of the rods. We see �qm narrows with increas-
ing concentration, telling us that correlations are increasing. At the highest
concentration close to the I - N transition, we �nd �qm � 0:03 nm�1 or
� � 210 nm. The ratio qm=�qm = �=R is a measure of the number of parti-
cles in the spatial correlation length � and at the I - N transition this ratio
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Figure 18. Calculated form factor of TMV from an isotropic suspension (-), compared
to the experimentally measured scattered intensity from a sample of 11.2 mg/ml fd
concentration and in 6 mM TRIS bu�er at pH 8.

is about 3. We conclude that the spatial correlations are short - ranged and
have similar magnitude to the angular correlations in the isotropic phase.
Finally, at high q interparticle correlations vanish and S(q) = 1. These ef-
fects do not occur independently of each other. Once the rods are packed
together with separations close to De� it becomes very di�cult to further
compress them, leading to the decrease in the osmotic compressibility and
to the increase in local order, since in an energetic sense the rods are be-
coming close-packed.

6. Spatial correlations in the nematic phase of TMV

The scattered intensity from the nematic has a strong angular dependence,
in contrast to the rotationally invariant isotropic phase. This is because at
low resolution the virus particles can be approximated as a cylinder and
their form factor is a series of thin rings (Bessel functions) in reciprocal
space with the plane containing the rings perpendicular to the long axis
of the cylinder. The thickness of the rings is inversely proportional to the
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Figure 19. (left) The intensity I(q) of neutron scattering from isotropic suspensions
of TMV in distilled water. (right) The structure factor S(q) is obtained by dividing the
intensity data by the form factor of Fig. (18).

length of the cylinder and for our rotating anode x-ray scattering equip-
ment and for the neutron scattering experiments, the �nite thickness of the
rings is unresolvable. Thus for a perfectly aligned nematic the scattering is
con�ned to a line perpendicular to the nematic director and the intensity
falls o� as a Bessel function with increasing wavevector q.

In the nematic phase the orientational probability distribution is de-
scribed by a Gaussian-like function with a narrow angular width. In the
absence of interparticle interference, the scattered intensity from a nematic
consists of a series of arcs centered on the beam with the maximum inten-
sity concentrated along the equatorial scattering direction perpendicular to
the nematic director. The angular distribution function is the central phys-
ical quantity in the Onsager model and has been measured in suspensions
of TMV with x-ray scattering [8, 11]. Signi�cant deviations in the shape of
the angular distribution were found from the Onsager theory - the shape
resembles a Gaussian more closely then the sharper peaked Onsager distri-
bution. Comparisons with the Parsons - Lee theory [48] suggest that the
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Figure 20. Low angle neutron scattering from aligned nematic TMV.

higher order virial terms are responsible for this deviation.

Fig. (20) shows the low angle scattered intensity from a magnetic �eld
aligned nematic TMV sample of 74 mg/ml concentration at low ionic strength
in H2O. The data was taken on the D11 beam line of the Institut Laue-
Langevin. The beam stop, or origin of reciprocal space is seen in the center
of the two-dimensional plot as a rectangular depression and the scattering
is dominated by two peaks. Scattering is strongly con�ned in the direction
perpendicular to the nematic alignment direction. The width of the peaks
at constant q is due to the angular distribution f(�) of the orientation
of the rods, and from this data, as well as measurements of the peaks at
higher scattering angle arising from the form factor, we �nd that the order
parameter S =

R
f(�)P2(�) is 0.8.

It is notable that the scattered intensity in Fig. (20) does not at all
resemble the form factor of TMV, which being a Bessel function, has its
maximum at q = 0 and would gently decrease over the scattering angles
shown. Instead we observe a strong peak at qm = 0:14 nm�1. The peak
arises from interparticle interference and its radial width �qm is governed
by the correlation length of the interacting particles. Fig. (21) shows the
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Figure 21. Radial averaged intensity from the nematic TMV of Fig. (20). The large
peak at low q arises from interparticle interference and the smaller peak at high q is from
the form factor as in Fig. (18).

radial averaged scattered intensity as a function of q. The decrease in inten-
sity at low angles comes from the osmotic compressibility of the suspension,
the �rst and largest peak arises from the interparticle interference, and the
higher angle, weaker peak near 0.6 nm�1 is from the form factor of TMV
shown in Fig. (18). The ratio qm=�qm � 3 is approximately the number of
particles in a correlation length. The number of particles in a correlation
length in the nematic phase is nearly the same as in the isotropic phase,
indicating that interparticle correlations are similar on each side of the
isotropic - nematic transition.

Thorough x-ray scattering investigations of the angular distribution
function and the interparticle correlations over the entire concentration
range of both the nematic and smectic phases of TMV and fd are currently
in progress at Brandeis.



149

7. Magnetic �eld induced isotropic - nematic phase transition

It has long been predicted that an external �eld, which orients the particles'
long axis along the �eld, will induce a �rst order phase transition if the
isotropic phase (I) is thermodynamically near the nematic phase (N) in the
absence of the �eld [67, 68]. The basic intuition is that since the suspension
is about to spontaneously align via a �rst order transition, a little nudge to
increase the tendency to align will lower the transition concentration, ci.

Due to the small size of the molecules, magnetic �elds of order 1 mega-
gauss (100 Tesla) are needed to observe the critical point [69], which is well
above current obtainable DC �eld strengths. Only recently has the phase
transition been observed using short bursts of high voltage a.c. �elds [70].
However, due to the large �� of fd, �elds of order 10 T will induce the
phase transition. This is another example of how the large size of the colloid
renders accessible experiments impossible for small molecule systems - in
this case applying a �eld with energy of order kT per molecule.

To search for a �eld induced transition we built a 100x polarizing micro-
scope to �t in a 20 tesla magnet and examined visually isotropic samples
of fd in co-existence with the chiral nematic. The magnetic birefringence
experiments were performed at the Francis Bitter National Magnet Labora-
tory (FBNML) in a 20 tesla magnet equipped with a temperature stabilized
holder, which was regulated at 22.0 C. Sample cells for all experiments had
a 3 mm path length and were illuminated with a 1 mm diameter HeNe laser
(633 nm) for birefringence measurements or white light for microscopy. Ini-
tially when the �eld was swept from zero to 14 tesla in 30 sec., the intensity
increased from dark to bright white, then uniform interference colors swept
through the sample. After one minute small domains of several microns
in size appeared uniformly throughout the sample forming an amorphous
network and after 30 minutes, the droplets coarsened to order 20 microns.
When the �eld was rapidly reduced to zero, the �eld induced network van-
ished rapidly. The direct observation of droplet formation demonstrates
that a �rst order phase transition has occurred, while the asymmetry in
the times for build-up and decay of the droplets indicate that the dynamics
of this process are very interesting. We set out to study the dynamics in
detail by measuring the speci�c magnetic �eld induced birefringence �n=c.

In our experiments �n=c was linear in �eld energy for small �elds and
for all concentrations as observed previously [61]. However, we observed
a large non-linear increase in �n=c at high �elds for concentrations in a
narrow range of the I-N transition. Deviations from linear response were not
observed previously [61] because the maximum magnetic �eld was 1 tesla,
while at the FBNML we used �elds up to 20 tesla, resulting in �eld energies
a factor of 400 times greater. The non-linear increase, shown in Fig. (22)
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Figure 22. The magnetic �eld induced birefringence �n, as a function of �eld squared
H2, at four representative fd concentrations. The open circles (�) are the experimental
data, and the solid lines are linear �ts of data at low �elds (0-3T), except for the lowest
concentration (1.0 mg/ml), for which the linear �t was applied to the entire �eld range.
The upper window is a magni�ed display of the same data at low �eld. The open circles
(�) connected by dotted lines with data below the solid lines were taken as the �eld
increased and the data above taken as the �eld decreased. The birefringence is linear in
H2 at all concentrations in the weak �eld limit. The large nonlinear increase in �n for
the highest concentration is indicative of a �eld-induced phase transition [56]. All the
samples were at Tris-Cl bu�er at pH 7.5, with the ionic strength approximately 5 mM.

for freshly prepared fd, is indicative of �eld induced order, as opposed to a
linear response, discussed previously, where the birefringence is due to the
aligning of the existing correlation volumes along the �eld direction. At the
highest �elds, and for the highest concentrations we observed saturation
of the birefringence, indicating the complete formation of a �eld induced
nematic phase. These experiments are described in detail in ref. [56].

8. Cholesteric phase of fd

The molecules in a cholesteric phase are arranged locally as in a nematic
phase, but there is a slight twist angle of constant sign between each
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molecule. This results in precession of the director, illustrated in Fig. (23).
The pitch p is the distance for the director to rotate 360 degrees. Viewed
with a polarizing microscope a fd cholesteric sample has a texture that
resembles a �ngerprint [71] with a pattern of regularly spaced black lines
separated by p=2. The Onsager theory of the nematic phase can be ex-
tended to calculate the elastic constants of the nematic [72], as well as the
cholesteric pitch [73]. The minimum energy con�guration of a macroscopic
nematic is one with uniform alignment. The molecules are not all parallel,
because the angular distribution function has a �nite width, but the aver-
age direction of alignment, known as the director, points in one direction
throughout the sample. A spatial variation in the director changes the an-
gular distribution function from its ground state, raising the energy. The
energy of the three possible distortions of the director �eld in a nematic,
known as the twist, bend, and splay distortions has been calculated in the
context of the Onsager theory [72].

A cholesteric can be thought of as being a nematic with a weak chiral
perturbation. Straley [73] modeled a cholesteric as a suspension of hard
screws, rather than hard rods. The excluded volume is reduced when two
screws are oriented at an angle to each other because they can nest inside
each others threads, as shown in Fig. (24). In Straley's model the pitch of
a cholesteric results as a competition between the tendency for local twist,
balanced against the cost of having a non-uniform director. The lowest en-
ergy con�guration of a suspension of screws becomes one with a pure twist
distortion, shown in Fig. (23). Straley predicted that the pitch is indepen-
dent of concentration, because the energy cost of the twist elastic distortion
and the energy gain produced by nesting the screws exactly compensate
each other. The pitch was also found to be independent of concentration in
a density functional calculation of hard twisted ellipsoids [74].

Odijk extended Straley's work to take into account exibility, as well
as reevaluating Straley's calculation [75]. Odijk �nds that the pitch varies
with concentration as

p � ��1P�4=3D�5=3c�5=3p (14)

with � the width of the thread, P the persistence length, D the inner
radius of the screw, and cp the concentration of persistence units given by
cp = cL=P .

The experimental situation is not clear, with some experiments sup-
porting one theory, some the other. Studies on the polymer PBG show that
p / c�5=3 [76], while measurements on DNA show that p is independent of
concentration [77]. The situation for fd is somewhere inbetween [71, 78]. In
Fig. (25) the pitch is plotted as a function of concentration of fd in a 53 mM
ionic strength bu�er, pH 8. The data cover the entire concentration range
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Figure 23. Schematic of the spatial variation of the director (represented as parallel
lines) in a cholesteric phase. The pitch is the distance the director rotates 360 degrees.

Figure 24. Geometry of two threaded rods. The upper rod may approach the lower
most closely if its principal axis is rotated clockwise with respect to the axis of the lower.
(After ref. [73])

of the cholesteric phase. At low concentration the isotropic phase transition
occurs, and at the high end a smectic phase appears. The predicted power
law p / c�� with � = 5=3 is observed for most of the concentration range.
However, � is a function of ionic strength and � decreases systematically
from � = 5=3 at 64 mM ionic strength to � = 1:1 at an ionic strength of
5 mM. If in eq. (14) we replace D with De�, our usual prescription for ac-
counting for charge, we expect � = 5=3 independent of ionic strength. This
discrepancy suggests the need to reexamine the theories of the cholesteric
phase and/or incorporate the e�ect of charge in a more basic way.

We are currently measuring the twist elastic constant as a function of
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Figure 25. A log - log plot of the pitch p as a function of fd concentration in a 53 mM
ionic strength, pH 8 solution. The solid line is a �t to p / c�� with � = 1:66, in accord
with the theory of Odijk [75]. At high concentration, smectic pre-transitional unwinding
of the helix is seen.

ionic strength and fd concentration to more completely characterize the
cholesteric phase. Initial studies of the twist elastic constant can be found
in the thesis of Oldenbourg [78].

9. Smectic phase of fd and TMV

Visually, the most remarkable feature of the smectic phases of TMV and
fd is that they are brilliantly iridescent [10, 12, 36, 71, 79]. This arises from
the Bragg di�raction of light from the virus particles arranged in layers.
The layer spacing is approximately equal to the particle length, which for
both cases is of order the wavelength of light. In contrast, the separation
of the particles in the plane of the layers is roughly in the range of 10 - 100
nm and x-rays or neutrons are needed to probe the structure on this length
scale. Thus while the observance of iridescence demonstrates crystallinity in
one-dimension, this observation alone is insu�cient to di�erentiate between
a crystal and a smectic. X-ray scattering studies [10, 80] revealed that
TMV forms a smectic at high ionic strength, but at low ionic strengths the
nematic phase directly transforms to a colloidal crystal. Recently, studies
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at Brandeis have concluded that the TMV nematic - smectic transition
is second order [81], in agreement with the hard rod simulations [5], and
critical behavior for both the static divergence of scattered light and the
dynamics of pre-smectic uctuations have been observed [81].

Previous freeze fracture electron microscopy and optical microscopy
studies have been made of fd smectics [71, 82], but were unable to present
a consistent picture of its properties. In Figure (2) we mapped out the
cholesteric - smectic (C-S) phase boundary of fd as a function of ionic
strength. The agreement between the Khokhlov - Semenov theory of the
isotropic - cholesteric transition with the experimental data of Figure (5)
demonstrated that one can consider that the e�ect of ionic strength is to
control the e�ective diameter of the particle. This allows us to introduce
the concept of an e�ective volume fraction along the C - S phase boundary
de�ned as �e� = csVe� with cS the number density at the C - S transition,
Ve� = �L(Dnem

e� )2=4 with Ve� and Dnem
e� the e�ective volume and diameter

of the rods in the nematic phase. Dnem
e� is calculated using the second virial

coe�cient in the Onsager theory: Dnem
e� = Diso

e� (1+ h�(f)=�(f)) with h the
twist parameter, and � and � functions of the angular distribution in the
nematic phase [83]. The e�ective diameter increases as the rods become
more ordered because the repulsive force for two parallel charged rods is
greater than for crossed rods. The above de�nition of an e�ective diame-
ter will be valid as long as the average angle

p
< �2 > between particles

in the nematic phase is greater than Dnem
e� =L (see sec. 2.3 of ref [1]). We

�nd that for a fd suspension with an order parameter of S = 0:9 [1] thatp
< �2 > � 10Dnem

e� =L for the largest value of Dnem
e� . Although the e�ec-

tive diameter diverges for long, strictly parallel charged rods, for fd with
S = 0:9 with a twist constant h < 0:15, we �nd Dnem

e� = 1:12Diso
e� . Along

the cholesteric - smectic (C - S) phase boundary we experimentally �nd
that �e� = 0:75� 0:05, and this line of constant e�ective volume fraction
is drawn in Figure (2).

This phase diagram is not athermal. We observed that a few fd samples
were smectic in a 4� C refrigerator, but transformed into a cholesteric at
room temperature. However, this temperature induced phase transition was
only observed for samples of concentration very close to the C - S boundary.

We picture the smectic as consisting of layers of virus of uniform density
separated by interlayer gaps where the density is lower. We model the
density of ends of the virus particles in the gaps as having a Gaussian
distribution, illustrated in Fig. (26),

�(z) = �0 � �1
X
n

�(z � n�)
 e�z
2=2�2 (15)

with n the integers, �0 and �1 constants, and � the gap width. Because the
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Figure 26. The bottom portion of this �gure is a sketch of the distribution of the exible
fd molecules in the smectic phase. The upper portion is a plot of the density distribution
of eq. (15), showing the density � as a function of distance z. The width of the gap
between layers � and the smectic layer spacing � are indicated.

smectic is periodic in only one dimension, thermal uctuations destroy long
range order and the intensity of scattered light from the smectic layers will
not have true Bragg peaks, but instead algebraic singularities. The intensity
of the scattered light from �(z) is

I(qz) / e�q
2
z�

2

(qz � q0m)��2 (16)

with qz the scattered wave vector, q0 = 2�=� with � the smectic periodic-
ity, m the di�raction order, and � a function of the elastic moduli of the
smectic phase and also increasing proportional to m2 [84, 85]. We observed
�ve Bragg di�raction peaks in light scattering measurements from aligned
smectic samples with 479 nm light, but the peak widths did not increase
with increasing m, indicating that � is much smaller than two. However,
the integrated intensity of each peak did decrease according to eq. (16),
and we determined that the gap between smectic layers has a width of
� = 90� 10 nm and the smectic wavelength was � = 920� 10 nm. These
values did not vary with ionic strength. The structure deduced from the
model of eqs. (15) and (16) is sketched in Fig. 26.

As described in the previous section, we measured the cholesteric pitch
as a function of concentration over the entire cholesteric phase for sev-
eral ionic strengths. With increasing concentration the pitch initially de-
creases as c��, with � a function of ionic strength, decreasing systematically
with increasing ionic strength. The data for one ionic strength is shown in
Fig. (25). In this case, when the fd concentration is increased above 100
mg/ml the cholesteric helix begins to unwind and the pitch increases until
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Figure 27. DIC optical micrograph of the fd smectic. The high contrast black- white
lines are the gaps between smectic layers. The particles lie in the plane of the photo and
are oriented perpendicular to the smectic planes. The smectic periodicity is 0.92 �m and
the white bar is 10 �m.

150 mg/ml when the cholesteric - smectic phase transition occurs. This un-
winding of the helix occurred for all samples when the concentration was
within 10% of the smectic phase. In a second order C-S phase transition,
the pitch would diverge continuously. Instead, we observe a slight increase
in pitch followed by abrupt unwinding at the smectic phase boundary. We
also note that there was no indication of pre-transitional smectic density
uctuations in light scattering measurements.

In general, if one can observe several di�raction orders with light, then it
is possible to directly image the smectic layers with an optical microscope.
A Di�erential Interference Contrast (DIC), video enhanced light microscope
photograph of the smectic is shown in Fig. (27). The spatial resolution and
depth of �eld is 0.2 �m [86]. The fd molecules are lying in the plane of the
photo, oriented perpendicular to the dark bands, which are the gaps be-
tween the layers. Thermotropics are modeled as having a sinusoidal density
modulation and show only one Bragg peak. In contrast, the smectic layers
in Fig. (27) have a square-wave like density modulation, consistent with
our observation of �ve di�raction orders, and consistent with the hard rod
models.
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The textures and defects possible in smectic phases include a wide vari-
ety depending on the relative roles of dislocations and disclinations. In the
case of either externally imposed deformations or spontaneous cholesteric
twist, the response of the smectic is governed by relative values of elastic
moduli for the several �rst and second order elastic deformation terms in
the free energy. Thus determining the defect textures is of great value in
understanding the nature of the smectic ordering. A smectic resists the
twist deformation because it destroys the layering, thus defects must be
introduced when such a deformation is imposed. Under a twist strain, a
smectic can respond by either accommodating the twist all at once by lo-
cally melting the smectic (analogous to a normal-Type I superconductor
transition induced by a magnetic �eld), or by introducing a periodic ar-
ray of defects and distributing the twist in discrete increments throughout
the sample (analogous to the Abrikosov ux lattice in a Type II). Which
behavior is observed depends on the relative cost of creating a smectic -
nematic interface versus the cost of producing screw dislocations.

Shown in Fig. (28) are video enhanced DIC micrographs of textures in
a fd smectic with the layers oriented normal to the slides (the \bookshelf"
geometry), which is uniformly twisted between the top and bottom slides
that contain it. In the superconducting analogy, this is equivalent to impos-
ing a magnetic �eld on a superconductor. The spatial resolution and depth
of �eld of the images are 0.2 �m. With serial images at di�erent depths in
a sample, we can map out the detailed three dimensional spatial con�gura-
tion of the smectic layers, and Fig. (28) shows a series of images separated
in depth by 0.5 �m. The imposed twist is accommodated in the smectic
by taking the form of a series of regularly spaced blocks of smectics with
a constant angle of rotation between adjacent blocks [87], as illustrated
in Fig 29. Although only three blocks are shown in Figs. 28a, 28c, and
28e, this pattern persisted throughout the 5 �m thick sample. In between
each block are expected a series of regularly spaced twist grain boundaries
(TGB). However, the structure in the plane of the screw dislocations can-
not be seen because of the �nite depth of �eld of the microscope. Instead,
when focused at the interface between smectic blocks we observe a Moir�e
pattern from the blocks above and below the focus plane (Figs. 28b and
28d). This sets an upper limit on the thickness of the grain boundary of
less than 0.2 �m and establishes that the blocks rotate in discrete amounts,
as expected for the TGB texture.

We now compare the above experimental results of the smectic phase
of the semi-exible molecule fd with the results from simulations, theory,
and experiment from either hard or charged rigid particles. We saw in the
discussion of Fig. (2) that by considering the e�ect of ionic strength as
merely changing the e�ective diameter of fd, we were led to conclude that
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Figure 28. DIC photograph of a strain-induced TGB texture. Montage of �ve images,
each displaced vertically by 0.5 �m. The resolution in the plane of the photo is 0.2 �m,
and the depth of �eld is also 0.2 �m. In (a), (c), and (e) smectic blocks are observed
in the bookshelf geometry with the fd molecules in the plane of the photo and aligned
perpendicular to the dark lines, which de�ne the smectic layer spacing of 920 nm. The
texture in (b) and (d) is a Moir�e pattern from the two adjacent images and is generated
because of the 0.2 �m depth of �eld of the microscope.

the volume fraction at the cholesteric - smectic transition was a constant
�e� = 0:75 � 0:05, even though L=De� increases from about 30 to 70 as
the ionic strength varies from 4 - 65 mM. The theories and simulations
show that the volume fraction at the smectic transition initially decreases
with increasing L=D, but becomes constant above L=D > 10 [89], thus the
independence of �e� on L=De� is expected. However, �e� is substantially
higher than observed in simulations or theory for rigid and hard particles,
for which � = 0:4 � 0:5 is found [1, 89]. We conclude that introducing
exibility acts to suppress the phase transition.

As discussed previously, the fd liquid crystal is not athermal because the
degree of exibility is temperature dependent. In Fig. (9) we showed that
the persistence length P has a non-monotonic temperature dependence,
�rst decreasing from 2:45�m to 2:15�m as the temperature increases from
4 to 35� C. As mentioned above, a smectic sample of concentration close
to the cholesteric phase boundary would undergo a smectic - cholesteric
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Figure 29. Schematic representation of the TGB model of the SmA phase. Blocks of SmA
layers of spacing d are separated by regularly spaced twist grain boundaries separated
by a distance lb. The distance between screw dislocations within a grain boundary is ld.
The angles of the normal to the smectic planes separated by a grain boundary di�er by
�	 � d=ld. The molecular director lies in planes perpendicular to the pitch axis, P . The
average con�guration of the director in the TGB model is very similar to that of the
cholesteric phase. (Figure after ref [88]).

transition upon warming from 4 to 20� C. This temperature change induces
about a 10% decrease in the persistence length, and is consistent with the
conclusion that increasing exibility suppresses the C - S transition.

The light scattering and optical microscopy studies revealed that the
ratio of smectic periodicity to fd contour length was �=L = 1:05. Theory
and simulations of hard cylinders have a much larger value �=L = 1:4, while
experiments on TMV, a rigid, but charged cylinder has �=L = 1:1� 1:2.
The shape of the ends of the particles has a strong e�ect on the layer
spacing and volume fraction of the smectic phase. Rounding the ends of
hard, rigid cylinders both raises � and lowers �=L [89], and in the case of
an ellipsoid of revolution the smectic phase is completely suppressed [90].
One can imagine that the e�ect of charge is to \round" the edges of TMV
and fd, thus accounting for the lowered values of �=L compared to the hard
particles. But since �=L is even smaller for fd than for TMV, we conclude
that exibility lowers �=L compared to rigid particles.

The two observations of weak pre-transitional unwinding of the chole-
steric helix and the undetectable pre-transitional uctuations in the smectic
order parameter using light scattering, coupled with the observations of
the discontinuous tremendous increase in the scattered light intensity and
sudden unwinding of the cholesteric helix at the cholesteric - smectic phase
boundary indicate that the C - S transition is �rst order. This is in contrast
to both the simulations of hard, rigid particles and the experiments on
TMV where the nematic - smectic transition is second order. We conclude
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that the e�ect of exibility is to drive the second order nematic - smectic
transition to be �rst order.

10. Conclusions

Suspensions of virus particles have proven to be model systems for exploring
liquid crystalline properties. They come in a variety of shapes and sizes and
are amenable to modi�cation using molecular engineering techniques. These
virus systems o�er numerous examples of how the colloidal dimensions of
the particles o�er unique experimental opportunities, not available to small
molecule systems. These include the magnetic �eld induced isotropic - ne-
matic transition in fd, determination of the dynamical exponent of pre-
smectic density uctuations in TMV using dynamic light scattering, and
direct microscopic observation of smectic layering. On one hand the viruses
have been proving grounds for testing theories. The isotropic - nematic
transition in fd suspensions has been shown to be quantitatively described
by extensions of the Onsager theory of charged, rigid particles that account
for the exibility of fd. On the other hand, the virus systems raise many fun-
damental questions. What is the molecular origin of the cholesteric order in
virus suspensions? TMV, pf1, and fd have chiral symmetry in that they are
composed of helical arrays of proteins, yet why does fd form a cholesteric
while both TMV and pf1 form a nematic? A second fundamental question
concerns the role of exibility in liquid crystals for which there have been
neither experiment, simulation, or theory: How exible can a polymer be
and still form a smectic? How does exibility e�ect the order of the nematic
- smectic transition? We believe that these model virus systems will be of
use in exploring these questions, but clearly there is also the need for the
parallel development of both theories and simulations.
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